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ABSTRACT PARABOLIC PROBLEM
DISTRIBUTED APPROXIMATE/NULL CONTROL PROBLEMS

NOTATIONS

(S)

(
∂ty +Ay = Bv in (0, T),

y(0) = y0

with T > 0, E and U two Hilbert spaces, y ∈ L2(]0, T[,E), A : D(A) ⊂ E 7→ E is
some “elliptic” unbounded operator, B : U 7→ E a bounded operator, and
v ∈ L2(]0, T[,U) is the control.

Cost of the control : ‖v‖L2(0,T;U) =

„Z T

0
‖v(t)‖2

U dt
« 1

2

.

APPROXIMATE CONTROL PROBLEM

For yT ∈ E and β > 0 given, can we find v ∈ L2(0, T; U) such that the solution y to
(S) satisfies ‖y(T)− yT‖E ≤ β ?

NULL CONTROL PROBLEM

Can we find v ∈ L2(]0, T[; U) such that the solution y to (S) satisfies y(T) = 0 ?
(Lebeau-Robbiano, ’95) (Fursikov-Imanuvilov, ’96)
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EXAMPLES WE HAVE IN MIND

THE 1D HEAT EQUATION

(S)

8><>:
∂ty− ∂x(γ(x)∂xy) = 1ωv in (0, T)× Ω,

y = 0 on (0, T)× ∂Ω,

y(0) = y0

that is E = L2(Ω), A = −∂x(γ(x)∂x.), U = L2(Ω), B = 1ω with ω ⊂ Ω.

1D PARABOLIC SYSTEMS

(S)

8><>:
∂tyi − ∂x(γi(x)∂xyi) +

Pn
j=1 αij(x)yj = 1ωi Bi(x)v in (0, T)× Ω,

yi = 0 on (0, T)× ∂Ω,

yi(0) = y0
i

y = (y1, ..., yn)
t, E = (L2(Ω))n,

A =

0BB@
−∂x(γ1(x)∂x.) 0 ...

0 −∂x(γ2(x)∂x.) 0 ...

. . .
... 0 −∂x(γn(x)∂x.)

1CCA+

„
αij(x)

«
ij

,

U = (L2(Ω))p, Bi(x) ∈M1,p(R), B =

0B@1ω1 B1(x)
...

1ωn Bn(x)

1CA.

THE SAME IN MULTI-D
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ABOUT THE APPROXIMATE CONTROL PROBLEM
THE PENALTY TECHNIQUE

From now on, let us only consider the target yT = 0.
HUM IDEA : Given ε > 0, minimize the functional

Fε : v ∈ L2(]0, T[,U) 7→ 1
2

Z T

0
‖v(t)‖2

U +
1
2ε
‖yv(T)‖2

E.

DUAL PROBLEM : Find a minimizer of the dual functional

Jε : qF ∈ E 7→ 1
2

Z T

0
‖B∗q(t)‖2

U +
ε

2
‖qF‖2

E + (y0, q(0))E,

where t 7→ q(t) is the solution to the backward problem

−∂tq +A∗q = 0, q(T) = qF.

GENERAL STATEMENT - CONVERGENCE OF THE PENALTY METHOD

For any ε > 0, Jε has a unique minimizer qF,ε.

If we assume that the problem (S) is approximately controllable, then the control
vε = B∗qε for our parabolic problem leads to a solution such that ‖yvε(T)‖E → 0
when ε→ 0.

NULL-CONTROLLABLE SYSTEMS

If we assume that the following observability inequality for the adjoint pb holds :

‖q(0)‖2
E ≤ C2

obs

Z T

0
‖B∗q(t)‖2

U dt,

then we have ‖yvε(T)‖E ≤ Cobs
√
ε, vε −−−→

ε→0
v, in L2(0, T; U), where v is the

(unique) null-control of minimal L2(0, T; U) norm (the so-called HUM control).
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ABSTRACT SPACE DISCRETIZATION

(Labbé-Trélat, ’06) (B.-Hubert-Le Rousseau, ’10)
For any h > 0 (supposed to be some space discretization parameter) :

(Eh, (·, ·)h) euclidean space, with norm |·|h.

Mh,Ah ∈ L(Eh,Eh) which are SDP in (Eh, (·, ·)h).
In the FE framework :Mh is the mass matrix,Ah the rigidity matrix.

Associated scalar products and norms

∀x, y ∈ Eh, 〈x, y〉h = (Mhx, y)h , ‖x‖h = 〈x, x〉
1
2
h =

˛̨
M

1
2
h x
˛̨

h
.

In the FE framework : ‖.‖h is the L2-norm .

Another Euclidean space (Uh, [·, ·]h), with norm J·Kh.

A linear operator Bh : Uh → Eh, and B?h its adjoint :

∀v ∈ Uh,∀x ∈ Eh, (Bhv, x)h = [B?h x, v]h .

We shall assume that there exists C > 0 such that

JB?h xKh ≤ C ‖x‖h , ∀h > 0,∀x ∈ Eh,

 our analysis does not include boundary controls !
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(Labbé-Trélat, ’06) (B.-Hubert-Le Rousseau, ’10)
For any h > 0 (supposed to be some space discretization parameter) :

(Eh, (·, ·)h) euclidean space, with norm |·|h.

Mh,Ah ∈ L(Eh,Eh) which are SDP in (Eh, (·, ·)h).
In the FE framework :Mh is the mass matrix,Ah the rigidity matrix.

Associated scalar products and norms

∀x, y ∈ Eh, 〈x, y〉h = (Mhx, y)h , ‖x‖h = 〈x, x〉
1
2
h =

˛̨
M

1
2
h x
˛̨

h
.

In the FE framework : ‖.‖h is the L2-norm .

Another Euclidean space (Uh, [·, ·]h), with norm J·Kh.

A linear operator Bh : Uh → Eh, and B?h its adjoint :

∀v ∈ Uh,∀x ∈ Eh, (Bhv, x)h = [B?h x, v]h .

We shall assume that there exists C > 0 such that

JB?h xKh ≤ C ‖x‖h , ∀h > 0,∀x ∈ Eh,

 our analysis does not include boundary controls !

9/ 58
F. Boyer Control of full-discrete parabolic equations



EXAMPLES FOR THE HEAT EQUATION 1/3
FINITE DIFFERENCE SCHEMES

Ω = (0, 1)2, E = L2(Ω), A = −div
„„

γ1(x) 0
0 γ2(x)

«
∇.
«

, ω ⊂ Ω, U = L2(ω)

Eh = RN , N = n1 × n2 the total
number of discretization points

(x, y)h =
X

i,j

hikjxi,jyi,j,

hi = (hi+ 1
2

+ hi− 1
2
)/2,

kj = (kj+ 1
2

+ kj− 1
2
)/2.

hi+1/2
hi-1/2

hi

hi-1/2

kj+1/2

kj-1/2

kj
yi,j yi+1,jyi-1,j

yi,j+1

yi,j-1

Uh = Rk, k being the number of discretization cells which intersect the control
domain ω equipped with the same inner product as Eh.
Ah ∈ MN(R) is the classical 5-diagonal matrix given by

(Ahy)i,j = −

γ1
i+ 1

2 ,j

yi+1,j − yi,j

hi+ 1
2

− γ1
i− 1

2 ,j

yi,j − yi−1,j

hi− 1
2

hi
−

γ2
i,j+ 1

2

yi,j+1 − yi,j

kj+ 1
2

− γ2
i,j− 1

2

yi,j − yi,j−1

kj− 1
2

kj
,

Mh ∈ MN(R) is the identity matrix : No mass matrix in FD schemes
Bh ∈ MN,k(R) is the rectangle matrix corresponding to the natural embedding
of ω in Ω. 10/ 58
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EXAMPLES FOR THE HEAT EQUATION 2/3
FINITE VOLUME SCHEMES

Ω ⊂ R2 polygonal, E = L2(Ω), A = −γ∆, ω ⊂ Ω, U = L2(ω)

Eh = RT , where T = (K)K∈T is an
admissible set of polygonal cells, N = |T |.

(x, y)h =
X
K∈T

xKyK.

The mass matrixMh ∈ MN(R) is diagonal ;
its entries are the volumes |K| of each K ∈ T .

K

L

dKL

σ

K

L

dKL

σ

K

L

dKL

σ

K

L

dKL

σ

Ah ∈ MN(R) is the finite volume matrix defined with

(Ahy)K = γ
X
L∈NK

|σ| yK − yL
dKL

.

Uh = RTω , Tω is the subset of T form with the cells which intersect the control
domain ω, equipped with the inner product defined byMh.
Bh ∈ MN,k(R) is the rectangle matrix corresponding to the natural embedding
of Tω into T .
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EXAMPLES FOR THE HEAT EQUATION 3/3
GALERKIN METHODS (SPECTRAL AND/OR FINITE ELEMENTS)

Let Xh ⊂ H1
0(Ω), and Yh ⊂ L2(Ω) be finite dimensional spaces and (φh

i )i ⊂ Xh,
(ψh

j )j ⊂ Yh two basis of these spaces.

Eh = Rdim Xh , the elements in Eh being the coordinates in the basis, (·, ·)h is the
usual Euclidean inner product.
Uh = Rdim Yh , the elements in Uh representing the coordinates of elements in Yh

in the basis, [·, ·]h is the usual Euclidean inner product.
The matrixMh ∈ MN(R) is the mass matrix associated with (φh

i )i. Its entries

are
Z
Ω

φh
i φ

h
j dx.

The matrix Bh ∈ MN,k(R) is the matrix whose entries are
Z
ω

φh
i ψ

h
j dx.

The matrix Ah ∈ MN(R) is the rigidity matrix associated with the diffusion

operator. Its entries are
Z
Ω

γ(x)∇φh
i · ∇φh

j dx.

MASS LUMPING TECHNIQUE :
The scheme can be slightly modified by replacingMh by a diagonal matrix
containing the sum of the entries in each row ofMh

⇒ avoids the computation ofM−1
h .
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM

(S)

(
∂ty +Ay = Bv,
y(0) = y0,

=⇒ (Sh)

(
Mh∂tyh +Ahyh = Bhvh,

yh(0) = y0,h,

SIMPLIFICATION IN THIS TALK : Mass matrixMh = Id.

SOME PRECISIONS

• Given y0,h ∈ Eh, ε > 0, let us minimize (recall that dim Eh < +∞)

Jε,h : qF ∈ Eh 7−→
1
2

Z T

0
JB?h qh(t)K2

h +
ε

2
‖qF‖2

h + 〈y0,h, qh(0)〉h ,

where t 7→ qh(t) ∈ Eh is the solution to −∂tqh +A∗h qh = 0, qh(T) = qF.
•We let vε,h = B∗h qε,h(t) and t 7→ yh,ε(t) the associated solution to (Sh).

For h > 0 fixed, we may have

lim
ε→0
‖yh,ε(T)‖h = +∞, and lim

ε→0
‖vh,ε‖L2(0,T;Uh) = +∞.

We can hope that for some C > 0 and any ε > 0, there exists h∗ε > 0

for any h < h∗ε , ‖yh,ε(T)‖h ≤ C
√
ε‖y0,h‖h,

and that (vh,ε)h converges (in some sense) towards vε if (y0,h)h converges in
some sense towards y0.
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

For h > 0 fixed, we may have (for suitable y0,h)

lim
ε→0
‖yh,ε(T)‖h = +∞, and lim

ε→0
‖vh,ε‖L2(0,T;Uh) = +∞.

We can hope that for some C > 0 and any ε > 0, there exists h∗ε > 0

for any h < h∗ε , ‖yh,ε(T)‖h ≤ C
√
ε‖y0,h‖h,

and that (vh,ε)h converges (in some sense) towards vε if (y0,h)h converges in
some sense towards some y0.

FIRST SERIES OF QUESTIONS

1 If we are interested in the approximate control problem : Is it possible to give
an estimate of h∗ε ?

2 If we are interested in the null control problem : Is it possible to choose ε > 0
as a function of h : ε = φ(h) such that

lim
h→0
‖yh,φ(h)(T)‖h = 0, ‖vh,φ(h)‖L2(0,T;Uh) ≤ C,

and can we estimate those quantities ?
3 If many such h 7→ φ(h) exist, how do I choose one in practice ?

14/ 58
F. Boyer Control of full-discrete parabolic equations



OUTLINE

1 INTRODUCTION

2 THE SEMI-DISCRETE CONTROL PROBLEM
Abstract framework
Analysis of the numerical method

3 THE FULLY-DISCRETE CONTROL PROBLEM
Time discretization schemes
Few words about control to the trajectories
Error analysis in time

4 SOME NUMERICAL RESULTS
Practical considerations
Illustration of our theoretical results for scalar problems
Results for systems of parabolic equations

5 CONCLUSIONS / PERSPECTIVES

15/ 58
F. Boyer Control of full-discrete parabolic equations



THE MAIN ASSUMPTION

In the sequel of the talk I will assume the following

ASSUMPTION (UNIFORM DISCRETE LEBEAU-ROBBIANO INEQUALITY)

There exists h0 > 0, α ∈ [0, 1), β > 0, and κ, ` > 0 such that for any h < h0 and for
any (aj)j ∈ RN, we have‚‚‚ X

µj,h≤µ

ajψj,h

‚‚‚2

h
≤ κeκµ

α
s
B?h

 X
µj,h≤µ

ajψj,h

!{2

h

, ∀µ < `

hβ
, (Hα,β)

where (µj,h)j are the eigenvalues of Ah and (ψj,h)j the corresponding orthonormal
eigenvectors.
FUNDAMENTAL REMARK

For dimension reasons, such an inequality can not be true for any µ > 0.
SOME RESTRICTIONS OF THE METHOD UP TO NOW

Only the symmetric case Ah = A∗h .

No boundary control.

Time-independent coefficients.

NOTATION SIMPLIFICATION : yh → y, vh → v, µj,h → µj, ...

16/ 58
F. Boyer Control of full-discrete parabolic equations



THE MAIN ASSUMPTION ...
... IS KNOWN TO BE VALID IN SOME CASES

(B.-Hubert-Le Rousseau ’09,’10)
We proved that the uniform discrete Lebeau-Robbiano inequality (Hα,β) holds for

Finite difference schemes on regular Cartesian meshes in any dimension.

A scalar elliptic operator A with diagonal diffusion tensor (possibly depending
smoothly on x).

Distributed control problem Bh = 1ω .
We obtain :

α = 1/2 (i.e. the constant is ∼ e
√
µ).

β = 2 (related to α and to the order of the differential operator).

MAIN TOOL : Global discrete elliptic Carleman estimates with precise dependence
of the large Carleman parameters with respect to the discretization parameter h.

PERSPECTIVES :
The same kind of property should be true in more general situations :

For non-symmetric Ah (heat equation with first order terms, parabolic systems
with non symmetric coupling, etc ...).

Finite volume schemes.

Galerkin discretizations.

To our knowledge, these are still open problems.
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THE SEMI-DISCRETE CONTROL PROBLEM

(Carthel-Glowinski-Lions, ’94) (Glowinski-Lions, ’94)

(Sh)

(
∂ty +Ahy = Bhv,
yh(0) = y0.

Consider the approximate control problem for (Sh) by penalty introducing

qF ∈ Eh 7→ Jε,h(qF) =
1
2

TZ
0

JB?h q(t)K2
h dt +

ε

2
‖qF‖2

h + 〈y0, q(0)〉h .

We denote by qF,ε,h its minimizer and t 7→ qε,h(t) the associated adjoint state.

THEOREM

Assume that the uniform discrete Lebeau-Robbiano inequality (Hα,β) holds, then
there exists h0 > 0 and constants C,Cobs > 0 such that :

For any h < h0, and ε > e−C/hβ , the control vh,ε(t) = B?h qh,ε(t) is such that

‖vh,ε‖L2(0,T;Uh) ≤ Cobs, and ‖yh,ε(T)‖h ≤ Cobs
√
ε.

ASSOCIATED RELAXED OBSERVABILITY INEQUALITY(
∀h < h0,∀ε > e−C/hβ

∀ε < ε0, ∀h < C′

| log ε|1/β

)
, ∀qF ∈ Eh, ‖q(0)‖2

h ≤ C2
obs

0@ TZ
0

JB?h q(t)K2
h dt + ε ‖qF‖2

h

1A .
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TWO CASES OF INTEREST

COMPUTATION OF AN APPROXIMATE CONTROL FOR ε > 0 FIXED :
The sequence (vh,ε)h converges towards the control vε solution of the approximate
penalized control problem for the initial PDE (S).

COMPUTATION OF A NULL-CONTROL :
If we choose a function h 7→ φ(h) such that φ(h) > e−C/hβ for any h, then the
sequence (vh,φ(h))h converges, at least weakly, towards a null-control of the initial
PDE (S) and we have‚‚yh,φ(h)(T)

‚‚
h
≤ Cobs

p
φ(h), ∀0 < h < h0.

Recall that, in general, a null-control for (Sh) does not exist

⇒ ε = 0 is meaningless.

Taking ε = φ(h) exponentially small is theoretically possible but

this is not reasonable and in fact completely useless.

In practice, choosing φ(h) = h2p for some integer p related to the
approximation order p of the scheme under study is sufficient.

See some numerical evidences above
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INTRODUCTION

We have seen that some uniform approximate/null controllability properties hold for

(Sh)

(
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h.

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?

We study unconditionally stable schemes : the implicit Euler scheme and the
Crank-Nicolson scheme (in fact any θ-scheme with θ ∈ [1/2, 1]).

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1, ∀n ∈ J0,M − 1K

We show that most of the results of the semi-discrete situation holds for
fully-discrete systems uniformly in δt and h (provided δt is not too large with
respect to h, this will be made precise below).

Finally, we show that, h > 0 being fixed, the full discrete control vh,δt we will
construct converges towards the semi-discrete control vh at first or second order
in time.

(Zheng, ’08), (Ervedoza-Valein, ’10)
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THE FULLY DISCRETE CONTROL PROBLEM
GENERAL SETTING

THE PRIMAL OPTIMIZATION PROBLEM : Minimize the following functional

Fε,h,δt : v ∈ UM
h 7−→

1
2

MX
n=1

δt JvnK2
h +

1
2ε
‖L(y0, v)‖2

h ,

where L(y0, v) = L0y0 + Lvv is the value of yM for the corresponding solution of

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

REMARKS

The definition of L(y0, v) has to be adapted to the time discretisation scheme.
Example : BDF2 method (Glowinski-Lions,’94)8>>>>>><>>>>>>:

y0 = y0,

y1 − y0

δt
+

2
3
Ahy1 +

1
3
Ahy0 =

2
3
Bhv1,

3yn+1 − 2yn + 1
2 yn−1

δt
+Ahyn+1 = Bhvn+1, ∀n ∈ J1,M − 2K,

yM = 2yM−1 − yM−2.

Other choices for the full-discrete L2(]0, T[,Uh) norm could be more suitable.
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THE FULLY DISCRETE CONTROL PROBLEM
GENERAL SETTING

THE PRIMAL OPTIMIZATION PROBLEM : Minimize the following functional

Fε,h,δt : v ∈ UM
h 7−→

1
2

MX
n=1

δt JvnK2
h +

1
2ε
‖L(y0, v)‖2

h ,

where L(y0, v) = L0y0 + Lvv is the value of yM for the corresponding solution of

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

DUAL OPTIMIZATION PROBLEM : General duality theory gives

Jε,h,δt : qF ∈ Eh 7−→
1
2

MX
n=1

δt
q
(L∗v qF)

ny2
h

+
ε

2
‖qF‖2

h + 〈y0,L∗0 qF〉h .

Argmin Fε,h,δt = L∗v (Argmin Jε,h,δt) .

ASSOCIATED OBSERVABILITY INEQUALITY

‖L∗0 qF‖2
h ≤ C2

obs

MX
n=1

δt
q
(L∗v qF)

ny2
h
.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we must have

〈L(y0, v), qF〉h = 〈L0y0, qF〉h + 〈Lvv, qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt
ˆ
(L∗v qF)

n
, vn˜

h
.

By adding any element of kerBh to any vn, you do not change L(y0, v) :

=⇒ (L∗v qF)
n ∈ (kerBh)

⊥ = ImB?h , ∀n ∈ J1,MK.

We thus write (L∗v qF)n = B?h qn, ∀n ∈ J1,MK.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt [B?h qn, vn]h .
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8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt 〈qn,Bhvn〉h .

By introducing the solution (yn)n to (Sh,δt) we get

D
yM, qF

E
h

= 〈y0,L∗0 qF〉h +

MX
n=1

D
qn, yn − yn−1

E
h

+
MX

n=1

δt
D

qn,Ah(θyn + (1− θ)yn−1)
E

h
.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn
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• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt 〈qn,Bhvn〉h .

By introducing the solution (yn)n to (Sh,δt) we get

D
yM, qF

E
h

=
D

y0,L∗0 qF − q1
E

h
+

M−1X
n=1

D
qn − qn+1, yn

E
h

+
D

yM, qM
E

h

+
MX

n=1

δt
D

qn,Ah(θyn + (1− θ)yn−1)
E

h
.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by
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• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt 〈qn,Bhvn〉h .

By introducing the solution (yn)n to (Sh,δt) we get

D
yM, qF

E
h

=
D

y0,L∗0 qF − q1
E

h
+

M−1X
n=1

D
qn − qn+1, yn

E
h

+
D

yM, qM
E

h

+
MX

n=1

δt
D

qn,Ah(θyn + (1− θ)yn−1)
E

h
.

24/ 58
F. Boyer Control of full-discrete parabolic equations



THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt 〈qn,Bhvn〉h .

By introducing the solution (yn)n to (Sh,δt) we get

D
yM, qF

E
h

=
D

y0,L∗0 qF − q1
E

h
+

M−1X
n=1

D
qn − qn+1, yn

E
h

+
D

yM, qM
E

h

+

M−1X
n=1

δt
D

yn,Ah(θqn + (1− θ)qn+1)
E

h
+δtθ

D
yM,AhqM

E
h
+δt(1−θ)

D
y0,Ahq1

E
h
.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt 〈qn,Bhvn〉h .

By introducing the solution (yn)n to (Sh,δt) we getD
yM, qF

E
h

=
D

y0,L∗0 qF − q1 + δt(1− θ)Ahq1
E

h
+
D

yM, qM + δtθAhqM
E

h

+

M−1X
n=1

D
yn, qn − qn+1 + δtAh(θqn + (1− θ)qn+1)

E
h
.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +
MX

n=1

δt 〈qn,Bhvn〉h .

By introducing the solution (yn)n to (Sh,δt) we get

D
yM, qF

E
h

=

*
y0,L∗0 qF − q1 + δt(1− θ)Ahq1| {z }

=0

+
h

+

*
yM, qM + δtθAhqM| {z }

=qF

+
h

+

M−1X
n=1

*
yn, qn − qn+1 + δtAh(θqn + (1− θ)qn+1)| {z }

=0

+
h

.
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

8<:y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

• For any qF ∈ Eh, y0 ∈ Eh, v ∈ (Uh)
M we look for (L∗v qF)n = B?h qn satisfying

〈L(y0, v), qF〉h = 〈y0,L∗0 qF〉h +

MX
n=1

δt 〈qn,Bhvn〉h .

CONCLUSION : given qF ∈ Eh, we solve the following backward θ-scheme-like

(S∗h,δt)

8>>><>>>:
qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.

then, we have (
L∗0 qF = q1 − δt(1− θ)Ahq1,

(L∗v qF)n = B?h qn, ∀n ∈ J1,MK.

Remark : qF itself does not directly appears in L∗v qF .
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THE FULLY DISCRETE CONTROL PROBLEM
THE FULLY DISCRETE DUAL PROBLEM

The dual functional that we will thus consider is the following

Jε,h,δt : qF ∈ Eh 7−→
1
2

MX
n=1

δt JB?h qnK2
h +

ε

2
‖qF‖2

h −
D

y0, q1 − δt(1− θ)Ahq1
E

h
,

where (qn)n is defined by

(S∗h,δt)

8>>><>>>:
qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.
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OBSERVABILITY AND ADJOINT PROBLEM

For qF ∈ Eh given, the adjoint problem associated with the time discretisation
proposed is given by

(S∗h,δt)

8>>><>>>:
qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.

THEOREM (USELESS ...)

The fully discrete system (Sh,δt) is controllable if and only if any solution of the
adjoint system (S∗h,δt) satisfies the following observability inequality

‚‚‚q1 − δt(1− θ)Ahq1
‚‚‚2

h| {z }
=‖L∗0 qF‖2

h

≤ C2
obs

MX
n=1

δt JB?h qnK2
h| {z }

=J(L∗v qF)nK2
h

.

Unfortunately, as we have seen, this does not hold in general.

THEOREM ()

Assume that the uniform discrete L-R inequality (Hα,β) holds and let h 7→ φ(h) such
that φ(h) ≥ e−C/hβ . For any δt ≤ CT | logφ(h)| the following relaxed observability
inequality holds‚‚‚q1 −Ahq1

‚‚‚2

h
≤ C2

obs

MX
n=1

δt JB?h qnK2
h + φ(h) ‖qF‖2

h .

Thus, for any such δt, there exists a full-discrete control vh,δt s.t.

MX
n=1

δt JvnK2
h ≤ C2

obs ‖y0‖2
h , and

‚‚‚yM
‚‚‚

h
≤ Cobs

p
φ(h) ‖y0‖h .
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OBSERVABILITY AND ADJOINT PROBLEM

For qF ∈ Eh given, the adjoint problem associated with the time discretisation
proposed is given by

(S∗h,δt)

8>>><>>>:
qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.

THEOREM (THE CASE θ > 1/2)

Assume that the uniform discrete L-R inequality (Hα,β) holds, choose 0 < γ ≤ β
and CT > 0. For any δt ≤ CT hγ the following relaxed observability inequality holds‚‚‚q1 − δt(1− θ)Ahq1

‚‚‚2

h
≤ C2

obs

MX
n=1

δt JB?h qnK2
h + Ce−C/hγ ‖qF‖2

h .

Thus, for any such δt, there exists a full-discrete control vh,δt s.t.

MX
n=1

δt JvnK2
h ≤ C2

obs ‖y0‖2
h , and

‚‚‚yM
‚‚‚

h
≤ Cobse−C/hγ ‖y0‖h .
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h ≤ C2

obs ‖y0‖2
h , and

‚‚‚yM
‚‚‚

h
≤ Cobs

p
φ(h) ‖y0‖h .
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OBSERVABILITY AND ADJOINT PROBLEM

For qF ∈ Eh given, the adjoint problem associated with the time discretisation
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8>>><>>>:
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‚‚‚yM
‚‚‚

h
≤ Cobse−C/hγ ‖y0‖h .
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SKETCH OF THE PROOFS

MAIN IDEA : ADAPT THE LEBEAU-ROBBIANO ORIGINAL STRATEGY

STEP 1 : Use the discrete L.R. inequality to prove controllability of frequency modes less
than µ with cost eCµα ‖y0‖h.

STEP 2 : Construct a suitable full discrete control by a discrete finite time slicing
procedure :

{0, ...,M} =
JG

j=1

{M′j , ...,M′j + 2Mj}. (?)

Between discrete times M′j and M′j + Mj :
Use a control for frequencies less than 2j/α (Step 1).

Between discrete times M′j + Mj + 1 and M′j + 2Mj :
Let the system evolve without control and take advantage of the parabolic
dissipation since the solution only contains frequencies greater than 2j/α.

NEW DIFFICULTIES

δt has to be small enough (i.e. M large enough) in order to construct a suitable
slicing (?).
The full-discrete heat semi-group

(Id + θδtAh)
−1(Id + (1− θ)δtAh)

do not have the same dissipation properties than the semi-discrete semi-group

e−δtAh .
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SKETCH OF THE PROOFS
FULL-DISCRETE PARABOLIC DISSIPATION

THE θ-SCHEME FOR θ > 1/2
The iteration matrix for the system is

Ch,δt = (Id + θδtAh)
−1 (Id− (1− θ)δtAh) .

• Let us analyse Sp(Ch,δt) :

Image of Sp(δtAh) through

x 7→ 1− (1− θ)x
1 + θx

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x = θ−1/2
θ(1−θ)

case (a) case (b)

y = 1−θ
θ

1

1
1−θ

0
0

• In practice, ρ(δtAh) ∼ C δt
hp , for some p (e.g. p = 2 for classical FD)

 Case (b) : For δt × µi,h greater than θ−1/2
θ(1−θ) (possibly→ +∞) the damping factor

can be ∼ (1− θ)/θ < 1 but we assumed δt ≤ CT hγ :„
1− θ
θ

«M

≤
„

1− θ
θ

« Mδt
CT hγ

= e−ξ
Mδt
hγ ∼ e−ξ

T
hγ .
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SKETCH OF THE PROOFS
FULL-DISCRETE PARABOLIC DISSIPATION

THE CRANK-NICOLSON SCHEME (θ = 1/2)
The iteration matrix for the system is

Ch,δt =

„
Id− δt

2
Ah

«−1„
Id +

δt
2
Ah

«
.

• Let us analyse Sp(Ch,δt) :

Image of Sp(δtAh) through

x 7→ 1− x/2
1 + x/2

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

δ

δ−2
δ+2

0 4
δ

0

1

• For large δt × µi,h, the damping factor can be ∼ 1. Here we use

δtρ(Ah) ≤ δ.
We thus split the analysis into two cases :

The case δt × µi,h less than 4/δ : natural exponential damping
The case δt × µi,h greater than 4/δ : damping bounded by δ−2

δ+2 < 1.
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FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES

We consider a free trajectory of the semi-discrete problem

ŷF = e−TAh ŷ0.

PROBLEM 1

Starting from any y0 ∈ Eh, can we drive the solution of the semi-discrete system

∂ty +Ahy = Bhv, y(0) = y0,

to ŷF at time T ?

 equivalent to the null-controllability problem with initial data ŷ0 − y0

OUR RESULT : Under suitable assumptions, by minimizing the functional

Jh,δt(qF) =
1
2

MX
n=1

δt JB?h qnK2
h+

φ(h)

2
‖qF‖2

h−〈ŷF, qF〉h+
D

y0, q1 − δt(1− θ)Ahq1
E

h
,

we produce a full discrete control vh,δt = (B?h qn)n such that
The cost of the control satisfies

MX
n=1

δt JvnK2
h ≤ C2

obs

„
‖y0 − ŷ0‖h + Csδtζ1

‚‚‚‚A 1
2
h ŷ0

‚‚‚‚
h

«2

+ e−C/δtζ2 ‖ŷ0‖2
h,

for some ζ1, ζ2 > 0.
The controlled solution (yn)n associated with vh,δt and y0 is such that‚‚‚yM − ŷF

‚‚‚
h
≤
p
φ(h)Cobs

„
‖y0 − ŷ0‖h + Cδtζ1

‚‚‚‚A 1
2
h ŷ0

‚‚‚‚
h

«
+e−C/δtζ2 ‖ŷ0‖h.

MAIN TOOL : Estimate of the difference between the two initial data‚‚‚ỹδt
0 − ŷ0

‚‚‚
h
≤ Cδtζ

‚‚‚‚A 1
2
h ŷ0

‚‚‚‚
h

.
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FEW WORDS ABOUT CONTROL TO THE TRAJECTORIES
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In most cases (but not always) ŷF belongs to some full discrete trajectory

ŷF =
“

(Id + θAh)
−1(Id + (1− θ)Ah)

”M
ỹδt

0 .
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0 since :

In general we do not want to compute ỹδt
0 .

Its norm can be large with respect to that of ŷF .
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INTRODUCTION

The error analysis in space is intricate (low regularity expected for the HUM
null-control, ...).
We try here to analyse the error induced by time discretisation in this problem.

FRAMEWORK

We assume the uniform discrete Lebeau-Robbiano (Hα,β) to hold.
We suppose that h > 0 is fixed, that y0 ∈ Eh is given and that h 7→ φ(h) is given.
The minimization of the functional

Jh(qF) =
1
2

TZ
0

JB?h q(t)K2
h dt +

φ(h)

2
‖qF‖2

h + 〈y0, q(0)〉h ,

leads to a semi-discrete control t 7→ vh(t) ∈ L2(]0, T[,Uh).
For simplicity, we consider the implicit Euler scheme (similar results hold for
θ ∈ [1/2, 1[). The minimization of the functional

Jh,δt(qF) =
1
2

MX
n=1

δt JB?h qnK2
h +

φ(h)

2
‖qF‖2

h +
D

y0, q1
E

h
,

leads to a full discrete control vh,δt = (vn)n ∈ (Uh)
M .

GOAL : Prove an error estimate between vh,δt and vh.
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MAIN RESULT

THEOREM

Under the same assumptions than previous results (in particular δt ≤ Chγ), the
following error estimate holds‚‚‚‚vh −

MX
n=1

1(tn−1,tn)vn

| {z }
def
=F0[vh,δt]

‚‚‚‚
L2(]0,T[,Uh)

≤ Cδt
ρ(Ah)p
φ(h)

“
1 + δt

3
2 ρ(Ah)

3
2

”
‖y0‖h .

REMARKS

First order in time estimate (second order for CN provided a suitable time
interpolation operator is used in place of F0[.]).
The estimate is not uniform in h, even if we are interested in the approximate
control problem where φ(h) = ε > 0. The result is probably not optimal.

SKETCH OF PROOF

Write the Euler-Lagrange equations corresponding to the two minimization
problems we consider (the semi-discrete and the full-discrete).
Compare the two Euler-Lagrange equations by using error estimates in time for
the adjoint problem.

Proof details
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL
PRINCIPLE OF THE ALGORITHM

The functional we want to minimise reads (ε is fixed or ε = φ(h))

Jε,h,δt : qF ∈ Eh 7−→
1
2

MX
n=1

δt
q
(L∗v qF)

ny2
h

+
ε

2
‖qF‖2

h + 〈y0,L∗0 qF〉h .

We solve this problem by conjugate gradient (in (Eh, 〈., .〉h)). (Glowinski-Lions, ’94)
COMPUTATION OF THE GRADIENT

∇Jε,h,δt(qF) = LvL∗v qF + εqF + L0y0,

and we have seen that LvL∗v qF is computed by solving first

(S∗h,δt)

8>>><>>>:
qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K,

then by solving

(Sh,δt)

8>><>>:
y0 = 0,
yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bh B?h qn+1| {z }

=(L∗v qF)n

, ∀n ∈ J0,M − 1K,

and we finally have LvL∗v qF = yM .
36/ 58

F. Boyer Control of full-discrete parabolic equations



PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL
SOME COMMENTS

Advantages compared to other approaches (Münch et al, ’09,’10,’11)
Many time stepping schemes can be adapted (higher order methods like BDF2 or
RK3, RK4, etc ...).
Any reasonable space discretization method for any space dimension can be chosen,
independently.
You can use some black-box direct and adjoint solver⇒ very easy implementation.

Performance issues :
Condition number for ε > 0 (almost independent of δt) :

‖LvL∗v + εId‖ ≤ C + ε,

‖(LvL∗v + εId)−1‖ ∼
C
ε
.

For instance, for ε = φ(h) = h2 we have the same condition number as for the
discrete Laplace matrix ...

Recall that : Nb of iterations of CG ∼
√

condition number ∼ 1/
√
ε.

Condition number for ε = 0 :
We have seen that LvL∗v could be not invertible ! !
Even if we assume that it is invertible and that the uniform observability inequality holds‚‚L∗0 qF

‚‚
h ≤ C‖L∗v qF‖,

the very bad condition number comes from

‖qF‖2
h ≤ CeC/hp ‚‚L∗0 qF

‚‚2
h ≤ C′eC/hp ˙

LvL∗v qF, qF
¸

h .

Summary :
System is not so ill-posed but preconditioning is a very important and difficult issue.
Computational time of each CG iteration can be large and memory consuming : use of
parareal algorithms can be useful (Lions-Maday-Turinici, ...)
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parareal algorithms can be useful (Lions-Maday-Turinici, ...)
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL
NULL-CONTROL PROBLEM : CHOICE OF φ(h)

For the null-control problem, we recall that we choose ε = φ(h) and the computed
control vh,δt = (vn)n and the computed approximated solution yh,δt = (yn)n satisfy‚‚‚yM

‚‚‚
h
≤ Cobs

p
φ(h) ‖y0,h‖h , and

MX
n=1

δt JvnK2
h ≤ C2

obs ‖y0,h‖2
h .

EXAMPLE : FD app. of the 1D heat equation ∂ty− γ∂2
x y = 1ωv in ]0, 1[.

We build the piecewise constant function (Ki=cells associated to discretisation points)

ṽh,δt =

MX
n=1

X
i

δt1]tn−1,tn[×Ki
vn

i ∈ L2(]0, T[×Ω),

that we introduce into the original PDE :

∂t ỹh,δt − γ∂2
x ỹh,δt = 1ω ṽh,δt, with ỹh,δt(0) =

X
i

y0,h,i1Ki .

CONTINUITY OF SOLUTIONS WITH RESPECT TO DATA

‖ y(T)|{z}
=0

−ỹh,δt(T)‖L2 ≤ C‖y0 − ỹh,δt(0)‖L2 + C‖v− ṽh,δt‖L2(]0,T[×ω).

STANDARD A PRIORI ERROR ESTIMATE : ‖ỹh,δt(T)− yM‖L2 ∼ Cv,y0 (δtp + hq).

CONCLUSION : ‖v− ṽh,δt‖L2(]0,T[×ω) ∼ Cv,y0 (δtp + hq) + Cobs
p
φ(h)‖y0‖L2 .
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL
NULL-CONTROL PROBLEM : CHOICE OF φ(h)

‖ỹh,δt(T)‖h ∼ ‖v− ṽh,δt‖L2(]0,T[×ω) ∼ Cv,y0 (δtp + hq) + Cobs

p
φ(h)‖y0‖L2 .

CONCLUSION

The choice of φ(h) has to be related to the rate of convergence δtp + hq of the
approximation scheme used.
Even for large time steps we may compute very small targets yM , but they are
meaningless since the actual control and controlled solution are very poorly
approximated.
For the results to be meaningful, the time step has to be chosen small enough :
the same choice as the one done for computing the free solution is OK.

EXACT COMPUTATION OF THE RECONSTITUTED FINAL STATE ỹh,δt(T)

In Fourier variable
“
Fkz =

R 1
0 z(x) sin(kπx) dx

”
we have the ODE

d
dt
Fk(ỹh,δt) + γk2π2Fk(ỹh,δt) =

MX
n=1

δt1]tn−1,tn[

X
i

vn
iFk(1ω∩Ki ),

which can be solved explicitly and then

‖ỹh,δt(T)‖2
L2 ∼

X
k

|Fk(ỹh,δt)(T)|2.
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1

mesh size h

Euler - φ(h)=h2

computed final state ||yM||
Fourier final state ||yh,∆t(T)||

1 / (Nb of CG it)

slope 1
M=20

M=80

M=320

M=1280
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1

mesh size h

Euler - φ(h)=h4

slope 2

computed final state ||yM||
Fourier final state ||yh,∆t(T)||
1 / (Nb of CG it.)

M=20

M=80

M=320

M=1280

M=5120

M=20480
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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mesh size h
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1 / (Nb of CG it)

M=20
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M=320

M=1280
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 1e-09

 1e-08

 1e-07
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 1e-05

 0.0001

 0.001

 0.01
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 1

 0.01  0.1

mesh size h

Semi discrete - φ(h)=h
6

slopes 2 and 3

Cost of the control

Computed final state

Fourier final state

1 / (Nb of CG it)
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CONVERGENCE IN TIME

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 0.001

 0.01

 0.1

 1

 0.0001  0.001  0.01  0.1  1

E
rr

o
r 

o
n

 t
h

e 
co

n
tr

o
l 

||v
h
 -

 v
h

,∆
t||

Time step ∆t

Euler scheme

slope 1

φ(h)=h
2

φ(h)=h
4

N =  50

N = 100

N = 200
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CONVERGENCE IN TIME

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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rr
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n
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h
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n
tr

o
l 

||v
h
 -

 v
h

,∆
t||

Time step ∆t

Crank-Nicolson scheme

slope 2

φ(h)=h
2

φ(h)=h
4

N =  50

N = 100

N = 200
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THE 2D HEAT EQUATION
A CONTROL TO THE TRAJECTORIES

∂ty− 0.1∆y = 1ωv,

y(0, x) = sin(2πx1) sin(πx2), and yF(x) = 0.1 sin(πx1) sin(2πx2).
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS INSIDE THE COUPLING ZONE

(De Teresa – González-Burgos, ’08) (Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty− ∂x

„„
0.1 0
0 0.1(2 + sin(4x))

«
∂xy
«

+

„
0 1]0.5,0.8[(x)
0 0

«
y =

„
0

1]0.2,0.8[(x)

«
v.

Ω =]0, 1[

T = 1

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Euler - M=20

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Euler - M=50

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
46/ 58

F. Boyer Control of full-discrete parabolic equations



2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Euler - M=100

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Euler - M=200

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.
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ε

Cranck-Nicolson - M=20

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.
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ε

Cranck-Nicolson - M=50

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.
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 100

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Cranck-Nicolson - M=100

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’10 ?)

∂ty− 0.1∂2
x y +

„
0 1]0.8,0.9[(x)
0 0

«
y =

„
0

1]0.1,0.6[(x)

«
v.

Ω =]0, 1[

T = 4

y0(x) =

„
sin(πx)10

sin(3πx)

«
.

 1e-07
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 10

 100

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Cranck-Nicolson - M=200

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.

46/ 58
F. Boyer Control of full-discrete parabolic equations



3 EQUATIONS WITH 1 CONTROL
THE KALMAN CONDITION IS NOT SATISFIED

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty− 0.1∂2
x y +

0@0 0 1
0 0 1
0 0 0

1A y =

0@ 0
0

1]0.2,0.8[(x)

1A v.

Ω =]0, 1[

T = 1

y0(x) =

0@sin(πx)10

sin(3πx)
0

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
THE KALMAN CONDITION IS SATISFIED

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty− 0.1∂2
x y +

0@0 0 1
0 1 1
0 0 0

1A y =

0@ 0
0

1]0.2,0.8[(x)

1A v.

Ω =]0, 1[

T = 1

y0(x) =

0@sin(πx)10

sin(3πx)
0

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

0@ 0 0 0
x 0 0

x + 1 0 0

1A y =

0@1]0.2,0.9[
0
0

1A v.

Ω =]0, 1[

T = 3

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 1/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

0@ 0 0 0
x1]0,0.8[(x) 0 0

(x + 1)1]0,0.8[(x) 0 0

1A y =

0@1]0.2,0.9[
0
0

1A v.

Ω =]0, 1[

T = 3

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

0@ 0 0 0
x1]0,0.3[(x) 0 0

(x + 1)1]0,0.3[(x) 0 0

1A y =

0@1]0.5,1.0[
0
0

1A v.

Ω =]0, 1[

T = 3

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

0@ 0 0 0
x1]0,0.3[(x) 0 0

(x + 1)1]0,0.3[(x) 0 0

1A y =

0@1]0.5,1.0[
0
0

1A v.

Ω =]0, 1[

T = 3

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01  0.1

mesh size h

Euler method

size of the target

cost of the control

1 / (Nb of CG it)
 M=200 

 M=1000 

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
NO COUPLING - DIFFERENT CONSTANT DIFFUSION COEFFICIENTS

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty−
1
π2 ∂x

  
1 0 0
0 1.2 0
0 0 3

!
∂xy

!
= 1]0.2,0.8[

0@ 1
2
−1

1A v.

Ω =]0, 1[

T = 2

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
NO COUPLING - DIFFUSION COEFFICIENTS ARE DIFFERENT OUTSIDE ω

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty−∂x

0@ 1
π2

0@2 + 5× 1]0,0.2[ 0 0
0 2 0
0 0 (2− 1.8× 1]0.8,1[)

1A ∂xy

1A = 1]0.2,0.8[

0@ 1
2
−1

1A v.

Ω =]0, 1[

T = 2

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
NO COUPLING - DIFFUSION COEFFICIENTS ARE DIFFERENT INSIDE ω

(Ammar-Kodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty−∂x

0@ 1
π2

0@2 + 5× 1]0.2,0.6[ 0 0
0 2 0
0 0 (2− 1.8× 1]0.5,0.8[)

1A ∂xy

1A = 1]0.2,0.8[

0@ 1
2
−1

1A v.

Ω =]0, 1[

T = 2

y0(x) =

0@ sin(2πx)
sin(πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 2 CONTROLS
THE TWO CONTROLS HAVE DISJOINT SUPPORTS - KALMAN IS SATISFIED

∂ty−∂x

  
0.1 0 0
0 0.2 0
0 0 0.3

!
∂xy

!
+

 
2 −3 0
1 0 0
0 1 −2

!
y =

 
1]0.7,1.0[ 0

0 1]0.1,0.5[
0 0

!„
v1

v2

«
.

Ω =]0, 1[

T = 1

y0(x) =

0@ 0
0

sin(πx)10

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 2 CONTROLS
THE TWO CONTROLS HAVE DISJOINT SUPPORTS - KALMAN IS SATISFIED

∂ty−∂x

  
0.1 0 0
0 0.2 0
0 0 0.3

!
∂xy

!
+

 
2 −3 0
1 0 0
0 1 −2

!
y =

 
1]0.7,1.0[ 0

0 1]0.1,0.5[
0 0

!„
v1

v2

«
.

Ω =]0, 1[

T = 1

y0(x) =

0@ 0
0

sin(πx)10

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 2 CONTROLS
THE TWO CONTROLS HAVE DISJOINT SUPPORTS - KALMAN IS NOT SATISFIED

∂ty− 0.1∂2
x y +

 
0 0 0
0 0 0
1 1 0

!
y =

 
1]0.7,1.0[ 0

0 1]0.1,0.5[
0 0

!„
v1

v2

«
.

Ω =]0, 1[

T = 1

y0(x) =

0@ sin(πx)10

2 sin(2πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 2 CONTROLS
THE TWO CONTROLS HAVE DISJOINT SUPPORTS - KALMAN IS NOT SATISFIED

∂ty− 0.1∂2
x y +

 
0 0 0
0 0 0
1 1 0

!
y =

 
1]0.7,1.0[ 0

0 1]0.1,0.5[
0 0

!„
v1

v2

«
.

Ω =]0, 1[

T = 1

y0(x) =

0@ sin(πx)10

2 sin(2πx)
− sin(πx)

1A .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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THE END

SUMMARY

Analysis of uniform controllability properties with respect to δt and h for full
discrete problems.

Elliptic Discrete Carleman estimates
Optimal relaxed observability inequalities.
Error analysis in time.

We may use numerical simulations to investigate open problems.

PERSPECTIVES

Extend our analysis to other cases
Time variable coefficients.
Non symmetric scalar operators.
Systems.
Semi-linear problems.
Boundary control problems.
Main tool : Semi-discrete parabolic Carleman estimates.

From a numerical point of view
Analysis for other numerical schemes (Finite Volumes, Finite Elements, ...)
A deeper understanding of the structure of the HUM operator should lead to
reasonable preconditioning methods.
Is there more suitable solvers than standard Conjugate Gradient ?
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PROOF DETAILS
1/3

EULER-LAGRANGE EQUATION FOR Jh

We denote the minimizer by qF
opt and t 7→ qopt(t) the corresponding solution to the

semi-discrete adjoint problem :

0 =

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
D

qF
opt, q̃

F
E

h
+ 〈y0, q̃(0)〉h ,

for any q̃F ∈ Eh.

EULER-LAGRANGE EQUATION FOR Jh,δt

We denote the minimizer by qF
opt,δt and by (qn

opt,δt)n the corresponding solution to the
full-discrete adjoint problem

0 =
MX

n=1

δt
ˆ
B?h qn

opt,δt,B?h q̃n˜
h

+ φ(h)
D

qF
opt,δt, q̃

F
E

h
+
D

y0, q̃1
E

h
,

for any q̃F ∈ Eh.
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PROOF DETAILS
2/3

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
˙

qF
opt, q̃

F¸
h
+ 〈y0, q̃(0)〉h = 0,

MX
n=1

δt
h
B?h qn

opt,δt,B
?
h q̃n
i

h
+ φ(h)

D
qF

opt,δt, q̃
F
E

h
+
D

y0, q̃1
E

h

= 0,
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PROOF DETAILS
2/3

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
˙

qF
opt, q̃

F¸
h
+ 〈y0, q̃(0)〉h = 0,

�
�

�



MX
n=1

δt
h
B?h qn

opt,δt,B
?
h q̃n
i

h
+ φ(h)

D
qF

opt,δt, q̃
F
E

h
+
D

y0, q̃1
E

h

= 0,

TRANSFORMATION OF THESE EQUATIONS

δt
h
B?h qn

opt,δt,B
?
h q̃n
i

h
=

tnZ
tn−1

ˆ
F0[vh,δt](t),B?h (F0[q̃δt](t))

˜
h dt

=

tnZ
tn−1

ˆ
F0[vh,δt](t),B?h q̃(t)

˜
h dt +

tnZ
tn−1

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h dt.
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PROOF DETAILS
2/3

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
˙

qF
opt, q̃

F¸
h
+ 〈y0, q̃(0)〉h = 0,

TZ
0

ˆ
F0[vh,δt](t),B?h q̃(t)

˜
h dt + φ(h)

D
qF

opt,δt, q̃
F
E

h
+
D

y0, q̃1
E

h

= −
TZ
0

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h dt,
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PROOF DETAILS
2/3

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
˙

qF
opt, q̃

F¸
h
+ 〈y0, q̃(0)〉h = 0,

TZ
0

ˆ
F0[vh,δt](t),B?h q̃(t)

˜
h dt + φ(h)

D
qF

opt,δt, q̃
F
E

h
+

�� ��˙
y0, q̃1

¸
h

= −
TZ
0

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h dt,

TRANSFORMATION OF THESE EQUATIONS

q̃1 = q̃(0) + (q̃1 − q̃(0))
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PROOF DETAILS
2/3

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
˙

qF
opt, q̃

F¸
h
+ 〈y0, q̃(0)〉h = 0,

TZ
0

ˆ
F0[vh,δt](t),B?h q̃(t)

˜
h dt + φ(h)

D
qF

opt,δt, q̃
F
E

h
+ 〈y0, q̃(0)〉h

= −
TZ
0

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h dt −

D
y0, q̃1 − q̃(0)

E
h
,
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PROOF DETAILS
2/3

TZ
0

[B?h qopt(t),B?h q̃(t)]h dt + φ(h)
˙

qF
opt, q̃

F¸
h
+ 〈y0, q̃(0)〉h = 0,

TZ
0

ˆ
F0[vh,δt](t),B?h q̃(t)

˜
h dt + φ(h)

D
qF

opt,δt, q̃
F
E

h
+ 〈y0, q̃(0)〉h

= −
TZ
0

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h dt −

D
y0, q̃1 − q̃(0)

E
h
,

SUBTRACTION OF THE EQUATIONS

TZ
0

ˆ
B?h qopt(t)−F0[vh,δt](t),B?h q̃(t)

˜
h dt + φ(h)

D
qF

opt − qF
opt,δt, q̃

F
E

h

=

TZ
0

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h dt +

D
y0, q̃1 − q̃(0)

E
h
,

 Now we choose q̃F = qF
opt − qF

opt,δt , so that q̃(t) = qopt(t)− q(t) and then

B?h q̃(t) =

„
B?h qopt(t)−F0[vh,δt](t)

«
+ B?h

„
F0[qopt,δt](t)− q(t)

«
.
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PROOF DETAILS
3/3

TZ
0

Jv(t)−F0[vh,δt](t)K2
h dt + φ(h)

‚‚‚qF
opt − qF

opt,δt

‚‚‚2

h

=

TZ
0

ˆ
F0[vh,δt](t),B?h

`
F0[q̃δt](t)− q̃(t)

´˜
h

dt +
D

y0, q̃1 − q̃(0)
E

h

−
TZ
0

h
v(t)−F0[vh,δt](t),B?h

`
F0[qopt,δt](t)− q(t)

´i
h

dt.

• The error terms are estimated as follows by usual parabolic techniques :

TZ
0

q
B?h
`
F0[q̃δt](t)− q̃(t)

´y2
h

dt ≤ C

TZ
0

‖F0[q̃δt](t)− q̃(t)‖2
h dt

≤ C

 
δt2
‚‚‚‚A 1

2
h q̃F
‚‚‚‚2

h

+ δt5
‚‚‚A2

hq̃F
‚‚‚2

h

!
≤ Cδt2

‚‚‚q̃F
‚‚‚2

h
ρh(1 + ρ3

h)

•We conclude by using Cauchy-Schwarz inequality. Back
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