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ABSTRACT PARABOLIC CONTROL PROBLEM

e Two Hilbert spaces : the state space (E, (., .)) and the control space (U, [.,.]).

o A:D(A) C E — E is some elliptic operator such that — A generates an analytic
semigroup in E.

@ B: U+ D(A*) the control (bounded) operator, B* its adjoint.

o COMPATIBILITY ASSUMPTION : we assume that
(z — B*e*“‘*w) € 12(0,T; U), and [[B*e**‘*w]] <Cll, ¥ € E.

L2(0,T;U)

Oy+ Ay=Bv in]0,T],
¥(0) = o,
Here, yo € E is the initial data, v € L*(]0, T[, U) is the control we are looking for.

Our controlled parabolic problem is (S) {

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any yo € E and v € L[*(0,T; U), there exists a unique y = y,.,, € C°([0, T], E)
such that

(y(1),v) — <y0,ef“4*1/1> = /Ot [v(sLB*e*(tﬂ)A*w] ds, Vt€[0,T],Vy € E.

NOTATION : [LT(V|yO) dInyv,yo(T)}
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CONTROLLABILITY QUESTIONS

¥(0) = yo.

For a given (fixed) control time 7 > 0 and any § > 0, we set

(s {8,y +Ay=Bv in]0,T|,

(Adm(yo,a) = [y € 20.7:0), st. || £ (vlyo) | < 6 J

APPROXIMATE CONTROL PROBLEM FROM THE INITIAL DATA Yo

Do we have
Adm(yo,d) #0, V6§ >07

NULL-CONTROL PROBLEM FROM THE INITIAL DATA Yy,

Do we have

Adm(yo,0) # 0 ?

(Fattorini-Russel, *71) (Lebeau-Robbiano, *95)
(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, *08)

(Ammar-Khodja, Benabdallah, Gonzalez-Burgos, de Teresa, *11)
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THE HILBERT UNIQUENESS METHOD

(Lions, ’88) (Glowinski-Lions, *90s)
IDEAS

@ To formulate control problems as constrainted optimisation problems.
@ To write the associated unconstrainted dual optimisation problem.

@ To find conditions for the solvability of the dual problem and prove that there are
satisfied.

COST OF THE CONTROL We set

Fv) & % /0 "DOP dr, e 20.T:0),

and for any 6 > 0, we define (it it exists !), v to be the unique minimiser

FO)= inf F(v). (P%)

vEAdm(yg,6)

DUAL PROBLEMS

@ The dual pb of (P°) is not coercive in the natural space E. We need to introduce a
big abstract space obtained as the completion of E with respect to a suitable norm.

o The dual pb of (P°), § > 0 is coercive in E but is not smooth.
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THE PENALIZED HUM

PRIMAL PROBLEM

[Fa(v) & %/0 O di + 2—16 12 (v|yo) >, W € L(0, T U)}

we consider the following problem : to find v. € L*(0, T; U) such that
F.(ve)= inf F:(v). (Pe)
veL2(0,T;U)
PROPOSITION

For any € > 0, the functional F. is strictly convex, continuous and coercive.
Therefore, it admits a unique minimiser v. € L*(0,T; U).

v

DUAL PROBLEM (Fenchel-Rockafellar duality theorem)
£y odet 1 ’ *x —(T—1)A* F 2 el rl? —TA* F F
2d) =5 [[Be q]] dt+§Hq H+<yo,e q>,Vq €E.
0
PROPOSITION

For any € > 0, the functional J. is strictly convex, continuous and coercive.
Therefore, it admits a unique minimiser g- € E.
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THE PENALIZED HUM

REMARK

We do not require any particular assumption on the operators A and 5.
In particular we do not assume that the PDE (S) is (or is not) controllable.

PROPOSITION (DUALITY PROPERTIES PRECISED)

For any € > 0, the minimisers ve and g~ of the functionals F. and J. respectively, are
related through the formulas

ve(t) = B e T4 foraet €]0, 77,

and
L (ve|y0) = Yoo (T) = —eqt.

As a consequence, we have

inf F.=F.(v.)=—J.(¢}) = —infJ..
L2(0,T;U) E
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READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

(B.,’13)
THEOREM

@ Problem (S) is approximately controllable from the initial data yy if and only if

Lr(ve[yo) = yreo(T) — 0.

e—0

@ Problem (S) is null-controllable from the initial data yy if and only if

Mfo = 2 sup ( inf FE) =2sup Fe(ve) < +o0.
- e>0 \L?(0,T;U) >0

IN THE NULL-CONTROLLABLE CASE
[[VE]]LZ(O,T;U) < My,, and |’£T(V5|y0)H < My, /e

= M,, and

0
Moreover we have [v'] 12(0,7:0) o

Lr(velwo)

0 q 2 5
e ¥ swongly i 20,750}, ana | S5

where 1° is the unique HUM null-control (that is the one of minimal L*-norm).
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NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : [Qp e {qF €E st Be™ g =0,v> 0} }

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any yo € E, the penalised-HUM sequence of controls (ve). satisfies

Ly (v5|y0) — Pop (eiTAyo) .

PROPOSITION (SELFADJOINT CASE)

Assume that A is selfadjoint, and set Yr &l TA” Qp)efTAQp then

]PQF (e_TAy()) = e_T'A (]P)Wyo) 5

Therefore, the system is approximately controllable from yo if and only if Py yo = 0.

v

o The set of (approximately) controllable initial data is Y.
e For any yg € Yr we have
ve =0, Ve >0,

Adm(y,8) £0 < 6> |le”™

Yo
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NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states : [Qp “ {qF €E st Be™ g =0,vt> 0} ]

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any yy € E, the penalised-HUM sequence of controls (ve). satisfies

Lz (ve|yo) — Py, (eiTAyo) .

COROLLARY (APP. CONTROLLABILITY AND UNIQUE CONTINUATION)

The system (S) is approximately controllable from the initial data yo if and only if

|:B*e*(7‘7t).,4* ql-‘ =0, Vrelo, T}} — <y0,e*“‘* ql-‘> —0. UC)

PROPOSITION (APP. CONTROLLABILITY AND WEAK OBSERVABILITY)
The property (UC) is equivalent to the following weak observability inequality

* 2 ~ _ _ *
|<y07e—T.A qF> <, [[B*e (T—)A qF]] F

2 2 F
‘ . Vd' €E, Ve >0.

€llq

L2(0,T;U)
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READING CONTROLLABILITY PROPERTIES ON THE PENALISED HUM

THEOREM (NULL-CONTROLLABILITY AND OBSERVABILITY)

Problem (S) is null-controllable from yo if and only if, there exists IVIyO > 0 such that
om0

Moreover, the best constant 1\~/I)<0 is equal to the cost of the HUM control [[v

2

2 P *
< M}Z,o [[B*e_(T_‘)A qF]] V4" €E.

b
L2(0,T;U)

0]] 12(0,T;U)"
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THE PENALIZED HUM APPROACH ...

... WITH AN APPROXIMATE INITIAL DATA

For each ¢ > 0, let yo, € E such that (yo,c ). is bounded in E and

—TA —TA
e Yo,e — e Yo-
e—0

ASSOCIATED HUM FUNCTIONALS

def 1 T 2 1
P 3 [ BOF dr g 165Gl
N w1 [T . (T A 2 2 A
JE(qF) der 5/ [[B o~ (T=0A qFH dt—i—% ‘qFH + <yo_g,e TA qF>7 qu cE.
0

We denote by 7. the unique minimiser of F..
CONTROLLABILITY CONDITIONS

>, wel’0,T;V),

[(S) is app. cont. from yo <= L7 (Ve |yo,c) — O.}
e—0

[sup ( z(inf F 5) < 400 = (S) is null-controllable from yo]
I

e>0 0,7;U)

(S) is null-controllable from yo

1 = 2 :>sup< inf F)<+oo.
sup — He " (3 *)’O,E)‘ < +oo e>0 \I2O,T;0)
>0
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THE PENALIZED HUM APPROACH ...

... WITH AN APPROXIMATE INITIAL DATA

For each ¢ > 0, let yo, € E such that (yo,c ). is bounded in E and

ASSOCIATED HUM FUNCTIONALS

X T
F.(v) ¥ %/0 V()] dr + 2—18 [Lr(vfyo )|, Wy e L0, T3 0),

3 e 1 T — — * 2 _ *
AUSE 5/ [[B*e (T=0A%, H dt+ = HqFH + <yo_g,e A qF>, vq" € E.
0

We denote by 7. the unique minimiser of F..
CONTROLLABILITY CONDITIONS

(S) is null-controllable from yo

= sup< inf FE> < +o0.
‘ < +o0 e>0 \L?(0,T;0)

sup — H yo—y()s)
e>0 €

DISCUSSION : Assume A = A* and Qr # {0}, then take yo,. = ez, z € e ™" Qr
2a0—1

. = € - 2
inf F.= He TAzH —— +o0, assoonasa < 1/2.
12(0,T;U) 2 =0

yo,e — (0) <= this initial data is indeed null-controllable !!.
- e—0
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THE PENALIZED HUM APPROACH ...

... WITH AN APPROXIMATE INITIAL DATA

For each ¢ > 0, let yo, € E such that (yo,c ). is bounded in E and
e—TAyO’E e My
e—0

ASSOCIATED HUM FUNCTIONALS

X T
Fo(n) & %/0 V()] dr + 715 [Lr(vfyo )|, Wy e L0, T3 0),

~ a1 7 e ax T2 e 2 ok

J-(q") dzri/ HB*e (T=nA qF]] dH—E ‘qFH +<)’<;_g7e A qF>, vq" € E.
0

We denote by V. the unique minimiser of F..

PROPOSITION (RELAXED OBSERVABILITY INEQUALITY)
Assume that )
‘ < +o0.

1y -
s1p L =460 30.)
e>0 €

The system (S) is null-controllable from the initial data yy if and only if

* 2 * 2 2
‘<-"°'f’eim qp>’ <M ([[B*e*”*-)*‘ qp]] +€qu“ ) v ek

L2(0,T;0)

We do not require the system to be null-controllable from any of the (yo.)-.
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OUTLINE
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SEMI-DISCRETE (UNIFORM) CONTROL PROBLEMS

FRAMEWORK
For any & > 0, we are given
o A discrete state space (Ej, (-, -),)-
@ An approximate operator Ay, on Ej.
@ A discrete control space (Uy, [+, -],)-
@ A linear operator By, : U, — Ej, B, being its adjoint (Buu, x), = [Byx,u, .

Oyn + Anyn = B,

The semi-discrete control problem is (Sy)
yu(0) = yo-

Its solution is refered to as ¢ +— yy, 5, , (f) € E; and we set

[Lﬁ (Vh ’yU,h) = Yvnsyo,n (T) }

QUESTIONS
Assume that (yo,»)s are, in some sense, approximations of a yy € E.

© Can we relate the controllability properties of (S) starting from yy to the ones of
(Sn) starting from yo 5 ?

© Can we obtain uniform bounds (w.r.t. &) for the associated controls v, ?
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MAIN ISSUES RELATED TO DISCRETISATION

© It may happen that (S}) is not controllable even if (S) is.

EXAMPLE : the 2D 5-point discrete Laplace operator Aj. (Kavian, Zuazua)
1
1 There exists a non trivial ¢, € Ej such that
1 Ay = pntn, and Bijypy = 0.
w -1 = oy € Qrs 2 {q] € By, st. Bie gl =0, Vi >0},
1

d
For any control v, € L*(0, T; Uy), = n(t), ¥n),, + pn n(t), Yn) = 0,

and thus
<£’¥(Vh|yo,h) ﬂ/fh>h = ou(T), vu),, = e " (you, ), - )

REMARK : The eigenvalue p, is very large ~ h% thus <£¥ (vh‘yo,h) ,wh>h is
exponentially small.

@ Even if (S) and (S;) are both controllable, it is not necessarily desirable to
compute a null-control v;, of (S)) to obtain a suitable approximation of a
null-control of (S).
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PENALISED HUM APPLIED TO SEMI-DISCRETE PROBLEMS

def 1 T 2 1 h 2 2
Fealn) 23 [ Il dr+ 5 HLT(V,,@O,h) ‘/ . Vv € 120, T; Uy),
0 a

et 1 T T —irenar T2 el w12 oax .
Jen(qh) = 5/ [[B/,e <T ’)A”qﬁﬂl dt+§’qﬁ h+<yo,h,e “‘"qf,>,, Vg, € Ep.
0 a4 f

@ For each value of 4 > 0, all the previous results apply.
@ We denote by v, the unique minimiser of F¢ .

GOAL

One would like to let (g, /) — (0, 0) but this should be done with some care.

COMMENTS

@ Even if (S) is controllable from yo, in the cases where O, # {0} we may have
lim || 24 (velon) | #0, ¥ >0
e—0 h

@ One can prove that for any 2 > 0

sup [[Ve,h]]U(O,T;Uh) < too.
e>0
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¢(h)-NULL CONTROLLABILITY

Let h €]0, +-00[— ¢(h) €]0, +o0] be given such that lim,_,o ¢(h) = 0.

DEFINITION

For a given family of initial data Yo = (yo,n)n € [ 1,5 En we say that the family of
problems (S;,) is QS(h)—null controllable from Yy, if there exists a ho > 0 such that

MfzoﬁZ sup ( inf F¢(h)7h><+oo,
0<h<hy \L?(0,T;Up)

where F g 1, is built upon yo .

THEOREM (RELAXED OBSERVABILITY)

For a given Yo € Eini, the problems (Sw) are ¢(h)-null-controllable from Yy if and only
if there exists ho > 0 and My, > 0, such that, for any 0 < h < hy

* 2 =~ *
|<y0,n,€_mh 6]5>I < sz/o (HBEE_(T_')A’I qﬂ]
n

In such case, the best constant A7[y0 is equal to My, and

2

2
an h), Vg, € Ej.

+o(h) |

L2(0,T;Uy)

[I:V‘b(h)vh:l]LZ(()’T;Uh) S Myo, and H‘Cl} (vd)(h),h‘yo,h) Hh S MYO V QZ)(h), YO < h < ]’lo.
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¢(h)-NULL CONTROLLABILITY

Let h €]0, +-00[— ¢(h) €]0, +o0] be given such that lim,_,o ¢(h) = 0.

DEFINITION

For a given family of initial data Yo = (yo,n)n € 1,5 En we say that the family of
problems (S;,) is QS(h)—null controllable from Yy, if there exists a ho > 0 such that

M§0ﬁ2 sup ( inf F¢(h)7h><+oo,
0<h<hy \L?(0,T;Up)

where F gy, is built upon yo .

PROPOSITION
Assume that, for some Cops > 0, the following relaxed observability inequality holds

2
)
h

then for any bounded family Yo, the problems (Sy) are ¢(h)-null-controllable from Y

and we have
My, < Cobs ( sup ||yo,n ) .
0<h<hg

\761111F e Ep,
VO < h < ho

F

Gh

H —TAS F
e G

2 . 2
< i ([me

]]LZ(O,T;U,,) + (’b(h) ‘
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MAIN EXAMPLES

AN ABSTRACT GALERKIN FRAMEWORK

(Lasiecka-Triggiani, 00) (Labbé-Trélat, >06)
. = 1 =
@ We suppose given Py, : E, — D((A*)2) and Qy, : U, — U such that

,Vyh € Eh7 and [[Mh]]h = [[éhuhﬂ .

Il = || Pos

o Weset P, = (F/,)* : D((A*)%)' — Epand Q) = (éh)* : U — Uy, and we
assume that
PyPy = 1dg,, and 0,0, = Idy,.
@ We define now A, and B through their adjoints by the formulas
Ay = Py APy, B = QB Py
@ + Standard approximation properties ...
EXAMPLE : Finite element Galerkin approximation.
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MAIN EXAMPLES

AN ABSTRACT GALERKIN FRAMEWORK

(Labbé-Trélat, *06)

THEOREM

Assume that (S) is null-controllable at time T.

There exists a 5 > 0, depending on the approximation properties of £, and U,
such that the relaxed-observability inequality holds as soon as

W,

hm mf

In that case, for any yo € E, we can define o, = Pnyo and build the associated
penalised HUM discrete controls vy -
Then, there is a null-control v € Adm(yo, 0) such that, up to a subsequence, we have

= - : = - :
OnVe (), h T—m v, inL°(0,T;U), and Ppys E) Yoo, ML7(0,T;E).

@ The limit control v may not be the HUM control.

@ Proving strong convergence of the discrete control is very difficult.

@ In practive, the power (3 is low : for the 1D heat equation, Neumann boundary
control, P! finite element, we get f = 0.45. It means that

Ivn(T)|, =0 \/d(h) = B>** <= Very poor convergence.
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MAIN EXAMPLES

A DISCRETE LEBEAU-ROBBIANO FRAMEWORK

(B.-Hubert-Le Rousseau, *09-...)
We assume that A is SPD and let (¢ 5, 14,1); its eigenelements.

ASSUMPTION : DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists hp > 0, « € [0, 1), 8 > 0, and x, £ > 0 such that, for any & < ho and for
any (a;); € RY, we have

H > a 2S ke [[3’7( > aﬂl}j,h)]l

Hjn S K B hSp

: ¢

h

THEOREM

Assume that assumption (Ha,g) holds, then there exists ho > 0, C > 0 such that, the
relaxed observability inequality holds as soon as the function ¢ satisfies

[liminf ¢(h) >O.}

h—0 e—C/hP

Thus, for any bounded family of initial data Yo € Einy, and for any 0 < h < hy we have

h
|IV¢>(h),h]] 12(0,T50,) < Cobs ||yo,ll, , and Hﬁr (V¢(h),h‘y0,h) Hh < Cobs |[yo,ull, v/ O(B).
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ABOUT THE DISCRETE LEBEAU-ROBBIANO INEQUALITY

DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists hp > 0, « € [0, 1), 8 > 0, and &, £ > 0 such that, for any & < ho and for
any (a;); € RY, we have

H > ain i < re™” [[B;( >, aﬂﬁm)ﬂ? Vi < h% : (Hap)
<

Hia<p Hia<p

IMPORTANT OBSERVATION

Excepted in very particular cases, the assumption (#H,3) has no chance to hold true
without restriction on p, see the counter-example of Kavian.
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ABOUT THE DISCRETE LEBEAU-ROBBIANO INEQUALITY

DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists hp > 0, « € [0, 1), 8 > 0, and &, £ > 0 such that, for any & < ho and for
any (a;); € RY, we have
2

H Z aibin ZS K™ [[32( Z aﬂﬁj,h)]l , Vp < }% (Ha,p)

Hjn < i <p h

THEOREM

We assume that Ay, is the usual finite difference approximation of —div(yV.) for a
smooth ~y on a regular Cartesian mesh and that B, = 1,,. Then,

[Assumption (Ha,p) holds for « = 1/2 and § = 2.]

MAIN TOOL OF THE PROOF : Uniform discrete elliptic Carleman estimates for an
augmented semi-discrete elliptic operator —9? + Aj.

OPTIMALITY : The maximal eigenvalue of Aj, is ~ 5 thus (#a,s) gives a bound for
a constant portion of the spectrum of .4,. Moreover, o = 1/2 is the exponent of the
usual Lebeau-Robbiano inequality.

CONSEQUENCE : The ¢(h)-null-controllability holds for any ¢(h) > e=C/",
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OUTLINE

o THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ The fully discrete setting
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THE FULLY DISCRETE SETTING

We have introduced and analyzed the ¢(/)-null-controllability hold for
Oiyn + Awyn = By,
(S0 1
y1(0) = yo -

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?
We study unconditionally stable schemes : the 6-scheme with 6 € [1/2,1]

n+l _ n

W T A0y (1 - 0)y) = Bl W e [0,M—1],
(Sh,s) ot

y?l = Yo,h S Eh7

where, 8t = T /M, vi,50 = (Vi) i1<n<m € (Up)™ is a fully-discrete control function
whose cost is defined by

M 1
def nn2 2
[vnsiliz .10 = (Z(S’ [[v;,]],l) :

n=1

The value at the final time iteration of the controlled solution of (Sj.s;) is denoted by

[[ﬁ’&(\)h,5:|yo,h) défy;‘,l.}
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THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

2
Fe,/z,dl(vll,(?l) : [[Vh 5[]]L2 (0 T;Up) + — Hch Vi 5t|y0 h) H .

DEFINITION (DUAL FUNCTIONAL)
We define the functional

F 2

! o 2 €
Jenoi(qh) == [[Bh[' ot (fIDH ) + 5 ‘ qn
12,00,T30) 2

<y0 ]laqh ( )Ahqh> ’ qu € Eh7

where L3 (a1) = (gh)1<n<m is the solution of the following adjoint problem

o = qh,
M+1
q B qh M *
5 A =0, (S7.51)
qn qn+1
= 1 A,(6q1+ (1 - 0)as™") =0, Vn € [1,M — 1],
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THE FULLY DISCRETE SETTING

THE PENALISED HUM PRIMAL FUNCTIONAL

def 1 2 1 h,ét 2
Fe (Vo) = B [[Vh,éf]]Lgr(o,T;U,,) + % Hﬁr (V/1,5f|y0,h)H, :

‘ 2 € 2
[ @) £
e 6i(qn) 5 [Pk I 2,0,150,) 2 i

- <y0,/laqfll - 5t(1 - O)Ahq/lr> ) V‘Iﬁ € Eh7

h

THEOREM (DUALITY)

The functionals F. j.5; and J. j,5: are in duality, in the sense that their respective
minimisers Ve j 5 € L? (0,T; Uy) and q§7h751 € Ey, satisfy

. F .
inf  Feps = Fs,h,éz(vs,h,ér) = _Js,h,&(qs,h,é/) = —infJc p 51,
Lgr(o,T;Uh) Ej

and moreover

* px,h,0t( F
Ve = By Ly (qe,h,ét) .
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THE FULLY DISCRETE SETTING

A ¢(h)-NULL-CONTROLLABILITY RESULT

THEOREM (CASE 0 €]1/2, 1])

Assume that the discrete Lebeau-Robbiano inequality (Ha,g) holds and let ¢ be such

that
o(h)
[h}gmf —C/hP > 0.

Then, there exists ho > 0,Cr > 0, Cops > 0 such that for any 0 < h < hy and any
5t < Cr|log o(h)| ™", the following relaxed observability inequality holds

HQh or(1 —0) AthH < Cos ([[BthJ]LZ o) T o(h H%H ) , Vq; € Ep.

Thus, for any such dt and h and any initial data yo, € Ej, the full-discrete control
Ve (h),h,61 Obtained by minimising F gy n,5: (0r equivalently Jgny n,5:) satisfies

<
[[vqﬁ(h),hﬁljﬂ 12,070, = Cobs

) ‘h < Cons/$(h) Iyoull, -

CASE 6 = 1/2 : An additional condition on 4t is required.

s
Hﬁr' " (Vo (hy,n,5¢ Yo
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OUTLINE

o THE HUM APPROACH IN THE DISCRETE FRAMEWORK

@ Practical considerations
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SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals J¢ » or Je »,s: (With e = ¢(h)).
PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0,6t > 0, > 0 and any g}, € Ej, we have

Vien(qh) = L7 (l’ﬁ’;?e_"_‘)““’T quO) +eqr, + L7 (0]yon) ,

def \n F
_AqlX

Vienailah) = £ (BLL (af ) [0) +egh + £ (0o,

def
AR, 6 ‘15

where E;k-’h";’ (q,liF ) is the solution of the adjoint fully-discrete pb associated with qp.

COMPUTATION OF GRAMIAN OPERATORS

The computation of Aeg, amounts to
@ Solve a backward parabolic problem.
@ Apply B;
© Solve a forward parabolic problem with the control previously computed.

F. Boyer HUM method and applications



SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals Je , or Jc 5,6: (With € = ¢(h)).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

Forany h > 0,6t > 0, > 0 and any q;, € E;, we have

Vien(qh) = L7 (B* —=A qﬂo) +eqp, + L£7(0]yo.) ,

g

Vienailah) = £ (BLL" (af ) [0) +eaf + £ (0o,

dﬁfAh ér F

where ﬁ*’h’&(

qr ) is the solution of the adjoint fully-discrete pb associated with qj.

EQUATIONS TO SOLVE

The semi/fully-discrete controls ar computed by solving the equations
(A" +eld)g, = —L7(0]yo) ,

(A" 4 eld)gh = —Lr* (0]yo,s) -

In practice, we use a conjugate gradient algorithm.

F. Boyer HUM method and applications



SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals Je , or Jc 5,6: (With € = ¢(h)).
PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any h > 0,6t > 0, > 0 and any g}, € Ey, we have

Viealah) = £4(Bie™ 4 6510) +eqf + £1(0]yos)

def \p F
_AqlX

Vienailah) = £ (BLLi (af ) [0) +egf + £1% (0o,

def T
:Ah,mqh

where E;k-’h";’ (qf ) is the solution of the adjoint fully-discrete pb associated with qp.

CONDITION NUMBER

Basic estimate : € ‘ qf 6115

< H(A' +eld)gF
h

S(C—!—a)‘

h h

[Cond(A' + eld) ~ ij

F. Boyer HUM method and applications



HOW TO CHOOSE h +— ¢(h) ?

BASIC USER GUIDE

TWO MAIN PRINCIPLES

© & = ¢(h) should not be too small in order to maintain a reasonable condition
number (i.e. computational cost)

[cm(x\' + $(W)Id) ~ ¢<1h)}

@ The size of the computed solution at time 7 is

[yn(T)l;, & Cobs\/ G (h).
It seems reasonnable to choose
¢(h) ~h—0 tha

where p is the order of accuracy of the numerical method under study.

REMARKS
e Computing a null-control for (S},), i.e. taking e = ¢(h) = 0, is not possible in
general.

@ Choosing ¢(h) much smaller than A% (like e~/ hz) is a useless computational
effort.

F. Boyer HUM method and applications



HOW TO CHOOSE h +— ¢(h) ?

THE SIMPLEST EXAMPLE IN THE WORLD

WesetE:Eh:]R,A:)\>O,.A/l:()\+6h)ERWith(Shﬁ)O,B:Bh:1.
h—s

’ ’
+)‘Y: ) 1+ )\+51 h — )
(s) {y y=voo4 (Sh){y/ (A Gn)yn = vi

y(0) =1, yn(0) = 1.
Uncontrolled solution eiTA”yoyh = g~ (AT
GRAMIAM “OPERATORS”
1 — ¢—2(+8)T | — =T
A = —— ¢ "~ " F dASf = L=¢ " F FeR
1q 20+ 50) q , and Ag ™ q,VYq €R,
PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are
2(\ + 6/})e7(/\+5,,)r

1 — 2047 4 (2e(A + 1))

—(T— 2A€ 2
A
V(t)_ e ( 1) S

o T=D(+8)

Ve,h(l) =

F. Boyer HUM method and applications



HOW TO CHOOSE h +— ¢(h) ?

THE SIMPLEST EXAMPLE IN THE WORLD

’ ’
+)\’: 5 7+ )\+51 h = Vh,
B AR IR B (A =+ 8n)yn = vi
yh(O):l.

PROPOSITION
The corresponding semi-discrete penalised and exact HUM controls are
-0y 2+ e (T

vea(t) = ’
1 — e=2+0)T [ 2(X + 6;)

—r—nx_2xe
v = —e” TP

ERROR ESTIMATES
Iv = verl 2,0y < CAT)(|64| + €), for 6 and e small,
Lr(ves|l) = CL(A, T)éh + C2(N, T)e + O(E? + 57),
with C;(\, T) > 0.

CONCLUSION : The optimal choice is to take ¢ = ¢(h) ~ 0.
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HOW TO CHOOSE h +— ¢(h) ?

THE SIMPLEST EXAMPLE IN THE WORLD IS NOT SO STUPID

By — &2y = lav, inQ=]0,1][,
in the particular case where w = 2.
STANDARD FINITE DIFFERENCE APPROXIMATION ON A UNIFORM GRID

i _21' i—
Oyys — V! Vi £ Yi-1

2 = Vi, Vle{l,,N}

EIGENFUNCTIONS OF A
o (x) = sin(kmx), M = kK*7°, Vk > 1.
EIGENFUNCTIONS OF Ay,

4 sin? (k”h

Ok = (sin(kmx;))i, A = hzT)’ V1<k<1/h

EQUATIONS FOR THE k-TH EIGENMODE

Y Ay =V, Vit Aeayh = Vi
Here

k
i = D = M 15, =

F. Boyer HUM method and applications



OUTLINE

o NUMERICAL RESULTS
@ 1D Scalar equations
@ 1D Parabolic systems
@ Some 2D results
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OUTLINE

o NUMERICAL RESULTS
@ 1D Scalar equations
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs

- 10
T = 1,y0(x) = sin(mx)
Time t=0
B —— Component #1
Free component #1

| = Control domain
0.8
0.6
0.4
0.2+
0.

T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

[KIKIIRIDT] [=l+]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs

T =1, yo(x) = sin(mx)"°.

N M N M
20 80 320 1280 +oo 20 80 320 1280  +oco
20 14 16 16 16 16 20 24 30 28 27 32
50 |22 26 29 29 31 50 &3 87 87 93 106
100 | 30 38 44 49 48 100 | 235 240 233 262 265
200 | 45 58 69 71 82 200 | 778 850 1098 1230 1374

(A) Case p(h) = h?

(B) Case ¢(h) = h*

TABLE : Conjugate gradient iterates ; w =]0.3,0.8]

F. Boyer

HUM method and applications



THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

M
20 80 320 1280 400

20 | 7.17-107%2 6.54-1072 6.38-10"%2 6.34-1072 6.33-1072
50 | 7.98-1072 7.08-1072 6.85-1072 6.79-1072 6.78- 102
100 | 85-1072 7.44-10"%2 7.15-1072 7.07-10"2 7.05-10"2
200 | 9.1-1072  7.75-107%2 739-1072 73-107%2 7.27-1072

TABLE : Optimal energy ; ¢(h) = h?; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

M
20 80 320 1280 400

20 | 0.11 8.92-1072 843-1072 83-1072 8.26-10"2
50 | 0.12 894-1072 829-107%2 8.12-1072 8.07-10"2
100 | 0.12 9.1-1072 833-1072 8.13-10"2 8.06-102
200 | 0.13 9.33-102 841-1072 8.17-1072 8.09-10"2

N

TABLE : Optimal energy ; ¢(h) = h*; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

1072 FTTTTT T T T TTT —T T SiZGOfthetargetMZZO%
B ] M =80 —o—
L 1 M =320 ——
| i M = 1280 ——
1073 £ E -
B 1 Exact solution M = 20 —m—
L 1 M =80 —e—
i 1 M =320 ——
107 ¢ B M = 1280 —a—
1075 Ll L1 Ll

1073 1072 107!

FIGURE : Convergence analysis with ¢(h) = h?; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

1072 F I EE Size of the target M = 320 -5
i 1 M = 1280 —o—

1073 | < M = 5120 ——
P ] M = 20480 —a—

107 E E Exact solution M = 320 —m—
i ] M = 1280 —e—

1077 ¢ E M = 5120 ——
P ] M = 20480 ——

10_6 f ;

10—7 [ h L L1l

1072 107!

FIGURE : Convergence analysis with ¢(h) = h*; w =]0.3,0.8]
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THE 1D HEAT EQUATION

Oy — 0.18§y = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

107° F — —3  Size of the target M = 1280 —5—
r 1 M = 5120 ——
10741 E M = 20480 ——
B § M = 81920 —&—
107 g E M = 400 —6—
1078 F E Exact solution M = 1280 —m—
i 1 M = 5120 —e—
1077 1 E M = 20480 ——
B B M = 81920 —a—
1078 F slopes 2 and 3 - M= 400 —o—
10—9 L1l 70 L L1

1072 107!

FIGURE : Convergence analysis with ¢(h) = 1000A°; w =]0.3,0.8]
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THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

10°

Oy — 0.187y = lav,

T = 0.5, yo(x) = sin(mx)"’.

10~°

10712

1073

m)—z

Cost of the control ——
Size of the target —l—
Optimal energy —a—
Exact solution —@—

FIGURE : ¢(h) = h?; Semi-discrete scheme
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THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

10°

Oy — 0.187y = lav,

T = 0.5, yo(x) = sin(mx)"’.

10~°

10712

slope 2

slope 4

.,.~o~””’.K’//’/. }

1073

m)—z

Cost of the control ——
Size of the target —l—
Optimal energy —a—
Exact solution —@—

FIGURE : ¢(h) = h*; Semi-discrete scheme

F. Boyer HUM method and applications



A 1D PARABOLIC EQUATION WITH UNSTABLE MODES

Ay — 0.107y — 1.5y = jg.3,057,

T =1, yo(x) = sin(mx)"

Time t=0

B m—— Component #1

Free component #1

R = Control domain
0.8
0.6
0.4
0.2
X

T T T T U T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 10

[KIKIIRIBT] =]+
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A NONLINEAR CASE

(Fernandez-Cara — Miinch, ’11)
(B.-Le Rousseau, ’13)

Ay — 0.107y — Sylog"*(1 + [y]) = L2081,
T = 0.5, y0(x) = 20sin(7x).

Time t=0
i Component #1
Free component #1
i —— Control domain
15—
10—
5]
o]
1 T T T T URS— T T T
00 01 02 03 04 05 06 07 08 09 10

[KIIIDIBT] [=]+]
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OUTLINE

o NUMERICAL RESULTS

@ 1D Parabolic systems
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (ml ) 0) y= (0> 1,v.

SHORT REVIEW OF KNOWN RESULTS

@ In the case ay; = cte the system is null-controllable if and only if az; # 0
(Kalman-like condition)
(Ammar-Khodja-Benabdallah-Dupaix-Gonzalez-Burgos, *09)
@ In the case where Supp(az1) Nw # 0, the system is null-controllable

(Gonzalez-Burgos—de Teresa, *10)

@ In the case where Supp(a21) Nw = () and ay; has a constant sign, the system is
null-controllable
(Rosier—de Teresa, ’11)
@ In the case where Supp(az21) Nw = () and az; changes it sign :

o There are structural conditions for the system to be even approximatively controllable
(B.- Olive, ’13)

o A minimal time condition for the null-controllability can occur
(Ammar-Khodja-Benabdallah-Gonzilez-Burgos—de Teresa, *14)

F. Boyer HUM method and applications



A TWO EQUATION CASCADE SYSTEM

5 0o 0\ (1
Oy —0.10;y + (a {(%) 0) y= <0> 1,v.
CASE 1 ax(x) = 1j2,0.97(x), w =]0.1,0.5[, yo(x) = (sin(37x), sin(mx)')".

Time t=0
01
01
001
01
o00
01
01
001
01
T T T T T T T T T |
0 04 02 03 04 05 06 07 08 09 1

[KIKII PRI =]+
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A TWO EQUATION CASCADE SYSTEM

Oy — 0.10% + (

any (x)

- ()

0

CASE 1 :ax(x) = 1j.2,0.00(x), w =]0.1,0.5[, yo(x) = (sin(3mx), sin(ﬂx)m)t.

N | . - l o Cost of the control ——
—1 | A4 \4 A4 — i .
10 A N N R Size of the target —l—
Optimal energy —a—
slope 2
107° | 8
107° | 8
10-7F N App. Cont. ¢/
Null Cont. ¢
|
10—3 lh)_2
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A TWO EQUATION CASCADE SYSTEM

5 0o 0\ (1
Oy —0.10;y + (a {(%) 0) y= <0> 1,v.
CASE 2 : ax(x) = 1j7,0.97(x), w =]0.1,0.5, yo(x) = (sin(37x), sin(mx)'°)".

Time t=0

T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1

[KIKII PRI =]+
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A TWO EQUATION CASCADE SYSTEM

> 0 0y /1
Oy —0.10;y + (a21 ) 0) y= <0> 1,v.

CASE 2 : ax(x) = 1j.7,0.00(x), w =]0.1,0.5[, yo(x) = (sin(3mx), sin(ﬂx)m)t.

102 T T 17
Cost of the control ——
N A\AQ‘Q:‘,\,\‘ Size of the target —l—
107 | Optimal energy —A—
1072} :
slope 2
1074 7 -/-/./. |
el | App. Cont. ¢
10 Null Cont. ¢/
L1
1077 1p—
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A TWO EQUATION CASCADE SYSTEM

10° e
Cost of the control ——
108 F | Size of the target —m—
Optimal energy —A—
10" slope —4 e
10—1 - ¢— < ¢ 4 —
3 App.Cont. %
| ——m - a
10 Null Cont. %
|
1073 1072
h

FIGURE : v = 1/4
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A TWO EQUATION CASCADE SYSTEM

10° —_— ‘
Cost of the control ——
™ | Size of the target —l—
‘\‘\’\0\’ Optimal energy —a—
slope —1
-1l i
10 slope 1
1073 ././././I R
sl | App. Cont. ¢
10 Null Cont. ¢ for T > Tmin
|
107 1p~?

FIGURE : . = 1/8
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A THREE EQUATION CASCADE SYSTEM

0 0 0 1
Ay — 0182y + | ax (x) 0 0ly={(0]1u(x)v.
0 6132()() 0 0

VERY SHORT REVIEW :

o If the supports of all the a;; intersect the control domain w and keeps a constant
sign on a part of w, then the system is null-controllable.

@ Necessary and sufficient conditions for approximate controllability are known in
the general case.

F. Boyer HUM method and applications



A THREE EQUATION CASCADE SYSTEM

0 0 0 1
Ay — 0182y + | ax (x) 0 0ly=1{(0]1.(x)v
0 6132()() 0 0
CASE 1| :ax = Iy 5, a2 = 1, w =]0.5,1]
10° S
107 b i Cost of the control ——
Size of the target —m—
10 1 Optimal energy —a—

slopes —2 and —3

10° |- \ 2

10' -

App. Cont. ¢

107" s m ® —=—8 | | NullCont. ?

1073 1072

F. Boyer HUM method and applications



A THREE EQUATION CASCADE SYSTEM

0 0 0 1
Ay — 0182y + | ax (x) 0 0ly={(0]1u(x)v.
0 6132()() 0 0
CASE2 :ap = 1]0,0'5[, a32(x) =X — 1/2, w :]0.5, 1[.

10°
107 b i Cost of the control ——
Size of the target —m—
105 F slope —4 Optimal energy —A—
103 | slope —1 i
10' [ F‘\’\’\O i
App. Cont. %
- a—a—8—8n
107t 1| Nullcont. %
L1
107? 1072

F. Boyer HUM method and applications



SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

Oy — 0.105y + [ 1o, (x)
lo,(x) 0 0

Here also necessary and sufficient conditions for approximate controllability are known

F. Boyer HUM method and applications



SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Oy —0.18y+ [ 1o,(x) 0 0)y={0|1.(x)v.
lo,(x) 0 0 0
CASEl :OrNw #0
‘ —
o Cost of the control ——
107 - o & b—— Size of the target —B—
Optimal energy —A—
1072 :
slope 2
1074 :
10-6 F N App. Cont. ¢/
Null Cont.  ?
|
1073 1972
O3 w
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Oy —0.18y+ [1o,(x) 0 0]y=[0]1,(x)v
lo,(x) 0 0 0
CASE 2 : O, and O3 are located in different connected components of Q2 \ w
. ‘\A\‘\A Cost of the control ——
10° N .
0 Size of the target —B—
Optimal energy —A—
107" |- i
slope 2
1077 |- i
10-5 | App. Cont. ¢/
Null Cont. ¢/
L]
107 1p~?
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Oy —0.18y+ [1o,(x) 0 0]y=[0]1,(x)v
lo,(x) 0 0 0
CASE 3 : O, and O; are located in the same connected component of 2 \ w
108 T T T T
6 Cost of the control ——
10° 1 Size of the target —l—
. Optimal energy —a—
10" | B
102 - slope —4 |
100 |
App. Cont. %8
-2
1077 o o = m Null Cont. %
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0
Oy — 0.105y + [ 1o, (x)
lo;(x) 0 0

~<
Il
S O =
)
€
—
=
N
<

CASE 3 : O, and Oj3 are located in the same connected component of 2 \ w

-107°
-
/I/I l\.\ Vi
2 )
—&— V3
\ 0.2 0.4 0.6 0.8 /1
24 0 /
—4 \\
\\
-6 AN ///
. \\k/}
O3 w
——
(@)
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 0 0 1
Dy — 019y + [ 10,(x) 0 0fy= (0] 1.(x)v.
lo,(x) 0 0 0
CASE 4.1 : O, =]0.35,0.65[, 03 =]0.5,1/v/2[,w =]0,0.2[U]0.8, 1.0]

10' |- | Cost of the control ——
m Size of the target ——
Optimal energy —a—
107" |- |
slope 2
1077 |- |
107 i App. Cont. ¢
Null Cont.  ?
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SIMULTANEOUS CONTROL OF TWO 2 X 2 CASCADE SYSTEMS

0 00 1
Oy —0.18y+ [ 1o,(x) 0 0)y={0|1.(x)v.
lo,(x) 0 0 0
CASE 4.2 : Oy =]0.35,0.65[, Os =]0.4,0.6],w =]0,0.2[U]0.8, 1]

1072

—o— )1

—— )2
0.5 ) L —A—)3

) 4 L {
) | L§
) L
0000000004000 000
0.2 0.4 0.6 0.8 /1
A A
EN A
—0.5 A "’/
) A\ /‘/
. J
- o
4 - %
A A a A,x
w OA 3 w
—
O,
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OUTLINE

o NUMERICAL RESULTS

@ Some 2D results
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ORIES EXAMPLE
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A CONTROL TO THE TRAJEC
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A/
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and yp(x) = —0.4sin(mx;) sin(27xz).

Vi
@77
2

44U AVAVAVAYE
AAYAVAVAYAYA
EEE»E?AM

,wmmmmmnnrn
W
.ﬂb/rlr/rlﬂﬂ

(KI<TI I (=] +]

Oy — 0.05Ay = 140.3,0.9[x10.2,0.8[V>

¥(0,x) = sin(27x,) sin(mx2),

Z
=
g
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o
M
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M
=
A
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M
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GRUSHIN EQUATION

Q=] —1,1[x]0,1[, w =]0.75,1[x]0, 1.

Oy — aily — xfc")‘fzy =1y,

{ ! paganeannyn

ALERRRARR R TR

[KI<T NI (=] +]

F. Boyer HUM method and applications



GRUSHIN EQUATION

Q=] - 1,1[x]0, 1], w =]0.75,1[x]0, 1[.

Ay — 0Ly — X105y = luv,

103 g T T T T T T T g
o | ‘\‘\‘\‘\A i Cost of the control ——
107 E .
F E Size of the target —E—
10' % ‘h‘"\’\o é Optimal energy ——
100 F .
107! f 7
1072} |
1077 | sope2 | 7 App. Cont. ¢/
F 1 Null Cont.  ?
107* -
10_2 10—1
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GRUSHIN EQUATION

Q=] —1,1[x]0,1[, w =]0.75,1[x]0.6, 1.

Oy — Oy —x105y = luv,

(KI<T I I>]I] (=[] +]
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OUTLINE

© CONCLUSIONS / PERSPECTIVES
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THE END

SUMMARY

@ In the PDE world
e Many standard results in controllability theory can be deduced from the analysis of
the penalized HUM approach.
o The penalized HUM approach always converge towards something as the penalization
parameter tends to 0.
o In the discrete world
o Necessity to relate the penalization parameter to discretisation parameters in a clever
way.
e Analysis of uniform null-controllability properties with respect to 6z and/or h for
semi/fully discrete problems.
o Associated relaxed observability inequalities.
o We may use numerical simulations to investigate open problems.
o Even for non controllable problems, the numerical method applies and gives
interesting results.

PERSPECTIVES

o Extend our analysis in the discrete setting to other cases

o Non symmetric scalar operators.

e Parabolic systems with few controls.

e Boundary control problems.

o Analysis for other space discretizations (Finite Volume, Finite Element, ...)
@ From a computational point of view

o A deeper understanding of HUM operators ~~ preconditioning methods.

e More suitable solvers than standard Conjugate Gradient ?

F. Boyer HUM method an
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