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TYPICAL FLOWS WE ARE INTERESTED IN

IN THE CONTEXT OF NUCLEAR SAFETY
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Air bubble crossing a water/silicon interface.
Cranga, 02
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Three immiscible phases,
No phase change,

Compressibility of the
phases can be neglected,

Important densities
ratio,

Three different surface
tensions,

3D flow without
symmetry

Topological changes of
the interfaces.
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THE TERNARY CAHN-HILLIARD MODEL

PRINCIPLE
o Interfaces have small but positive thickness :

The interface thickness € > 0 is a parameter of the model. )

o Order parameters (phase fields) :
o Three smooth functions ¢;, (volume fractions)
o There are related through the relationship ¢1 + c2 + ¢3 = 1, V¢, Va.

@(@) = 1l for x € phase 1,
0 < ¢i(z) < 1, for z € interface i/7,
ci(z)

=0, for = & phase 1.

THE GIVEN PHYSICAL PARAMETERS Interface : &

o The densities g; and the viscosities 7;.
@ The three surface tensions oi2, 013 and o23.

THE TWO-PHASE CASE

f:}jg’h(c):/g(m A(1 - o) +3m€ v )

1+ tanh(2z/¢)
2
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1D EQUILIBRIUM : Ceq() = and F5'P"(ceq) = 0.



THE TERNARY CAHN-HILLIARD MODEL

» Ansatz for the free energy functional :

]_—-trlph( )_/ 12 ( + o ZZ |v01| dx

Q €

with ¢ = (c1, 2, ¢3).

o Bulk contribution F(c) ~ triple-well structure :
+ It accounts for the immiscibility of the phases,

¢ The minimal value of this term is achieved when the interface
thickness is 0.

o Capillary terms |[Vc;|?
+ They penalize the thickness of the interface.
+ An interface of thickness € > 0 “costs” 1/e.
o Competition between the two terms :

+ Critical points of the energy are constituted of diffuse interfaces with
typical thickness ~ ¢.

» How to determine F' and 3 = (%;); 7
» What is the suitable gradient flow associated with fmph ?
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TOWARDS A CONSISTENT MODEL
GENERAL FRAMEWORK

(B.-Lapuerta, ’06)
ANSATZ FOR THE ENERGY :

i 12 3 3 3
f)t:;,fh(c) = /Q ?F(C) + 5821|V01|2 + §622|ch\2 + §€Z3|V03|2dac.

The potential F' and the coefficients (X1, X2, X3) are undetermined yet.

We do not impose a priori that ¥; > 0, V¢
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TOWARDS A CONSISTENT MODEL
GENERAL FRAMEWORK

(B.-Lapuerta, ’06)

ANSATZ FOR THE ENERGY :

i 12 3 3 3
—7:;3,511(0) = /Q F(c)+ §621|V01|2 + §622|ch\2 + §€Z3|V03|2dac.

EVOLUTION OF THE SYSTEM = GRADIENT FLOW IN (')’ OF THE ENERGY
» Preserve the constraints : volume conservation and ¢ + ¢z +c3 = 1.

dei . o
5 = div (M;Vps),
6]_-triph
Wi = 621::’-5 +8= 752 Ac; + 128¢F(c) + 8,

where (3 is a Lagrange multiplier, unknown for the moment.
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TOWARDS A CONSISTENT MODEL
GENERAL FRAMEWORK

(B.-Lapuerta, ’06)
ANSATZ FOR THE ENERGY :
4 12 3 3 3
FEP(c) = / —F(e) + §521|V01|2 4+ §622|V02\2 + §523|V03|2dac.
Q

EVOLUTION OF THE SYSTEM = GRADIENT FLOW IN (Hl)’ OF THE ENERGY
» Preserve the constraints : volume conservation and ¢ + ¢z +c3 = 1.

oci ..
at = le (sz)u"b) )
SFP" 3 12
Wi = 5o + 8= *ZEEiACi + ?aiF(C) + 6,

where (3 is a Lagrange multiplier, unknown for the moment.
» For the constraint ¢; + c2 + ¢3 = 1 to hold, we need that :

MYy = MyYy = M3¥3 = My = %; # 0, Vi.
3
457 1 1/1 1 1
=— i F(c), with — = = [ — + — + — | .
8 Zgzia (c), wit = 3<21+22+23)

i=1
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TOWARDS A CONSISTENT MODEL
GENERAL FRAMEWORK

(B.-Lapuerta, ’06)
ANSATZ FOR THE ENERGY :

Faie)= [

12 3 3 3
ZF(c) + SeXi|Ver|? + SeXa|Ver|® + 2eXs|Ves | da.
o € 8 8 8

EVOLUTION OF THE SYSTEM = GRADIENT FLOW IN (')’ OF THE ENERGY

80;‘ BT MO _ .
o 5 = div (XT‘VM> , Vie{l1,2,3}
CH
w= S (5 0F© - F@)) - Jemiac
& — Ej 4
J#i
with

111 11
Yr 3\Z; X %3/’

and Neuman BC for ¢ and p.
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TOWARDS A CONSISTENT MODEL
GENERAL FRAMEWORK

(B.-Lapuerta, ’06)
ANSATZ FOR THE ENERCY :
i 12 3 3 3
fg"fh(c) :/ ?F( c) + 521|Vc1| 7622|V02\ §523|V03|2dac.
Q

EVOLUTION OF THE SYSTEM = GRADIENT FLOW IN (')’ OF THE ENERGY

80;‘ ST Mo ) .
o 5 = div (XT‘VM> , Vie{l1,2,3}
CH
i =Y (5 @F© - 0,F(©)) - Jemiasc
€ Sa \%i 4

FIRST PROPERTIES
» A posteriori : we can write a system for ¢; and ¢z only
» Formally, the energy satisfies the following equation

—ftr'ph / Z Mo Iml dz = 0.
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WELL-POSEDNESS

ASSUMPTIONS
Q >, + Ej > O,V’L 75'], and X1 + Y123 + 223 > 0.
@ F(c) >0 for any c € S.

ri 12 3 3 3
FuPl(c) = / - —ZF(e) + §621|Vcl|2 + geEg|VcQ|2 + §623|VC3|2 da
Q2 N~——

>0 — @ >0 — @

o [ 3 Wrwup de=o

3
_ | Vng |2
=% Mozl‘ =

1=1

>0 —= @
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WELL-POSEDNESS

ASSUMPTIONS
Q >, + Ej > O,V’L 75]7 and X1 + Y123 + 223 > 0.
@ F(c) >0 for any c € S.
@ There exists B > 0 such that

IF"(e)] < B(+|cf'™?), VeeS,

with p =6 in 3D, and 2 < p < 400 in 2D.
@ There exists D > 0 such that

(F"(c)¢,€) > =D (1 +|c|?) |€]?, Ve e S,VEeR?,
where 1 < ¢ <4in 3D and 1 < ¢ < 400 in 2D.

THEOREM

Under assumptions @- @, for any ¢ € (H'(Q))® such that 37 )(z) =1
for a.e. x € Q, there exists a unique global solution (c, ) of (CH) such that

ci(t,z) =1, for almost every (t,z) € [0, +o0[X€2,

M-

i=1

c € Cy ([0, +oof; (H' (2))*) N L, (0, +00; (H?(2))?),
p € L2(0, +o00; (H'(Q))?).

Boyer-Lapuerta-Minjeaud-Piar
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ALGEBRAIC CONSISTENCY WITH TWO-PHASE SYSTEMS

The three-phase model has to account suitably for two-phase situations. I
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ALGEBRAIC CONSISTENCY WITH TWO-PHASE SYSTEMS

The three-phase model has to account suitably for two-phase situations.

DEFINITION

The model is said to be consistent with the two-phase Cahn-Hilliard models if and
only if
(P1) When there is no phase i in the system, the free energy should be the
one of the two-phase model.

FEPMe,1 = ¢,0) = FAPh_(c), Ve e HY(Q),

012,€

013,€

FE®(e,0,1 — ¢) = Fairh_(c), Vee HY(Q),

mph(O c,1—c)= R -(c), Vece HI(Q)

023,€
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ALGEBRAIC CONSISTENCY WITH TWO-PHASE SYSTEMS

The three-phase model has to account suitably for two-phase situations.

The model is said to be consistent with the two-phase Cahn-Hilliard models if and
only if

(P1) When there is no phase i in the system, the free energy should be the
one of the two-phase model.

(P2) Any solution ¢ of (CH) should satisfy
Ci(o) =0= Ci(t) =0, Vt > 0.
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ALGEBRAIC CONSISTENCY WITH TWO-PHASE SYSTEMS

The three-phase model has to account suitably for two-phase situations.

DEFINITION

The model is said to be consistent with the two-phase Cahn-Hilliard models if and
only if
(P1) When there is no phase i in the system, the free energy should be the
one of the two-phase model.

(P2) Any solution ¢ of (CH) should satisfy
Ci(o) =0= Ci(t) =0, Vt > 0.

THEOREM

| A\

Let 012, 013, 023 be given. The three-phase model defined before is algebraically
consistent if and only if

‘Zi =0ij + o — ok, Vi€ {1,2,3}, ‘

There exists a function A : R3 — R such that

2 2 2 2 2 2
F(c) = o12¢ics + o13¢ics + 023csch

+ cicae3(Zice1 + Xaco + X3e3) + c?cgcg A(c), Ve € RS.

A\

Boyer-Lapuerta-Minjeaud-Piar
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ILLUSTRATIONS

PARTIAL SPREADING 1/2

CONTOUR LINES OF F' ON THE GIBBS TRIANGLE

Y1 =39 =33 =4, Y1 =39 =33 =4, 31 =6, =833 =4,
F = F’O F=F F=F
> Fo(c) ©F 512c2C2 + g13¢2C2 + Tazcic < Non-consistent
» Fo(c) Ly 8 (c) + cicacs(Bic1 + Xaca + Xses) <= Consistent

Boyer-Lapuerta-Minjeaud-Piar
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ILLUSTRATIONS
PARTIAL SPREADING 2/2

Non consistent model Consistent model

F=F, F=F,
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OTHER POSSIBLE TERNARY CAHN-HILLIARD SYSTEM

In (Kim-Lowengrub ’05, Kim-Kang ’09), we can find the following model

% =div (MoVu1),

% =div (MoVu2),
= é (21 Fo(c) - BsFo(c)) — etres - S,
pa = 1 (BaFo(e) — uFo(e)) — SAcr — eAes,

TWO DRAWBACKS OF THIS MODEL FOR OUR PURPOSES :

o Lack of symmetry
The equation satisfied by the third component c3 = 1 — ¢1 — ¢z is not
formally the same as the one for cq, and cs.

The solution depends on the numbering of the phases. J

@ Does not respect two-phase situations

If ¢; =0 at t = 0, then we may have ¢;(t) # 0, for ¢t > 0. J
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PARTIAL SPREADING COMPUTATIONS

CONSISTENT MODELS VS NON-CONSISTENT MODELS

YOUNG’S LAW

sin 01 sin 0o sin 03

023 J13 J12

1 < 1fme

08 08

06 06

04 04

02 02

0 e 0

002 003 004 005 006 007 00 002 003 004 005 006 007 00 002 003 004 005 006 007 00
0.08 0.08, 0.08,

_ﬂ_ ] J<j>¥“4‘
0.02| 0.021 0.02

0.0 0.1 0.0 0.1 0.0

(Kim et al.)

our model with F' = ﬁo

Boyer-Lapuerta-Minjeaud-Piar
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our model with F' = Fj
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THE CAHN-HILLIARD / NAVIER-STOKES MODEL

CAHN-HILLIARD SYSTEM

8Ci __ s MO ) 3
e = div <Z Vm), Vi=1,2,3,

7

s (i (@:F(c) — ajF(c))) _3emiAG, Vi=1,2,3,
& i Zj 4

INCOMPRESSIBLE NAVIER-STOKES SYSTEM

% (gu) + div (,Qu ® u)

—div (2nD(u)) + Vp = ¢sg,

divu = 0.
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THE CAHN-HILLIARD / NAVIER-STOKES MODEL

CAHN-HILLIARD SYSTEM

Jc; o (Moo .

8t+u-VcZ—d1v<EiV,ul>, Vi=1,23,

o (i (B F(c) — ajF(c))) _3emiAG, Vi=1,2,3,
€ o 2]' 4

INCOMPRESSIBLE NAVIER-STOKES SYSTEM

Jdu 1 0Jp u ..
(ga + 511&) I ((gu -V)u+ §d1v (gu))

3
—div (2nD(u)) + Vp=og + > Ve,

i=1
diva = 0.

c — po(c) and ¢ — n(c) are given a priori.

ALTERNATIVE STRATEGIES
(Lowengrub-Truskinovsky ’98) (B. ’02)
(Ding-Spelt-Shu ’07) (Abels-Garcke-Griin ’10)
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PARTICULAR FORM OF INERTIA TERMS

» Kinetic energy evolution

d [ 1 o, [ 3 (1 e
o " §Q|u\ dm—/ o < olul )+le <2,Q|u| u) dx
_ ou 1 0p u .
—/ {( E-i-i E) TF ((Qu~V)u+§dlv(gu))] udz,

where B; is a material volume evolving with the flow u.

» Inertia terms

gt(gu)—FdIV (ou ® u) 1 {Zt + div (Qu)]

~C(S Api)

~» The momentum equation is thus modified inside interfaces.

(Guermond-Quartapelle, 00) (Shen et al., ’10)

Boyer-Lapuerta-Minjeaud-Piar 15/64



BASIC PROPERTIES OF THE SYSTEM

BOUNDARY CONDITIONS

¢+ Veci-n =0 on 00
¢ Vi -n =0 on 0 (no diffusion across the boundary of the domain)

+ no-slip conditions u = 0 on 0f2
PROPERTIES

+ Capillary forces are naturally given by a volumic approximation

3

E ,uchl- ~ E aijni]-n,-]-&-]—
e—0

i=1 ij

+ Formal evolution of the total energy :

d 1 ri
G [ el ac s 752 @| + [ 2nDuf* dos [ wlvul o = [ o uda.
Q Q 2 @

+ Volume conservation of each phase :
/ci(t,-)da:: / ¢i(0,-)dz, Vt, Vie{l,2,3}.
Q Q
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NUMERICAL METHODS

» Conforming finite element P; or Q; for ¢ and w,

» L.BB stable finite elements P2 /P or Q2/Q; for (u,p),

» Semi-implicit time discretization for (CH),

» Unconditionally stable uncoupled resolution of (CH/NS),

» Incremental projection method for (NS),

» Adaptive local refinement conforming method

» Benchmarking - Parameters influence ...

THE NUMERICAL PLATFORM PELICANS

(Part 2)

(Part 3)

(Part 4)

(Part 5)

Plate-forme Evolutive de LIbrairies de Composants pour 1’Analyse

Numérique et la Simulation

o Numerical kernel for industrial codes at IRSN,
o C++ Library for developing scientific computation softwares.
o Free OpenSource project

licence

CeCILL-C, French version of LGPL (http://www.cecill.info)

https://gforge.irsn.fr/gf/project/pelicans

Boyer-Lapuerta-Minjeaud-Piar
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OUTLINE

e DISCRETIZATION OF THE CAHN-HILLIARD SYSTEM
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GENERAL DESCRIPTION

(B.-Minjeaud, ’11)
TIME DISCRETIZATION

n+1 n n
C  —C . My(ci') n+1
“ar oW ( = VA )

4% 1 3

n+1 T F/ n+l n F/; n+1 n n+p3

7 :TE(E (di (@™,@") = (@@ )))_ZEEiACi ,
J#i

with df ~0;F, P =1-p)f+BT and LB

CONFORMING LAGRANGE FINITE ELEMENTS IN SPACE

Find (cp™, up™) € (Vi) x (VF)? such that Y} € VI, Yoy, € Vi,

n+1 n
Czh —Cih o u /MO zh n+1 n
= tdr - Vv dx,
/Q At h h
[ttvida=[ 4ETZ( (i (e eh) = df (ci o) v o

I / §Ei5Vc;"h+’q - Vv, d.
Q4
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ENERGY ESTIMATE

» For any (c ""'17 u2+1) solution of the discrete problem, we have :

fgfsh(cz+1)_ftr1ph +At/ ZMO zh |V n+1’ dr

+(26-1) /*EZZ‘V ”+17c?h)|2da:

= 2 [ [F(et) = F(eR) - aF (e, o) - (e — )| dz,

€ Ja
where dF(x,y) stands for (df(m,y))izlyg,g.

» The last two terms of the left-hand side are non-negative, provided that

B=1/2,

Y1 4322>0, ¥14+33 >0, ¥4 33 >0,
3120 + 2123 + 29Xz > 0.
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EXISTENCE AND CONVERGENCE OF THE APPROXIMATE SOLUTION

THEOREM (EXISTENCE AND CONVERGENCE)
We assume that the following inequality holds

F(cpth) = Fep) —d" (™ eh) - (i — i) <.

Then,

+ There ezists at least one solution to the discrete problem.

The sequence of approximate solutions converge towards a weak

solution of the problem.

*

» Existence : Brouwer degree theory.

» Convergence : Compactness results.

Boyer-Lapuerta-Minjeaud-Piar 21/64



DIFFERENT DISCRETIZATIONS OF THE CAHN-HILLIARD POTENTIAL

QUESTION : Are there discretizations satisfying
F(ci™) — F(ch) —d (i eh) - (™ —ch) <0 2 J

» Let us concentrate on

F(c) = Fo(c) = 012¢ic3 + a13cic3 4 o23ches + cicacs(Tic1 + Taco + Dacs)
» Three possible methods
o Implicit discretization
o Convex-concave discretization

o Semi-implicit discretization

Boyer-Lapuerta-Minjeaud-Piar 22/64



IMPLICIT DISCRETIZATION

di* (" ") = (e |

» Since Fjp is not convex, we do not have the property
Fo(ei™) = Fo(eR) — (i, ef) - (e = ef) <.
» Nevertheless, it can be shown that

¢+ In the case when Vi, ¥; >0 :

~ We have existence for any At, since the concave part of Fy is low
degree,

~» We have convergence, thanks to numerical diffusion

3
s 2
Fo(cZ_H) — Fo(ey) — a’o (cZ'H, crn)- ( el ch Z Z CZ;H chil”.

+In the case when i, ¥; <0 :
~ We do not know if the approximate solution exists.

~» Serious convergence problems of the Newton algorithm.

Boyer-Lapuerta-Minjeaud-Piar

23/64



CONVEX-CONCAVE DISCRETIZATION

» Idea : (Eyre,
+ We write Fy as a sum of a convex part and a concave part,
+ Implicit discretization for the convex part of Fp,

+ Explicit discretization of the concave part of Fj.
» If we have Fy = FO+ + F; we take

d™(cy™, ) = VE (e;™) + VFy (ch) |

» For any (X;); such that X135 4+ X133 + 33X3 > 0, we have VAt > 0,
Fo(cp ™) = Fo(er) —d™ (c; ™, ) - (e — i) <O

—> Existence and convergence of approximate solutions.

Boyer-Lapuerta-Minjeaud-Piar
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SEMI-IMPLICIT DISCRETIZATION

(Kim-Kang-Lowengrub, ’04)

» Idea : Build an approximation satisfying

F()(CnJrl) _ F()(Cn) _ dFO (Cn+17cn) . (Cn+1 _ Cn) =0

Ei n n n n n n
dfo (¢t c™) = oy [c. +1 ci] [(c]. L ck+1)2 4 (e 4 ck)z]

K2
S Z (P4 () (@ 4 e o)

ZE (G 4 (@) (@ + P 4 e )

» Existence (VAt) and convergence for any (¥;); such that
1Yo 4+ X133 4+ XeX3 > 0.

! and thus is formally second

» The scheme is symmetric in ¢” and c™"
order.

Boyer-Lapuerta-Minjeaud-Piar 25/64



1D INTERFACE DYNAMICS

NOTATION : SImpl.(3) and SImpl.=SImpl.(1)

Convergence rate

rate=1.0

rate=1.0
-6 —+CC
10 o 1mol
rate=1.8 mek.
== SImpl.
-0~ Simpl.(0.5)
10 -6 s T -3
10 10 10 10

Norm of the error as a function of At.

» Schemes CC, Impl. et SImpl. : first order
» Scheme SImpl.(0.5) : second order

Boyer-Lapuerta-Minjeaud-Piar
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THREE PHASE TEST CASE - PARTIAL SPREADING 1/4

$1=02 S=s=1,A=0.

Evolution of the interface position

t=0 t=0.8

Reference solution ¢, computed with the Impl. scheme and At = 5.107%.

Boyer-Lapuerta-Minjeaud-Piar 27/64



THREE PHASE TEST CASE - PARTIAL SPREADING 2/4

Convergence rate

C:
10 §
10 § W
-2 rate=1.0
10 9
.
10
-4
10 13 rate=1.1 —+cC
] - SImpl.
-5
10 1 -0~ SImpl.(0.6)
] -&= Impl.
105 - ———T - ]
10 10 10

Norm of the error |ca(t, ) — Ch(t, )|y 2 at t=3.8 as a function of At.

» All the schemes are asymptotically first order but with different
accuracies at a given time step.
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THREE PHASE TEST CASE - PARTIAL SPREADING 3/4

Influence of the scheme on the interface position

CC

SImpl.

SImpl.(0.6)

Impl.

At =101 At =102

Boyer-Lapuerta-Minjeaud-Piar 29/64



THREE PHASE TEST CASE - TOTAL SPREADING 1/3

Y1 =3,=3 %S3=-1, A="7/3.

Evolution of the interface positions

t=3
Reference solution €; computed with SImpl. and At = 1073,

Boyer-Lapuerta-Minjeaud-Piar 30/64



THREE PHASE TEST CASE - TOTAL SPREADING

2/3

Iteration count for the Newton solver

i At 0=t | 51072 | 1072 | 5.1073 | 102 | 5104 | 10
CC. 5 5 5 5 4
SImpl. - - 6 6 5
SImpl.(0.6) - - 29 - 7 6 5
Impl. - - - - - - 7

Boyer-Lapuerta-Minjeaud-Piar
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THREE PHASE TEST CASE - TOTAL SPREADING

3/

Convergence rate

10

-
10

10

—+CC.
- SImpl.
0~ SImpl.(0.6)

rate=0.9

rate=1.0

rate=1.0

]

Norm of the error |ci(t, ) — Ch(t, )|y 2 at t=3.8 as a function of At.

» First order for all the schemes but here also we observe very poor
performance of the CC scheme.

Boyer-Lapuerta-Minjeaud-Piar
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OUTLINE

© COUPLING WITH THE NAVIER-STOKES SYSTEM
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CONTROLLING THE KINETIC ENERGY

(Minjeaud, ’11)
CAHN-HILLIARD SYSTEM

n+1 n
G G

@ Transport . P ——
At + term = div ( 3 Vi ’

n+l _ pF(r ity _ %eEiAc?’Lﬂ.

3

NAVIER-STOKES SYSTEM

n+1

2
Capillary n+1
forces

n+1 n 1Qn+1 _ Qn

—u L1
At 2 At

al u

0 un+1 + (gn+1un . v)un+1 + le (Qn+1un)

— div (77"+1Du"+1) + Vpttt = g,

div (u"*h) = 0.

Boyer-Lapuerta-Minjeaud-Piar 34/64



TOTAL ENERGY EVOLUTION

3

At the continuous level : Z (u . Vci),ui = (23: uch,-) -u
i=1

=1

3 Transport Capillary ?
Discrete case : Z term M?'H = forces UL
i=1 CH NS

IMPLICIT DISCRETIZATION :

Transport Capillary 3
terms ~ =u"t. vt forces = ZM?+IVC?+1
CH NS i=1

» Advantage : No contribution to the energy evolution :

3
(un+1 ) vc?ﬂ)u?ﬂ _ (ZN?HVC?H> Sttt
i=1

=1

» Drawbacks : Strong coupling between the two systems (CH) and (NS)
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TOTAL ENERGY EVOLUTION

3

At the continuous level : Z (u . Vci)m = (23: uchi) -u

=1

3 Transport Capillary ?
Discrete case : Z term MZH'I = forces UL
i=1 CH NS

FIRST TRY TO OBTAIN AN UNCOUPLED SYSTEM :

Transport Capillary 3
terms  =u"- Vet forces Z pittvertt
CH NS

» Contribution to the total energy evolution :

Atz ( " uy - Vc?“),uf“

» Conditional stability : At < Ch.
(Kay-Styles-Welford, ’08)
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UNCOUPLED UNCONDITIONALLY STABLE DISCRETIZATION

(Minjeaud, ’11)

First idea : separation of the capillary forces term from the (NS) system J

LET US FIRST TAKE INTO ACCOUNT THE CAPILLARY FORCES

* n 3
U —u o _ ntlg ntl o () —
'~y + Vp* = ;:1 wie Vel div (u*) = 0.

CAHN-HILLIARD SYSTEM
n+1
T —cf

At

pitt = DE(c”, ") — %EEiAc;H—'B.

+u* Vet = div <%V,u?+l) ,

NAVIER-STOKES EQUATIONS

n+l u* 1 gn+1 _n n+1

O+ T (@ Vut 4 B (o7 ")
— div (nn+1Dun+1) + v(pn+1 _ p*) — Qn-&-lg’

div (u"*h) = 0.

Unfortunately, the first two steps are still strongly coupled. )
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UNCOUPLED UNCONDITIONALLY STABLE DISCRETIZATION

(Minjeaud, ’11)

Second idea : Forget about the divergence-free condition in the first step. J

3
* n At n n 1
uw=u"-—> (¢ — )Vt ai:—/c?dx
0" O 12 Jo
» Advection velocity u* in (CH) is no more divergence-free but we still have

*

u -n=0, onJN.
CAHN-HILLIARD SYSTEM

n+1 n
i G

At

C. . n o . Mgl n+1
d v — oy =d 2 Yu ,
+ div ((Cz (6 )ll ) 1v ( ; i )

ittt = D (e, et — ZEEiAC?+B-

» We use the conservative form of the transport term = volume
conservation is ensured.
3

» Since Zai =1=
i=1
The sum of the three order parameters remains equal to 1.
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UNCOUPLED UNCONDITIONALLY STABLE DISCRETIZATION

NAVIER-STOKES SYSTEM

LA A Uy e
At 2 At

— div (nn+1Dun+1) + vpn+l — g'rHrlg7

div (u"*h) =0,

11 41 ut! 11
+ (@"Tu" - V)u"m 4+ Tdiv (" u"™)

PROPERTIES OF THE SCHEME

» Systems (CH) and (NS) are fully uncoupled

» Volume conservation still holds
3
» The property Z c; = 1 still holds

=1

» Unconditional stability
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EXISTENCE AND CONVERGENCE OF THE APPROXIMATE SOLUTION

(Minjeaud, ’11)

THEOREM (EXISTENCE AND CONVERGENCE)

» The fully discrete scheme has a solution.
» Stability :

; 1
VAt > 0, the sequence fgfgh(cﬁ) + / §QZ|uZ|2 dz is decreasing (for g = 0).
Q

» In the homogeneous case (p1 = p2 = ps), we can prove convergence of the
approximate solution.
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INCREMENTAL PROJECTION METHOD 1/2

(Chorin, ’68); (Temam, ’68) ; (Guermond-Minev-Shen, '06)

Suppose we are given (u”,p") € V§ x VP.

First step : Velocity prediction g antt e vy

» Principle :
+ Forget about the constraint div (u) = 0,
+ Explicit approximation of the pressure.

» Find @™ € V§ such that

~nt+l _ oon 1 n+l _ n
/QnuTU.le/i%ﬁm.vdx
Q Q

+%/}f“KwWVﬁﬁ“-v—oﬁ-vw-ﬁﬁﬂm
Q

+/%HTTHJWM—/ﬂ®wM:/dMng Vv eV
Q Q Q
» Skew-symmetric form of the advection term

/ (ou-Viu-v+ gdiv (ou) - vdx
Q
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INCREMENTAL PROJECTION METHOD 2/2

Second step : velocity projection ) u™tt e V&, pntt e VP

» Principle : projection on the space of divergence free vector fields :

+1 +1

—9 | yentl =y,

Qn+1 u”
At
divu™t = 0.
» Substeps :
¢+ Compute the pressure increment

Find "' € VP such that

1 1
/ s Vet . Vrde = —/ Eﬂ’div o' dz, Vmel?
Q Q

+ Velocity correction
Find u™*! € V§ such that

Qn+1 QnJrl
/ = u"“.vdx:/ Wﬁ"“~vdm+/ " divvde, YveVy
Q Q Q

¢ Pressure correction
1 1 1
pn+ _ pn + q)n+ , pn+ = Vp
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SUMMARY OF THE TIME DISCRETIZATION PROCEDURE

@ Compute the velocity prediction u* taking into account capillary forces.
@ Solve the Cahn-Hilliard system :
@ using u* as a transport field in conservative form
© using a suitable semi-implicit time discretization of the potential term.
@ Solve the Navier-Stokes system starting from u* without capillary
forces by the projection method

©® Compute the velocity prediction.
© Compute the pressure increment.
@ Correction of the velocity.
@ Correction of the pressure.
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oue —

A THREE-PHASE CAHN-HILLIARD /NAVIER-STOKES MODEL
DISCRETIZATION OF THE CAHN-HILLIARD SYSTEM
COUPLING WITH THE NAVIER-STOKES SYSTEM

e ADAPTIVE LOCAL REFINEMENT

PARAMETERS INFLUENCE - BENCHMARK - NUMERICAL
ILLUSTRATIONS
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LOCAL REFINEMENT STRATEGY

To refine basis functions instead of elements/cells J

(Bank-Dupont-Yserentant, ’88) (Yserentant, ’92)
(Krysl-Grinspun-Schréder, ’03) (B.-Lapuerta-Minjeaud-Piar, ’09)
o The cells are divided by applying a given refinement pattern

e Conforming approximation : No need to modify the numerical
scheme because of the adaptation

@ Non conforming cells are implicitly taken into account without any
treatment of hanging nodes

@ The overall approach is independent of the Lagrange element we
consider (Pq,P2,Q1,Q2, ...)

e Same strategy in 2D and 3D.
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CONCEPTUAL HIERARCHY OF INCREASING CONFORMING FE SPACES

RECURSIVE CONSTRUCTION

» Initial mesh : 7y geometrically conforming generated using K.

refinement pattern

T

» Necessary compatibility conditions on the refinement pattern :

o Compatibility between the faces of K.

o The nodes of level [0] are also nodes of level [1].
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CONCEPTUAL HIERARCHY OF INCREASING CONFORMING FE SPACES

RECURSIVE CONSTRUCTION

» Initial mesh : 7y geometrically conforming generated using K.

refinement pattern

T

7, is a conforming mesh generated using K.

» Necessary compatibility conditions on the refinement pattern :

o Compatibility between the faces of K.

o The nodes of level [0] are also nodes of level [1].
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CONCEPTUAL HIERARCHY OF INCREASING CONFORMING FE SPACES

RECURSIVE CONSTRUCTION

» Initial mesh : 7y geometrically conforming generated using K.

refinement pattern

67 N

75 is a conforming mesh generated using K.

» Necessary compatibility conditions on the refinement pattern :

o Compatibility between the faces of K.

o The nodes of level [0] are also nodes of level [1].
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CONCEPTUAL HIERARCHY OF INCREASING CONFORMING FE SPACES

® o) @ o)
o o & ©
level 0 level 1 level 2
Mesh FE space FE Basis
level O To Xo = span By Bg= {(pgco];k =1,.. .,Ng)olf
N
level 1 T Xy = span By B; = {gogcl];k =1,.. .,N([ﬁ)]f
N
N
level J T X; = span By By = {(pgc‘]];k =1,.. .,Néﬂ}
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REFINEMENT EQUATIONS

REFINEMENT EQUATIONS

X;CXjnn = (= Zﬂﬁl (@), Vo €

» This formula can be obtained on the reference element

- pre-computed coefficients, no need for storage.
Square-Q; Square-Q2
o o
1 3] 1
1 1 -8 -2 e
5 1 8 64 64
3 9 .3
8 064 o 64
1
L 2 1 2 cE

PARENT/CHILD RELATIONSHIP
When ]H 20 s Lpg] is a parent of ij+1]

cp%j+ Vis a child of @Ec].
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MULTILEVEL FE APPROXIMATION SPACES

MULTILEVEL FE APPROXIMATION SPACES
o Multilevel FE basis : a linearly independent subset B of jLiJOBj
o Multilevel FE space :
Vi, =span B C H'(Q)
A NATURAL WAY TO ENSURE LINEAR INDEPENDENCE

The geometric nodes associated to two different basis functions in B are
different. J
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REFINEMENT / UNREFINEMENT PROCEDURES

REFINEMENT/UNREFINEMENT (QUASI-HIERARCHICAL )

Let B* a multilevel basis.

(Un)refinement <= to build a new multilevel basis B.

o Refinement of p € B*
¢+ Remove ¢
¢ Add all its children which are not refined in B*.

o Unrefinement of ¢ which is refined in B* without any child refined
in B*
¢Add ¢
¢ Remove all the children of ¢ with no other parent refined in B*.

REFINEMENT CRITERION FOR THE CH/NS SYSTEM :

Refine basis functions until the diameter of the cells in the interfaces are at
most equal to a given h; > 0.
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PROPERTIES OF THE (UN)-REFINEMENT ALGORITHMS

@ Linear independence :
The refinement procedure preserves linear independence of multilevel
basis.

@ Conservation of information :
Let B which is obtained from B* through the refinement of a basis
function then
span B* C span 5.

©® Refinement order :
The approximation spaces obtained by refinement (resp. unrefinement)
do not depend on the order we perform successive refinements (resp.
unrefinements).
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ADAPTATION AND NUMERICAL SCHEME

THE CAHN-HILLIARD EQUATION

No need to modify the discretization scheme for the CH system (the
integrals in the Galerkin formulation are computed exactly).

THE PROJECTION METHOD

» The pressure correction step is not variational but purely algebraic.

pn+1 _ pn + (Pn+1
» After adaptation of the approximation space :

pn = Vp,n q>n+1 = Vp,n+1 #pn +¢.n+1 = vp,n+1
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ADAPTATION AND NUMERICAL SCHEME

THE CAHN-HILLIARD EQUATION

No need to modify the discretization scheme for the CH system (the
integrals in the Galerkin formulation are computed exactly).

THE PROJECTION METHOD

» The pressure correction step is not variational but purely algebraic.

pn+1 _ pn + (I)n+1
» After adaptation of the approximation space :
pn = v}o,n7 q)n+1 = Vp,n+1 75 pn + q>n+1 = vp,n+1

» We need a new pressure prediction step : Find gt e ypntt

vttt v vp" ¥V n
/ b . LI S pn. il dz, Vmreprntt
Q /gn+1 /Qn+1 Q Vo /gn+1
» Then we use p""! in the velocity prediction, and in the pressure
correction

» Similar ideas as in (Guermond-Quartapelle, '00) lead to stability.
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OUTLINE

© PARAMETERS INFLUENCE - BENCHMARK - NUMERICAL
ILLUSTRATIONS
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THE “BUBBLE” BENCHMARK BY HYSING ET AL ‘09

@ One single 2D gas bubble rising inside a liquid under the effect of

gravity.

o GOALS : compare different models and numerical methods

01
02
m
72

S

1000

10
24.5
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THE “BUBBLE” BENCHMARK BY HISING ET AL ’09

THE MACROSCOPIC QUANTITIES OF INTEREST

@ The bubble mass center position

2xesn [Klzx
Dkesn K]

where the “bubble” at time t" is defined by

1
B":{K, —/c”dmzl 2}.
K| Jk /

@ Mean velocity of the bubble at time ¢"

up = Prepn Jxu”
EKeB" |K| ’

n
rp =

o Circularity at time ¢"

o = V/m
B ™ perimeter of the bubble’

where
perimeter of the bubble ~ / |Ve| de.
Q
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RESULTS

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

» We choose a degenerate mobility Mo(c) = Maeg(1 —c1)?(1 — c2)*(1 — c3).

» R is the initial radius of the bubble

MAXIMUM MEAN-VALUE VELOCITY

2 R R R

Mdeg 20 16 12
10 0.2973 | 0.3020 | 0.3082
1 0.2481 | 0.2490 | 0.2514
1071 0.2419 | 0.2413 | 0.2412
102 0.2417 | 0.2403 | 0.2404
10~3 0.2414 | 0.2400 | 0.2390
1077 0.2389 | 0.2361 | 0.2326
10~° 0.2289 | 0.2215 | 0.2135
10°° 0.2127 | 0.2050 | 0.1982

reference value : 0.2419 + 0.0002
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RESULTS

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

» We choose a degenerate mobility Mo(c) = Maeg(1 —c1)?(1 — c2)*(1 — c3).

» R is the initial radius of the bubble

MASS CENTER POSITION AT TIME T =3

2 R R R

]\401eg 20 16 12
10 1.201 [ 1.210 | 1.225
1 1.129 | 1.139 | 1.152
1071 1.089 | 1.088 | 1.090
102 1.084 | 1.082 | 1.082
1073 1.084 | 1.081 | 1.080
10~% 1.081 | 1.076 | 1.069
107° 1.059 | 1.043 | 1.022
10°° 1.010 | 1.000 | 0.9806

reference value : 1.081 £ 0.001
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RESULTS

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

» We choose a degenerate mobility Mo(c) = Maeg(1 —c1)?(1 — c2)*(1 — c3).
» R is the initial radius of the bubble

MINIMAL CIRCULARITY

2 R R R

Mdeg 20 16 12
10 0.9927 [ 0.9915 | 0.9900
1 0.9491 | 0.9527 | 0.9578
1071 0.9197 | 0.9183 | 0.9165
102 0.9097 | 0.9056 | 0.8991
10~3 0.8989 | 0.8911 | 0.8786
1072 0.8815 | 0.8716 | 0.8626
10° 0.8882 | 0.8855 | 0.8928
10°° 0.9094 | 0.9180 | 0.9358

reference value : 0.9012 + 0.0001
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RESULTS

INFLUENCE OF THE MOBILITY AND THE INTERFACE THICKNESS

» We choose a degenerate mobility Mo(c) = Maeg(1 — c1)?(1 — c2)%(1 — ¢3)*.
» R is the initial radius of the bubble

SHAPE OF THE BUBBLE FOR DIFFERENCE VALUES OF Mpgq
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RESULTS

TIME EVOLUTION OF THE SYSTEM

0.6 E/{

Mean velocity Mass center position

=107

b+ Maeg = 107"

Circularity

Boyer-Lapuerta-Minjeaud-Piar

56/64



RESULTS

TIME EVOLUTION OF THE SYSTEM

/ 1 <

=.R/12 ' fﬁ

bdo- b4
< e = R/16 06 2
h—— e = R/20 E/{ H—t
0.0 05 1o 15 2.0 25 3.0 35 o 0.0 0.5 1o 15 2.0 2.5 3.0 35
Mean velocity Mass center position
1.0:
b-6-oc=R/12
1. RA6
. %\ b+ e = R/20
Y
° A
0.
0 . PRI
%\Off e
0. HOOOC
0.86
5

Circularity
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RESULTS

TIME EVOLUTION OF THE SYSTEM

TN e

0. o f
o [—— feferencec1 1 / ——— _referencelGL ___|
I efe 2 0.6 / " reference (G2
b pef —— feference/G3
F—+— fesultats obtenus M/ +—— fesultats gbtenus
-0. 0.
00 o5 10 15 20 25 30 35 00 05 o 15 20 25 30 35

Mean velocity Mass center position

‘— eference G1 ‘
.

1.
R F——+ fesultats obtenus |

Circularity
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A THREE PHASE COMPUTATION

DESCRIPTION OF THE TEST CASE

R T
0.006 0.8

012 013 J23

0.07 | 0.07 | 0.05
01 02 03
1 1200 | 1000
m T2 73

107* [ 0.15 | 0.1
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A THREE PHASE COMPUTATION
INFLUENCE OF THE TIME DISCRETIZATION METHOD FOR THE CH SYSTEM

° o a®
SImpl scheme IIIII
{
SImpl(0.5) scheme IIII
°oa”
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A THREE PHASE COMPUTATION
INFLUENCE OF THE INTERFACE THICKNESS

@
e = R/10 IIII!!HH
a
o ”
e = R/15 III!! PR lnn

o ”
o™
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A THREE PHASE COMPUTATION
INFLUENCE OF THE ADAPTIVE REFINEMENT

hi=¢
PS
® a
hi =3 IIIII
2
.-
o~
hl = 6 IIIII "V\ ‘V p
‘-

o ”

Boyer-Lapuerta-Minjeaud-Piar 60/64



OUTFLOW BOUNDARY CONDITIONS

OutrFLOW BC FOR THE NAVIER-STOKES EQUATIONS
(Bruneau-Fabrie ’94, ’96) (B.-Fabrie ’07)
Given a reference flow (uref, pref) We consider the following outflow BC

1 _
(*) (2nDu — pId) - n = (2nDures — Prefld) - 11 — ip(u ‘n)" (U — Uyet).

OutrLOW BC FOR THE CAHN-HILLIARD EQUATION
(B.-Duval-Introini-Latché-Piar, ’09)
For a fixed advection field u we propose to use

1 Jdc

(%) VC.HZ_W§7

the BC condition on p being unchanged.
OutrLow BC FOR THE CH / NS SYSTEM
We combine (*)-(**) but with a precomputation of a capillary pressure

a— un n+1 n+1
P+ VPl = Fin
diva = divu”,

Thus, the open BC () is applied only on the dynamic part of the pressure.
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EXAMPLES

» Left plot : Improved outflow BC (x)-(xx)
» Right plot : Standard outflow BC

CoNVECTED CH EQUATION
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EXAMPLES

» Left plot : Improved outflow BC (x)-(xx)
» Right plot : Standard outflow BC

C

D

FuLL NS/CH SYSTEM

C

D
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EXAMPLES

» Left plot : Improved outflow BC (x)-(xx)
» Right plot : Standard outflow BC

FuLL NS/CH SYSTEM
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A 3D THREE-PHASE COMPUTATION

g12 = 013 = 0.07

023 = 0.05
o1 =1
m = 10"
02 = 1200
n2 = 0.15
o3 = 1000
n3 = 0.1
R=8x10""
_ R
e=16x10"°= =

Number of DOFs associated with one (Q; scalar unknown :

+ Local refinement ~ 120 000.
+ Global refinement ~ 550 000.
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CONCLUSIONS - PERSPECTIVES

SUMMARY
o Consistent three phase Cahn-Hilliard systems.
o Study of the time discretization schemes.
o Coupling schemes with the Navier-Stokes system.
o Incremental projection method.
e Conforming local adaptive refinement method.
o Multigrid preconditioning.

e Benchmarking and study of the influence of
numerical/modeling parameters.

o Outflow boundary conditions
o Parallel implementation.

o Parasitic currents elimination (Minjeaud-Piar, ’11)

PERSPECTIVES

o Using a Q2 discretization for ¢ and p (leads to
volume conservation problems).

e Using a lower order discretization for (u, p).

e Convergence proofs in the non-matched densities
case.
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