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ABSTRACT PARABOLIC PROBLEM

DISTRIBUTED APPROXIMATE/NULL CONTROL PROBLEMS

NOTATIONS

s Oy+ Ay=Bv in]0,T],
y(0) =5°,

e E and U two Hilbert spaces,
e ye L™(]0,T[,E), A: D(A) C E — E is some “elliptic” unbounded operator,
@ B: U — E abounded operator,

1
o v e 12(]0, T[, U) is the control. Tts cost i |[v]],(0.7.0) = ( I ||v(z)||%,dt) :

APPROXIMATE CONTROL PROBLEM
For all 3 > 0, can we find v € L*(0, T; U) s.t. the solution y satisfies ||y(T)||z < 3?

NULL CONTROL PROBLEM
Can we find v € L*(]0, T[; U) such that the solution y satisfies y(T) = 0 ?

(Fattorini-Russel, *71) (Lebeau-Robbiano, *95)
(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, *08)

(Ammar-Khodja, Benabdallah, Gonzilez-Burgos, de Teresa, *11)
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EXAMPLES WE HAVE IN MIND

THE 1D HEAT EQUATION
Oy — O:(v(x)0xy) = 1wy in (0,T) x Q,
($)gy=0 on (0,7) x 99,
y(0) =»"

thatis E = L*(Q), A = —9,(y(x)d,.), U = L*(Q), B = 1, withw C Q.
1D PARABOLIC SYSTEMS

Oy — Ox(7i(x)0wyr) + 221, ay(x)y; = 1o Bi(x)v in (0,T) x ©,

(S)<yi=0 on (0,7) x 99,
¥i(0) =
Y= 1) E = (L(Q)", U = (L(Q)), Bi(x) € Mi(R).
1o, Bi(x)
B=|
1ew, Ba(x)

Interesting (and much more difficult) case : p < n. Some components are controlled
thanks to the coupling terms.
THE SAME IN MULTI-D

F. Boyer Control of discrete parabolic equations and systems
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ABOUT THE HUM-PENALTY TECHNIQUE

HUM-PENALTY IDEA : Given € > 0, minimize the functional
Fove2orv) > 1 [ ol L
DUAL PROBLEM : Find a minimizer of the dual functional
T
erar € B [IB G di+ 5 larll + v, 0,
where t — ¢(1) is the solution to the backward problem
—9q+A"q=0, q(T)=qr. (ADJ)

EXISTENCE AND DUALITY
For any € > 0, F. has a unique minimizer v, J- has a unique minimizer gr, and
ve(t) = B q:(t), Vt € [0,T],
we(T) = —€qr.c.
il3ng (v) = Fe(ve) = — i,gpfjs (qr) = —J(qr,e)-

Moreover (||yv. (T)||£). is bounded.

v
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ABOUT THE HUM-PENALTY TECHNIQUE

HUM-PENALTY IDEA : Given € > 0, minimize the functional
Fove2orv) > 1 [ ol L
DUAL PROBLEM : Find a minimizer of the dual functional
T
erar € B [IB G di+ 5 larll + v, 0,

where t — ¢(1) is the solution to the backward problem

—9q+A"q=0, q(T)=qr. (ADJ)

CONVERGENCE OF THE PENALTY METHOD - APPROXIMATE CONTROL PROBLEM

(S) is approximately controllable from yy at time T <= ||y, (T)||z — 0.
e—

@ < is straightforward.
@ = Assume that, up to a subsequence, ||y, (T)||z > « > 0, for any € > 0.
By assumption, there exists ¥ € L?(]0, T[, U) such that ||ys(T)||3 < /2.

«
o< 2€||yv€( )

L. -
It follows —4 <= HvHiz(O r.0), and we get a contradiction when ¢ — 0.
£ . 2

F. Boyer Control of discrete parabolic equations and systems
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ABOUT THE HUM-PENALTY TECHNIQUE

HUM-PENALTY IDEA : Given € > 0, minimize the functional
Fove2orv) > 1 [ ol L
DUAL PROBLEM : Find a minimizer of the dual functional
T
erar € B [IB G di+ 5 larll + v, 0,

where t — ¢(1) is the solution to the backward problem
—0q+A"q=0, q(T)=qr. (ADI)

CONVERGENCE OF THE PENALTY METHOD - NULL CONTROL PROBLEM

(S) is null-controllable from y at time 7 <=> sup (inf F. (v)) < +o0.

OBSERVABILITY
Null-controllability of (S) is equivalent to the observability inequality

T
[g(0) ]|z < Cavs / |B*q(1)|[3; dt, Vg sol.of (ADJ), (OBS)
0

and we have ||y,_ (T)||g < Cobs|lyollzvE, Ve —5 o in L>(0,T; U).
F. Boyer Control of discrete parabolic equations and systems os8



(Lebeau-Robbiano, *95)
A= —div(yV.), B=B" = 1,,
Eigenfunctions : A¢x = pxr. Stable subspaces E,, = Span {¢x, e < p}.
NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

N/
e
9Ol < ¢ [ [ laP dnas. var < B



PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, *95)
A=—div(yV.), B=B" = 1.,
Eigenfunctions : A¢ = pu¢px. Stable subspaces E,, = Span {¢y, e < p}.
NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

2 Vit 2
el < € [ [ laParas. var < 5.
0 w
THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A
2 C 2
91720y < CeV¥[16ll720ys Vo € Ep, Vi > 0.
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, *95)
A=—div(yV.), B=B" =
Eigenfunctions : A¢ = pu¢px. Stable subspaces E,, = Span {¢y, e < p}.
NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

9(0)lI72 ) <

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A
2 C 2
I6ll72 () < CeVFI8ll72 () V6 € Eny Vi > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = —97 + A
There exists a ¢(,x) > 0 such that, Vs > 0 large enough and u(0, .) = 0, we have

25p(T) Ju(

3 s 2 Q 2 3 2
s'[leullizig) + slle™ Vullpzg) + s7e T, )2 e

<C (||ew73u\|§2(Q) + 5™ [V a(T, ) 1 ) + 51 B (0, .)|§2M) :

sinh(/p;t)

N7 ¢jand s = C/p.

Apply this inequality to u = Z aj— Y
HjSp
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, ’95)
A= —div(yV.), B=B" = 1,,
Eigenfunctions : A¢y = . Stable subspaces E,, = Span {¢x, e < u}.

NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

2 Vit 2

la) ey < ¢ [ [ 1P v, Var <,
0 w

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A

2 c 2

0172) < Ce™VFélli2y V6 € B Vit > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = —87 + A

CONSTRUCTION OF THE CONTROL : Time slicing procedure.

@Il

[[yoll2 ¢

0 T
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, ’95)
A= —div(yV.), B=B" = 1,,
Eigenfunctions : A¢y = . Stable subspaces E,, = Span {¢x, e < u}.

NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

2 Vit 2

la) ey < ¢ [ [ 1P v, Var <,
0 w

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A

2 c 2

0172) < Ce™VFélli2y V6 € B Vit > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = —87 + A

CONSTRUCTION OF THE CONTROL : Time slicing procedure.

ly(@ll22
oleg—"_ |
Control low
frequencies
t
0 T
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, ’95)
A= —div(yV.), B=B" = 1,,
Eigenfunctions : A¢y = . Stable subspaces E,, = Span {¢x, e < u}.

NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

2 Vit 2

la) ey < ¢ [ [ 1P v, Var <,
0 w

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A

2 c 2

0172) < Ce™VFélli2y V6 € B Vit > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = —87 + A

CONSTRUCTION OF THE CONTROL : Time slicing procedure.

y(2)]l.2
/ Do nothing
[[oll2 9
Control low
frequencies
t
0 T
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, ’95)
A= —div(yV.), B=B" = 1,,
Eigenfunctions : A¢y = . Stable subspaces E,, = Span {¢x, e < u}.

NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

2 Vit 2

la) ey < ¢ [ [ 1P v, Var <,
0 w

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A

2 c 2

0172) < Ce™VFélli2y V6 € B Vit > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = —87 + A

CONSTRUCTION OF THE CONTROL : Time slicing procedure.

y(2)]l.2
Do nothing
/ Control
[[oll2 9 low
Control low freq.
frequencies L — P
0 T
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY | : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, ’95)
A= —div(yV.), B=B" = 1,,
Eigenfunctions : A¢y = . Stable subspaces E,, = Span {¢x, e < u}.

NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

2 Vit 2

la) ey < ¢ [ [ 1P v, Var <,
0 w

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A

2 c 2

0172) < Ce™VFélli2y V6 € B Vit > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = —87 + A

CONSTRUCTION OF THE CONTROL : Time slicing procedure.

y(2)]l.2
Do nothing
/ Control Do
llyoll 2 9 low nothing and so on...
Control low freq.
frequencies L — P
0 T
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION

STRATEGY 2 : DIRECT PROOF OF OBSERVABILITY

(Fursikov-Imanuvilov, *96)

GLOBAL CARLEMAN ESTIMATE FOR THE PARABOLIC OP. P = —¢, + A"
Set 0(r) = («(T —1))~", and Q =0, T[x Q.

THEOREM

There exists (another) x — ¢(x) > 0, such that for any T > 0 large enough and any q
vanishing on 0S).

-1 76 L 70 3 10
(76)"2e™ "% Augll72 (g + 1(70)2 e~ " Vallizg) + [1(70) 2 e 4ll72(q)
=7 S
< C(Jle WPQ”%Z(Q) + [[(70)2e W‘IH%Z((OJ)XW))

Writing that

3T/4

3 70
()20 < C//4 lg(0)lI720) df < C-1I(70)2 ™% qll12(g).
T

3 70 2
< Cl(T0)2e " qll2 0,1y %)
gives the observability inequality.

8/58
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Derivation and analysis of methods to compute (an approximation of) the HUM
control for (S).

OUR APPROACH : Combine the penalty idea with numerical approximation.

What happens whene — 0,7 — 0, 6t — 0 ?




GOALS AND REFERENCES

GOAL OF THE TALK

Derivation and analysis of methods to compute (an approximation of) the HUM
control for ().

OUR APPROACH : Combine the penalty idea with numerical approximation.

What happens when € — 0, h — 0, 6t — 0 ?

OTHER APPROACHES AND REFERENCES
@ Seminal works (Carthel-Glowinski-Lions, *94) (Glowinski-Lions, *94)
@ Uniform controllability results for 1D heat equation (Lopez-Zuazua, 98) (Zuazua, *06)

@ Analysis of the problem by using the controllability properties of the continuous

problem
(Labbé-Trélat, >06)
@ “Numerical Carleman” approach (Fernandez-Cara — Miinch, °10,’11)
Minimize {(y, v),st.y(T) = O} / / 209 |y dr dx+/ / (T—1)*¢*?|v|* dt dx.
w
@ Variational approach (Miinch—Pedregal, *11)

9/ 58
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ABSTRACT SPACE DISCRETIZATION

(Labbé-Trélat, ’06) (B.-Hubert-Le Rousseau, *10)
For any 7 > 0 (supposed to be some space discretization parameter) :
o (E, (-,-),) euclidean space, with norm |-|,.
o My, Ay € L(Ey, E;,) which are SDP in (Ej, (-, -),,)-

@ Associated scalar products and norms
! 1
() = (Max,y), s Nl = (nx)y = [Miix], Vx,y € Ei.

o Another Euclidean space (U, [, -],), with norm [-],.
@ A linear operator By, : U, — Ej, and B}, : E, — Uy, its adjoint.
@ We shall assume that there exists C > 0 such that

[Bix], < Cllxll,, Yh>0,Vx € Ep,

GENERAL PHILOSOPHY : Choose your favorite scheme !
EXAMPLES
e FD : cartesian meshes, M), = Id, A=the 5-point discrete Laplacian in 2D

e FV : orthogonal meshes, M, = diag(|x|)xec7, An =flux balance matrix
e Galerkin : M, =mass matrix, A, =rigidity matrix, B, = ( fw ol dx) .

12/ 58
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THE SEMI-DISCRETE PARABOLIC PROBLEM
Oy + Ay = By MuOiyn + Anyn = By
(S) 1y - y y (Sh) h ty_h hYh hWVh,
¥(0) = yo, yi(0) = Yo,
SIMPLIFICATION IN THIS TALK : Mass matrix M, = Id.



ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM
Oy + Ay = By, Oyn + Awyn = B,
(S) (Sn)
¥(0) = o, yu(0) = Yo,
ISSUES
@ The semi-discrete problem (S;) can be non controllable even if (S) is.

1 (Kavian ’01, Zuazua ’03)
Indeed, it may exist eigenfunctions satisfiying

Aipy = b, and Biy, = 0.

~~ Non-controllability since for any v, we have

&y, b+ 1 )y = 0.

@ It is certainly a theoretical difficulty : what can we do to deal with this issue ?

o Is it an actual difficulty in practice since pu; ~ h% ?

13/ 58
F. Boyer Control of discrete parabolic equations and systems



ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM
Ay + Ay = By, Ayn + Auyn = Biva,
(S) 1y - y (Sh) 'tV h - hYh WVh
¥(0) = yo, y1(0) = you,

PENALTY + DISCRETIZATION
e Given yo; € Ej, and € > 0, let us consider (recall that dim E;, < 400)

1T e
Jeniar € B 3 [ B, diot 5 el + Goss (O
0

where ¢ — g;,(f) € Ej is the solution to —0,gn + Ajqn =0, qn(T) = gr.

13/ 58
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM
By + Ay = By, O + Ay = Bivi,
(S) 'ty - y (Sh) tVh - hYh hVh
¥(0) = yo, yu(0) = Yo,n,

PENALTY + DISCRETIZATION
e Given yo,, € Ej and € > 0, let us consider (recall that dim E;, < +00)

1 /7 15
Jeniar € B 3 [ B, diot 5 el + Goss (O
0

where ¢ — g;,(f) € Ej is the solution to —0,gn + Ajqn =0, qn(T) = gr.

o We setve;, = B q- 4(t) and t — y. 4(t) the associated solution to (Sy).
@ For h > 0 fixed, we may have

tim [|y= () s # 0.
e—0

More precisely

yeu(T) — the non-controllable part of e~ "y, Hh < Cuv/e.

F. Boyer Control of discrete parabolic equations and systems
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM
By + Ay = By, O + Ay = Bivi,
(S) 'ty - y (Sh) tVh - hYh hVh
¥(0) = yo, yu(0) = Yo,n,

PENALTY + DISCRETIZATION
e Given yo,, € Ej and € > 0, let us consider (recall that dim E;, < +00)

1 /7 15
Jeniar € B 3 [ B, diot 5 el + Goss (O
0

where ¢ — g;,(f) € Ej is the solution to —0,gn + Ajqn =0, qn(T) = gr.

o We setve;, = B q- 4(t) and t — y. 4(t) the associated solution to (Sy).
@ For h > 0 fixed, we may have

tim [|y= () s # 0.
e—0

@ If (S) is null-controllable, we can hope that for some C > 0 and any & > 0, there
exists i >0

[yen(D)ln < CVEllyoulln, forany h < hZ,

Ve, — Ve, In some sense,
h—0
as soon as (yo,4)» converges to yo.

13/ 58
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

e For h > 0 fixed, we may have
Jim {Jy=n (T)[ln # O-
@ We can hope that for some C > 0 and any ¢ > 0, there exists hZ > 0
[yen(T)lln < CVellyoulln, forany h < hz,

Ve,s — Ve, 1N some sense,
h—0

as soon as (yo,)x converges to yo.
QUESTIONS :
© Approximate control problem : Is it possible to give an estimate of A7 ?

© Null control problem : Is it possible to choose € > 0 as a function of /& :
€ = ¢(h) such that

Tim [[yo .0 (T)lla = 0, 1o allezqo,rpuy < €

and can we estimate those quantities ?

© If many such i — ¢(h) exist, how do I choose one ?

14/ 58
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(jn, pjn); eigenelements of Ay,

Ep = Span(n, pin < p)-

There exists ho > 0, a € [0, 1), 8 > 0, and k, £ > 0 such that

rp * 4
1l < we™" [Bigly, Y € Eupy Yu < 5, Vh < ho. (Hap)

FUNDAMENTAL REMARK
For dimension reasons, such an inequality can not be true for any p > 0, that is for all
9 in the whole Ej,.



THE MAIN ASSUMPTION ...

... IS KNOWN TO BE VALID IN SOME CASES

(B.-Hubert-Le Rousseau ’09,’10)
We proved that the uniform discrete Lebeau-Robbiano inequality (H,3) holds for
o Finite difference schemes on regular Cartesian meshes in any dimension.
@ A scalar elliptic operator A with diagonal diffusion tensor.

o Distributed control problem B, = 1,,.
@ We obtain :
e o = 1/2 (i.e. the constant is ~ eVH).
e 3 =2 (related to «v and to the order of the differential operator).
MAIN TOOL : Global semi-discrete elliptic Carleman estimates

THEOREM
There exists C > 0, hg > 0, so > 0, 9 > 0 such that

SSHew”hHiZ(]o,T*[,Eh) +5°e ) |uy(T., I, < Clle™? (-87 + Ah)uhniz(](),T*[,Eh)

+ Cse? 1) [V (1) |12 + €5 | 1o Bun (O)I1,

foralls > 50,0 < h < ho and and up, € €*([0, T+, Ep).

inh( /7 .
THEN CHOOSE us(t) = >, <, oy T ( MW) Wyn and s ~ /1 <= restriction on .
7= ')
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COMMENTS

WHY FINITE DIFFERENCES ?

@ The proof uses discrete differential calculus :

o Conjugate the operator with weights

o Compute the square of the new equation.
o Integrate by parts a lot of times

o 4th order operators appear

@ This computations seem difficult to perform for

o Finite Volume : flux balance formalism ...
o Galerkin / Finite element : variational formulation ...

WHY sh HAS TO BE SMALL ENOUGH ?
@ Continuous level
e 2 (ewu) = 8%u+ Lot
@ Discrete level i
e A, (esd’M) = ((’,7‘\06‘@) Apu + Lo,

with R
= i 2fi + fi— h fir1 —2f + fie
(), =Tt gt e (i),
Thus,

(ef‘y¢ef:°> =14+100()+...=1+ 0((115)2).

F. Boyer Control of discrete parabolic equations and systems
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THE SEMI-DISCRETE CONTROL PROBLEM

(Carthel-Glowinski-Lions, 94) (Glowinski-Lions, *94)
oy + Any = By,

yu(0) = yo.

Consider the approximate control problem for (Sj) by penalty introducing

(Sh) {

T
1 . €
ar € B Jeslar) = 5 [ 11T, dr+ 5 larll + 0n,9(0),
0

We denote by gr,,; its minimizer and ¢ — g. »() the associated adjoint state.

THEOREM
Assume that the uniform discrete Lebeau-Robbiano inequality (Ha,g) holds, then there
exists ho > 0 and constants C, Cops > 0 such that :

—c/nP

@ Forany h < hy, ande > ¢ , the control ve 5(t) = By qen(t) is such that

||v57h||L2(0,T;Uh) S Cobs, and H})€,h(T)||h S Cobs\/g-

ASSOCIATED RELAXED OBSERVABILITY INEQUALITY

B T
Vh < ho,Ve > e~ /" 2 2 2 2

' VYar € Ei, [lq(0)]]; < Cob /[[B;Tq(t)]] dt + ¢ |lgr |l

C ’ ’ h — h h
{V6<€0,v1’l<10g6|1/5 g o " !
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TWO CASES OF INTEREST

COMPUTATION OF AN APPROXIMATE CONTROL FOR € > 0 FIXED :
The sequence (ve,»), converges towards the HUM-penalized control v, for (S).

COMPUTATION OF A NULL-CONTROL : )

Choose a function i — ¢(h) such that ¢(h) > e~ /" for any h.

The sequence (vg(n),s)n converges, at least weakly, towards a null-control for (S) and
we have

lyema(T)]], < Cons/d(h), VO < h < ho.

@ Recall that, in general, a null-control for (S,) does not exist
= Taking € = 0 is meaningless.
e Taking € = ¢(h) exponentially small is theoretically possible but
this is not reasonable and in fact completely useless.

@ In practice, choosing ¢(h) = K for some p related to the approximation order p
of the scheme under study is sufficient.

See some numerical illustrations later

F. Boyer Control of discrete parabolic equations and systems
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THE UNIFORM GLOBAL SEMI-DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, ’12)
FINITE DIFFERENCES ON REGULAR (MULTI-D) CARTESIAN MESHES
We set 0(f) = (t 4+ ah) ™ (T —t + ah) ™",

THEOREM
For any T > 0 large enough, there exists o > 0 and hy > 0 such that for any function

q and any h < ho we have
1 _ 19 D) 3 _16
[(T0)2e™ ™" Duglli2(g) + [|(70)2e LpQHiZ(Q)
=(e) * 2 3 _ro 2
< C(lle” ™ (=8 + Aidllz o) + 1(70) 2™ "2 qll2 0.1y xw))
+ C/172(\67799911\1:0@2(52) + |€7T%Q\1:T|22(sz>)

THEOREM (RELAXED OBSERVABILITY INEQUALITY)

There exists C > 0 s.t. for any function a, € L*(]0, T[, Ey), and any h < min(ho, k)
_2

with hi ~ ||an||s’, any solution of —0:q + Aj; q + ang = 0 satisfies

2 2 et ap || oo 2
|q(0)|L2(Q) < C‘)bS”q”LZ((O,T)Xw) e ol |‘1(T)|L2(Q)-

2
. c(l+L41 3
With Cops = ¢ (I+7+Tllaplloo +lanllsc)

v
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(Fernandez-Cara — Zuazua, *00), (B. — Le Rousseau, ’12)

Ovn + Awyn + gn)yn = Lovi,  yu(0) = you,

There exists C > 0, such that for any initial data yo » € Ej, and any h < hy, there
exists a semi-discrete control v, such that

&
il 2qo.ruy < € llyoully, and flya(T)], < Ce™ 7 |lyoll,, -




APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernandez-Cara — Zuazua, ’00), (B. — Le Rousseau, *12)

Ovn + Apyn + gn)yn = Lwvn, yu(0) = yon,

SUPERLINEAR CASE : |g(s)| < MIn(1 + [s])", r < 3/2
@ In 1D : For any initial data yo; € Ej, and h < hg there exists a v, such that

_c !
vallzqo,r,o) < Clpyg,fl,» 200 Da(Dlly < Cpyy 6™ ™

@ In multi-D : same result but with a non-uniform bound of the control

—1

—a _c
il 20,710, S e B ||yh(T)||h§C||y0,h”he "

N.B. :itis known that for » > 2 the problem is not null-controllable.
LINEARIZATION + FIXED-POINT PROCEDURE

(8z,) : Ouyn + Anyn + g(zn) yn = Loyva,
—~—

=ay,

Ay : zn € Some space — vthe HUM-pen. control for (S, )

—— yn € the same space as z;.

F. Boyer Control of discrete parabolic equations and systems
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INTRODUCTION

We have seen that some uniform approximate/null controllability properties hold for

Oyn + Awyn = Buwn,
(Sh)
yu(0) = yon-
WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?
@ We study unconditionally stable schemes : the implicit Euler scheme and the

Crank-Nicolson scheme (in fact any #-scheme with 6 € [1/2,1]).

0 _
(Sns) &yt Y
h,d & —y"
TV et (- 0y = B e [0 - 1]

@ We show that most of the results for the semi-discrete situation holds for
fully-discrete systems uniformly in d¢ and 4 (provided §t is not too large with
respect to h, this will be made precise below).

o Finally, we show that, for a fixed 7 > 0,
Vh,5t ——= V-
5t—0

(Zheng, ’08), (Ervedoza-Valein, 10)
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THE PRIMAL OPTIMIZATION PROBLEM : Minimize the following functional

M
1 " 1
Fensr v € U s 2 S 8T + 52 1£00 I,

n=1

where L(yo,v) = Loyo + L,V is the value of y¥ for the corresponding solution of

(S ) y() = )0,
7,6 +1 _
TV A - = B



THE FULLY DISCRETE CONTROL PROBLEM

GENERAL SETTING

THE PRIMAL OPTIMIZATION PROBLEM : Minimize the following functional

M
Foatv € U 3 30T + o €000
where L(vo,v) = Loyo + L,v is the value of y* for the corresponding solution of
¥ = o,
(Sh,s) y"“&— Y A0y 4 (1 - 0)y") = B
DUAL OPTIMIZATION PROBLEM : General duality theory gives

M
1 * n 2 6 *
Jemsr:qr € En— 5 > or(Lrgn)'], + 5 llgrlli + (vo, L3ar), -

n=1

’Argmin Fepor = Ly (ArgminJe ; s;) - ‘

&,1,

ASSOCIATED (RELAXED) OBSERVABILITY INEQUALITY

M
* * nN2 | oo« 2
1£5gr ]l < Con 0t [(L£3ar)" T, +277 e ;-

n=1
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THE FULLY DISCRETE CONTROL PROBLEM

COMPUTATION OF ADJOINTS FOR THE 0-SCHEME

We defined £(yo,v) = Loyo + L,v = y¥, where ("), is given by

Sha) ¥’ = yo,
Sh,(;t n+1 _ .n
P A0 (-0 = B

A STRAIGHTFORWARD, BUT NECESSARY, COMPUTATION LEADS TO :
e Given gr € Ej, we solve the following backward 0-scheme-like

4" = qr,
M M1
q9 —q
(Sh.s0) 5 +0A,4" =0,
qn _ qn+l
T, t A0+ (1-0)g") =0, vne [1,M—1].

then, we have

Ligr =q' — 5t(1 — 0)Aug',
([':qF)n = B;l(qnv Vn € IILM]]

28/58
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THE FULLY DISCRETE CONTROL PROBLEM

THE FULLY DISCRETE DUAL PROBLEM

The dual functional that we will thus consider is the following
1 & €
* ny2 2 1 1
Jenor s qr € By — 5 ;at 1B:q'T; + 5 llarlly = (vo.a' = 311 = ) Aug')

where (¢"), is defined by

M+
=dqr,
M1
(S;:,Jt) qM 5tq + QA;,(]M =0,
qn - qn+l n n+1
T+Ah(0q +(1-6)¢"")=0, Vne[l,M—1].
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OBSERVABILITY AND ADJOINT PROBLEM

For qr € E, given, the adjoint problem associated with the time discretisation

proposed is given by
4" = qr,
M M+l
* 9 —9 —
(Sh,s1) R 041" =0,
qn _ qn-H
T +Ah(0qn +(1— 9)qn+l) =0, Vne [[1,M— lﬂ.

THEOREM (THE CASE 6 > 1/2)
Assume that the uniform discrete L-R inequality (H g) holds, choose 0 < v < 3 and

Cr > 0. For any 6t < Cyh” the following relaxed observability inequality holds
1 1 2 2 = * nm2 —C/hY 2
o' = And' || < oo D at1Biq'T; + e lgrl;-
n=1

Thus, for any such dt, there exists a full-discrete control vy, s; s.t.

M
SO ST < Csliolly, and [ < Came " ol -
n=1

F. Boyer Control of discrete parabolic equations and systems
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OBSERVABILITY AND ADJOINT PROBLEM

For qr € E, given, the adjoint problem associated with the time discretisation

proposed is given by
4" = qr,
M _ M+l
* 9 —9 —
(Sh,s1) R 041" =0,
qn _ qn+|
T +Ah(0qn + (1 — 9)q"+1) = 0, \V/I’l S [[1,M— 1ﬂ

THEOREM (THE CRANK-NICOLSON SCHEME - 6§ = 1/2)

Assume that the uniform discrete L-R inequality (H g) holds, choose 0 < v < 3 and
Cr > 0, and 6 > 0. For any 6t < Crh” and 6tp(As) < 0 the following relaxed
observability inequality holds

M
2 Y
Hq‘ — 511 — a)AthHh < Co S St[BIgTE + Cem M g2
n=1
Thus, for any such dt, there exists a full-discrete control vy, s.t.

M
S8t 1T < Cuslvolly, and [[y¥]| < Come™ " ol -

n=1

30/ 58
F. Boyer Control of discrete parabolic equations and systems



OBSERVABILITY AND ADJOINT PROBLEM

For qr € E, given, the adjoint problem associated with the time discretisation

proposed is given by
4" = qr,
M M+l
" q9 —4q
(Sh,s1) R 041" =0,
qn _ qn-H
T +Ah(0qn +(1— 9)qn+l) =0, Vne [[1,M— lﬂ.

THEOREM (THE CASE 6 > 1/2 - USEFUL STATEMENT)

Assume that the uniform discrete L-R inequality (H,g) holds and let h — ¢(h) such

that ¢(h) > /" For any 0t < Cr|log ¢(h)| the following relaxed observability
inequality holds

M
2
|l = ot = 0)40'|| < o>t 1BIG'T; + o) llar ;-
n=1

Thus, for any such dt, there exists a full-discrete control vy, s.t.

M
>0tV < Cluslboll;, and [[y*] < Coon/5(H) [l
n=1

F. Boyer Control of discrete parabolic equations and systems
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OBSERVABILITY AND ADJOINT PROBLEM

For qr € E, given, the adjoint problem associated with the time discretisation

proposed is given by
4" = qr,
M M+l
* 9 —9 —
(Sh,s1) R 041" =0,
qn _ qn-H
T +Ah(0qn +(1— 9)qn+l) =0, Vne [[1,M— lﬂ.

THEOREM (CRANK-NICOLSON - § = 1/2 - USEFUL ( ?) STATEMENT)

Assume that the uniform discrete L-R inequality (H,g) holds and let h — ¢(h) such

that ¢(h) > " For any 0t < Cr|log ¢(h)| and dtp(Ap) < & the following
relaxed observability inequality holds

ot 2 M . n 2
qu = 5 A’ H < Coos > 6t[Biq"T + (h) llgrll; -
h n=1

Thus, for any such dt, there exists a full-discrete control vy, s.t.

M
>0tV < Clus ol and [y, < Conn/6(H) [l
n=1

F. Boyer Control of discrete parabolic equations and systems
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MAIN RESULT

e We analyse the error induced by time discretisation in this problem.

THEOREM

Under the same assumptions as in previous results, the following error estimate holds

M
n p(.Ah) 3 3
T < corZ2 (14 ot p(A) ) ol -
= oo Vo) ) il

REMARKS

@ The estimate is not uniform in /4, even if we are interested in the approximate
control problem where ¢(h) = ¢ > 0.
~~ The above result is probably not optimal.

@ We have a similar second order estimate for CN provided a suitable time
interpolation operator is used.
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL

PRINCIPLE OF THE ALGORITHM

The functional we want to minimise reads (¢ is fixed or € = ¢(h))

M
1 « \n € .
Jenst: qr € Ep — 3 Z5t [(£yqr) ]]i + 3 llgrlls + (vo, £igr), -

n=1

We solve this problem by a conjugate gradient (in (Ej, (.,.),)).  (Glowinski-Lions, '94)

COMPUTATION OF THE GRADIENT
Ve nsi(qr) = LoLyqr + eqr + Loyo = (L,L, + €ld)gr + Loyo,
COMPUTATION OF THE HUM OPERATOR : for gr given

4" = qr,
qJVI _ qM+1
(Sh.s0) 5t +0Ag" =0,
q —q"" |
— + Au(0g" + (1 — )"t =0, Vne [1,M—1],
then by solving
=0,
n+1 n

(Snor) § 22+ 4,0 + (1 — 0)y') = By Big'™, Wn e [o,M — 1],
——

ot
=(Lyqr)"

and we finally have £,L;qr = y¥.

F. Boyer Control of discrete parabolic equations and systems
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL

SOME COMMENTS

@ Advantages

e Many time stepping schemes can be adapted (higher order methods like BDF2 or
RK3, RK4, etc ...).

o Any reasonable space discretization method for any space dimension can be chosen,
independently.

@ You can use some black-box direct and adjoint solver = easy implementation.

35/58
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL

SOME COMMENTS

@ Advantages
e Many time stepping schemes can be adapted (higher order methods like BDF2 or
RK3, RK4, etc ...).
o Any reasonable space discretization method for any space dimension can be chosen,
independently.
@ You can use some black-box direct and adjoint solver = easy implementation.
@ Performance issues :
e Condition number for £ > 0 (almost independent of §7) :

|LoLy +eld|| < C+e,
c
(£oLy +eld) ™| ~ e

For instance, for e = ¢(h) = h*> we have the same condition number as for the
discrete Laplace matrix ...

Recall that : Nb of iterations of CG ~ v/condition number ~ 1/4/z.
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL

SOME COMMENTS

@ Advantages
e Many time stepping schemes can be adapted (higher order methods like BDF2 or
RK3, RK4, etc ...).
o Any reasonable space discretization method for any space dimension can be chosen,
independently.
@ You can use some black-box direct and adjoint solver = easy implementation.
@ Performance issues :
e Condition number for £ > 0 (almost independent of §7) :

|LoLy +eld|| < C+e,
c
(£oLy +eld) ™| ~ e

For instance, for e = ¢(h) = h*> we have the same condition number as for the
discrete Laplace matrix ...
Recall that : Nb of iterations of CG ~ v/condition number ~ 1/4/¢.
o “Condition number” ore =0 :
@ We have seen that £,L could be not invertible (£, L, ¢, = 0%) !!
o Even if we assume that it is invertible and that the uniform observability inequality holds
l25arll, < ClILyarll,

then the condition number behaves like ~ ¢/ .

F. Boyer Control of discrete parabolic equations and systems
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL

SOME COMMENTS

@ Advantages
e Many time stepping schemes can be adapted (higher order methods like BDF2 or
RK3, RK4, etc ...).
o Any reasonable space discretization method for any space dimension can be chosen,
independently.
@ You can use some black-box direct and adjoint solver = easy implementation.
@ Performance issues :
e Condition number for £ > 0 (almost independent of §7) :

|LoLy +eld|| < C+e,
c
(£oLy +eld) ™| ~ e

For instance, for e = ¢(h) = h*> we have the same condition number as for the
discrete Laplace matrix ...
Recall that : Nb of iterations of CG ~ v/condition number ~ 1/4/¢.
o “Condition number” ore =0 :
@ We have seen that £,L could be not invertible (£, L, ¢, = 0%) !!
o Even if we assume that it is invertible and that the uniform observability inequality holds
125 arll, < ClLTarll,
then the condition number behaves like ~ /",
o Comments
@ For e = ¢(h), the problem is not so ill-posed but preconditioning is a very important and
chalenging issue.
o Computational time of each CG iteration can be large and memory consuming : use of
parareal algorithms can be useful. (Lions-Maday-Turinici, ...)

F. Boyer Control of discrete parabolic equations and systems
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By —0.192y = L3081V
T =1,yo(x) = sin(mx)".



CONVERGENCE IN SPACE

0.1

0.01

0.001

0.0001

Oy — O.Iny = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

Euler - g(h)=h?

slope 1

M=20
I_:_/: [0 computed final state [ly™|| M=80
= O 'Exact’sol. ||yvh(T)|| M=320
X 1/(NbofCGit) M=1280
! )
0.01 0.1

mesh size h
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CONVERGENCE IN SPACE

Oy — O.Iny = lj0.3,0.8[Vs
T = 1,y(x) = sin(mx)".

Euler - g(h)=h*
01
0.01 |-
0.001 -
0.0001 |
1e-05 | M=20
M=80 ———
M=320 ——
1e-06 - " M=1280
= [[] computed final state |ly™|| _
O 'Exact sol. |ly, (Ml M=5120 ———
X 1/(NbofCGit) M=20480
1e-07 L )
0.01 0.1

mesh size h

F. Boyer Control of discrete parabolic equations and systems
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CONVERGENCE IN TIME

By — 0.18%y = L10.3,0.8[V;
T =1, yo(x) = sin(mx)"°.

Euler scheme

1 —
vy, = vy adl
0.1
0.01
N= 50
N =100
N =200
0.001 : L J
0.0001 0.001 0.01 0.1 1

Time step At

39/58
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aty - Olafy — 15y = 1]0.3,0.8[V7

T =1, yo(x) = sin(mx)"’



(Fernandez-Cara — Miinch, ’11)
8y — 0.187y — Sylog"*(1+ |y]) = Loz,
T = 0.5, y0(x) = 20sin(7x).

PICARD ITERATIONS WITH RELAXATION In order to solve Ay = y, we use
Y =wW) + (1 —w)f, VE=0

e e e,



A NONLINEAR CASE

0.1

0.01

0.001

(Fernandez-Cara — Miinch, ’11)

Ay — 0.107y — Sylog"*(1 + [y]) = 1jp.2,087,
T = 0.5, y0(x) = 20sin(7x).

Euler - g(h)=h?

G © © ©

[ computed final state ||yM||

O Cost of the control x 102
% 1/(NbofCG it)

M=50
M=100
M=200
|
0.01
mesh size h

F. Boyer Control of discrete parabolic equations and systems
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(De Teresa — Gonzalez-Burgos, '08) (Ammar-Khodja — Benabdallah — Dupaix — Gonzélez-Burgos, ’09)

0.1 0 01 x 0
= << 0 o.1(z+sin(4x)))a"y > - (0 g )>y - (1101,0-8[(’“)) '

Q =0, 1]
T=1

) = (o).

sin(37x)

NUMERICAL PARAMETERS :
N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.

e e e e,



(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud *11)

0 1 (x) 0
Ay — 0.10? 10.8,0.9( ) = < > _
24 y+ <O 0 Y 110.1,0.6[(x) Y

Q =0, 1]
T=4

i) = (0.

sin(37x)

NUMERICAL PARAMETERS :
N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = K.
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(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud *11)

0 1 (x) 0
Ay —0.197 10.8,09] ) = < > :
24 y+ <O 0 Y 110.1,0.6[(x) Y

Euler - M=20
10<
)
1|
0.1 F [1 size of the target
O  cost of the control
Q=]0,1] 001 ¢ X &gl
T =4 0.001
~ (sin(mx)"° 00001
yo(x) = (. .
Sll’l(37‘l’ x) 1e-05
L N=50 ——
1e-06 | N=100 ——
N=200 ——
1e-0 . . . . . . | . )

7
le-12 le-11  le-10 1e-09 1e-08 1e-07 1e-06 le-05 0.0001 0.001
€
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(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud *11)

Oy —0.10%y + <8

1]0.8,0.9[(X)> _< 0 >
0 = 1j0.1,0.6{(x) v

Euler - M=50

10 ¢
q
1y
0.1 F [1 size of the target
O  cost of the control
Q=]0,1] 001 ¢ X &gl
T =4 0.001 F
~ (sin(mx)"° 0.0001 ¢
yo(x) = (. 3 .
sin(3mx) 1e-05 N
N=50 ——
1e-06 N=100 —
N=200 ——
1e-0 . . . . . . | . )

7
le-12 le-11  le-10 1e-09 1e-08 1e-07 1e-06 le-05 0.0001 0.001

€
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2 EQUATIONS WITH 1 CONTROL

THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud ’11)

0 1 (x) 0
Ay — 0.10? 10.8,0.9( > = ( > ,
A y+ (O 0 Y Lj0.1,0.67(x) ’

Euler - M=100
10 ¢

a
¢

0.1 size of the target

cost of the control
£ liggl

X oo

Q=]0,1] 001
—4 0.001

o) = (sin<wx>l°> o

sin(37x) 1e-05

N=20
N=50
N=100
N‘=200

le-06 4

7 I I I I I I I
le-12 le-11  le-10 1e-09 1e-08 1e-07 1e-06 1le-05 0.0001 0.001
€

le-0
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2 EQUATIONS WITH 1 CONTROL

THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud ’11)

0 1 (x) 0
Ay — 0.10? 10.8,0.9( > = ( > .
A y+ (O 0 Y Lj0.1,0.67(x) ’

Euler - M=200
10 ¢
[¢ o
1)9 3¢ ‘g\M
==
0.1 F [] size of the target
O  cost of the control
Q :]0’ 1[ 001 ¢ X &"lggl
=4 0.001
. 1 L
_ ('sin(mx) 0 0.0001
yo(x) = (", 3 .
Sln( 7rx) 1e-05 F Ne20
N=50 ——
lé:-06E N=100 ——
N=200 ——
le-0 . . . . . . )

7 I I
le-12 le-11  le-10 1e-09 1e-08 1e-07 1e-06 1le-05 0.0001 0.001
€
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2 EQUATIONS WITH 1 CONTROL

THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud ’11)

0 1 (x) 0
Ay — 0.10? 10.8,0.9( > :( >
A y+ (O 0 Y Lj0.1,0.67(x) ’

Cranck-Nicolson - M=20

0.1 size of the target
cost of the control
172,

& liggl

2
A,
>
[
xXod

0.01 ¢

0.001 F

_ Sin(m‘)lo 0.0001
w0 = (i) =
106 | o0

N=200

1e-0 I I I I I )

7 I
le-12 le-11  le-10 1e-09 1e-08 1e-07 1e-06 1le-05 0.0001 0.001
€
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud ’11)

0 1 (x) 0
Ay — 0.10? 10.8,0.9( > :( >
A y+ (O 0 Y Lj0.1,0.67(x) ’

Cranck-Nicolson - M=50

100 ¢
10;
lc’
Q :]07 1[ 0.1 ¢ [0  size of the target
O  cost of the control
0.01 ¢ X &gyl

I
le-10  1e-09 1e-08 1e-07 1le-06 le-05 0.0001 0.001
€

-07
le-12 le-11
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2 EQUATIONS WITH 1 CONTROL

THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud ’11)
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2 EQUATIONS WITH 1 CONTROL

THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier *11, Alabau-Léautaud ’11)

0 1 (x) 0
Ay — 0183 10.8,0.9( > — ( >
A y+ (O 0 Y 110.1,0.67 (%) Y
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S
3% ‘ﬁ\s
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sin(mwx
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(Ammar-Khodja - Benabdallah — Dupaix — Gonzilez-Burgos, *09)

0 0 1 0
Oy —0.18y+ [0 0 1]y= 0 V.
0 0 O 1]0_2’0.8[()6)

Q 2]07 1[
T=1
sin(7x

yo(x) = | sin(3mx)
0

)10

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.
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(Ammar-Khodja - Benabdallah — Dupaix — Gonzilez-Burgos, *09)

0 0 1 0
dy—018y+ [0 1 1]y= 0 V.
0 0 O 1]0_2’0.8[()6)

Q 2]07 1[
T=1
sin(7x

yo(x) = | sin(3mx)
0

)10

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.
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(Benabdallah — Cristofol — De Teresa — Gaitan, ’10)

, 0 0 0 Ljo.2,0.9]
Oy —0.10;y + X 0 0)y= 0 V.
x+1 0 0 0

Q =0, 1]
T=3
sin(2mx)

yo(x) = | sin(mx)
— sin(mx)

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.
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(Benabdallah — Cristofol — De Teresa — Gaitan, ’10)

, 0 0 0 1j0.2,0.9(
Oy —0.19;y + x150,0.87(x) 0 0)y= 0 V.
(x + 1)1]070,3[(36) 0 0 0

Q =0, 1]
T=3
sin(2mx)

yo(x) = [ sin(mx)
— sin(mx)

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.

e sy



(Benabdallah — Cristofol — De Teresa — Gaitan, ’10)

, 0 0 0 Ljo.5,1.0(
Oy —0.19;y + x150,0.3;(x) 0 0)y= 0 V.
(x + 1)1]070,3[(36) 0 0 0

Q =0, 1]
T=3
sin(2mx)

yo(x) = [ sin(mx)
— sin(mx)

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.
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3 EQUATIONS WITH 1 CONTROL

VARIABLE COEFFICIENTS -

KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

By —0.18%y +

Q ]01[
T =

sin( 27rx
sin(7x)
— sin(mx)

PARAMETERS :

(Benabdallah - Cristofol — De Teresa — Gaitan, *10)

0 0 0 1jo.5,1.0[
x1)9,0.3((%) 0 0)y= 0 v
(x+ 1)1]070‘3[()() 0 0 0

o. 07:
o. os:
o. 05:
o. 04:
o. 03:
o. 02:
o. 01:

o.

0.0

T T T T T T T UL
00 01 02 03 04 05 06 07 08 09 10

N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = K.
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3 EQUATIONS WITH 1 CONTROL

VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

(Benabdallah - Cristofol — De Teresa — Gaitan, *10)

, 0 0 0 1jo.5,1.0[
8[)7 — 0.18xy + x1]0,0_3[(x) 0 0 y= 0 V.
(x+ 1)1]070‘3[()() 0 0 0

Euler method
10 ¢

1k
Q =Jo, 1[
T = 0.1 F
sin( 27rx
0.01 |
sm T('.X
— sin(mx)
0.001 ¢ [0 size of the target
O  cost of the control M=200
X 1/(Nbof CGit) M=1000
0.0001 - '
0.01 0.1
mesh size h

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = K.
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(Ammar-Khodja - Benabdallah — Dupaix — Gonzilez-Burgos, *09)

| 1 0 0 1
Oy— =0 [ [0 12 0)dy| =Tly20s | 2 |V
7T 0 0 3 —1

Q=]0,1]
T=2
sin(2mx)

yo(x) = | sin(mx)
— sin(7rx)

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = h*.

e sy e



(Ammar-Khodja - Benabdallah — Dupaix — Gonzalez-Burgos, *09)

24+5x 1]0,0_2[ 0 0 1
Ay—0: | = 0 2 0 Oy | =lozes | 2 | v
m 0 0 (2—1.8xljpsp) -1
Q =0, 1]
T=2
sin(2mx)
yo(e) = [ sin(r)
— sin(7x)

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = K.

e sy



(Ammar-Kodja — Benabdallah — Dupaix — Gonzalez-Burgos, *09)

| (25 % 1206 O 0 !
Ay—0: | = 0 2 0 Oy | =lozes | 2 | v
m 0 0 (2—1.8x% ljgs0.s) -1
Q =0, 1]
T=2
sin(2mx)
yo(x) = | sin(mx)
— sin(7x)

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, ¢(h) = K.

e e e e,
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01y — 0.05Ay = 140.3,0.9[x]0.2,0.8[V

¥(0,x) = sin(27mx) sin(mx2), and yp(x) = —0.4sin(mx;) sin(27x,).
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THE END

SUMMARY

@ Analysis of uniform controllability properties with respect to ¢ and/or 4 for
semi/fully discrete problems.

Elliptic discrete Carleman estimates

e Parabolic discrete Carleman estimates

e Optimal relaxed observability inequalities.

o Error analysis in time.

@ We may use numerical simulations to investigate open problems.

PERSPECTIVES

o Extend our analysis to other cases

e Non symmetric scalar operators.
o Systems with few controls.

e Boundary control problems.

o The fully discrete problem for semilinear problems.

o Analysis for other space discretizations (Finite Volume, Finite Element, ...)

e From a numerical point of view
o A deeper understanding of the structure of the HUM operator should lead to
reasonable preconditioning methods.
o Is there more suitable solvers than standard Conjugate Gradient ?
e How to compute efficiently the control for semi-linear problems ?

That’s all folks !
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PROOF OF THE DUALITY PROPERTIES

Foove 2(0,T[U) o © /|| e+ - (7).

Jeiqr €Er 5/ 18" q(1) | de + EIIQFllé + (30,9(0))-
0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0

We set ve = B*¢., and we compute

T T
/ (&y\»s + Ay»vgyé)g dr = / (BB*‘]EJ?)E di
0 0
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0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0

We set ve = B*¢., and we compute

(v (T), @) — (0 2(0))e + / (oes 07+ A7), di = / (BB*q.,3), dr

=0
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o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0

We set ve = B*¢., and we compute

(sz (T)7qF)E + E(qF,S7éF)E = 07 VéF €E.
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o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0

We set ve = B*¢., and we compute

~ W (T) = —€qre,
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PROOF OF THE DUALITY PROPERTIES

Foove 2(0,T[U) o © /|| e+ - (7).

Jeiqr €Er 5/ 18" q(1) | de + EIIQFllé + (30,9(0))-
0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB q-(1),q(1))e dt + £(qr.e, Gr)e + (y0,4(0))e, Vg sol of (ADJ).
0
We set v. = "¢, and we compute
e (T) = —€qr e,
Moreover, using the parabolic dissipation property, we have

£ < 2¢|(30,4=(0))e| < 2¢llyollellg-(0) |
< 2ellyollellgr.clle = 2ol ellyv. (T)le,

llyve (Tl = &*
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PROOF OF THE DUALITY PROPERTIES

Foove 2(0,T[U) o © /|| e+ - (7).

Jeiqr €Er 5/ 18" q(1) | de + EIIQFllé + (30,9(0))-
0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0
We set ve = B*¢., and we compute

vy (T) = —€qr.e, and ||y, (T) [z < 2]lyol|e-

@ Choose any ¥ € L*(]0, T[, U) and y; the associated solution
at}’fr + .Ayv = 6\7,
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0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0
We set ve = B*¢., and we compute

vy (T) = —€qr.e, and ||y, (T) [z < 2]lyol|e-

@ Choose any ¥ € L*(]0, T[, U) and y; the associated solution

T T T
/ (ge, Orys + Ays)p dt = / (BV, qe)pdt = / (¥, B"qe)v dt
0 0 0 ~—~—

=ve
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o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0
We set ve = B*¢., and we compute

vy (T) = —€qr.e, and ||y, (T) [z < 2]lyol|e-

@ Choose any ¥ € L*(]0, T[, U) and y; the associated solution

(g2 o(T))e — (g (0), y0)z = / (5, ve)u dr
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PROOF OF THE DUALITY PROPERTIES

Foove 2(0,T[U) o © /|| e+ - (7).

Jeiqr €Er 5/ 18" q(1) | de + EIIEIFH% + (30,9(0))-
0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0
We set ve = B*¢., and we compute

vy (T) = —€qr.e, and ||y, (T) [z < 2]lyol|e-

@ Choose any ¥ € L*(]0, T[, U) and y; the associated solution

T
(@re o (T))e — (qrere ™y0)e = / (5. ve)u di
0
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PROOF OF THE DUALITY PROPERTIES

Foove 2(0,T[U) o © /|| e+ - (7).

Jeiqr €Er 5/ 18" q(1) | de + EIIQFllé + (30,9(0))-
0

o Existence and uniqueness of minimizers v. and gr . is standard (convexity).
o Euler-Lagrange equation for J. (notice that inf,, J. < 0)

0= / (BB*qe(1),q(t))e dt + €(qr e, ar)e + (y0,G(0))e, Vg sol of (ADJ).
0
We set ve = B*¢., and we compute

vy (T) = —€qr.e, and ||y, (T) [z < 2]lyol|e-

@ Choose any ¥ € L*(]0, T[, U) and y; the associated solution

L@@ =) = [

This the Euler-Lagrange equation for F. = v. is the minimizer of F-.
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