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ABSTRACT PARABOLIC PROBLEM
DISTRIBUTED APPROXIMATE/NULL CONTROL PROBLEMS

NOTATIONS

(S)

{
∂ty +Ay = Bv in ]0, T[,

y(0) = y0,

E and U two Hilbert spaces,

y ∈ L∞(]0, T[,E), A : D(A) ⊂ E 7→ E is some “elliptic” unbounded operator,

B : U 7→ E a bounded operator,

v ∈ L2(]0, T[,U) is the control. Its cost is ‖v‖L2(0,T;U) =
(∫ T

0 ‖v(t)‖2
U dt
) 1

2
.

APPROXIMATE CONTROL PROBLEM

For all β > 0, can we find v ∈ L2(0, T; U) s.t. the solution y satisfies ‖y(T)‖E ≤ β ?

NULL CONTROL PROBLEM

Can we find v ∈ L2(]0, T[; U) such that the solution y satisfies y(T) = 0 ?

(Fattorini-Russel, ’71) (Lebeau-Robbiano, ’95)
(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, ’08)

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, ’11)
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EXAMPLES WE HAVE IN MIND

THE 1D HEAT EQUATION

(S)


∂ty− ∂x(γ(x)∂xy) = 1ωv in (0, T)× Ω,

y = 0 on (0, T)× ∂Ω,

y(0) = y0

that is E = L2(Ω), A = −∂x(γ(x)∂x.), U = L2(Ω), B = 1ω with ω ⊂ Ω.
1D PARABOLIC SYSTEMS

(S)


∂tyi − ∂x(γi(x)∂xyi) +

∑n
j=1 αij(x)yj = 1ωi Bi(x)v in (0, T)× Ω,

yi = 0 on (0, T)× ∂Ω,

yi(0) = y0
i

y = (y1, ..., yn)
t, E = (L2(Ω))n, U = (L2(Ω))p, Bi(x) ∈M1,p(R),

B =

1ω1 B1(x)
...

1ωn Bn(x)

 .

Interesting (and much more difficult) case : p < n. Some components are controlled
thanks to the coupling terms.
THE SAME IN MULTI-D
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ABOUT THE HUM-PENALTY TECHNIQUE

HUM-PENALTY IDEA : Given ε > 0, minimize the functional

Fε : v ∈ L2(]0, T[,U) 7→ 1
2

∫ T

0
‖v(t)‖2

U dt +
1
2ε
‖yv(T)‖2

E.

DUAL PROBLEM : Find a minimizer of the dual functional

Jε : qF ∈ E 7→ 1
2

∫ T

0
‖B∗q(t)‖2

U dt +
ε

2
‖qF‖2

E + (y0, q(0))E,

where t 7→ q(t) is the solution to the backward problem

− ∂tq +A∗q = 0, q(T) = qF. (ADJ)

EXISTENCE AND DUALITY

For any ε > 0, Fε has a unique minimizer vε, Jε has a unique minimizer qF,ε and

vε(t) = B∗qε(t), ∀t ∈ [0, T],

yvε(T) = −εqF,ε.

inf
v

Fε(v) = Fε(vε) = − inf
qF

Jε(qF) = −Jε(qF,ε).

Moreover (‖yvε(T)‖E)ε is bounded.

Proof

CONVERGENCE OF THE PENALTY METHOD - NULL CONTROL PROBLEM

(S) is null-controllable from y0 at time T ⇐⇒ sup
ε

(
inf

v
Fε(v)

)
< +∞.

OBSERVABILITY

Null-controllability of (S) is equivalent to the observability inequality

‖q(0)‖2
E ≤ C2

obs

∫ T

0
‖B∗q(t)‖2

U dt, ∀q sol. of (ADJ), (OBS)

and we have ‖yvε(T)‖E ≤ Cobs‖y0‖E
√
ε, vε −−−→

ε→0
v0, in L2(0, T; U).
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ε→0

0.

⇐ is straightforward.
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E ≥ α > 0, for any ε > 0.
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α
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≤ 1

2ε
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E ≤ Fε(vε) ≤ Fε(v̂) =
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2
‖v̂‖2

L2(0,T,U) +
1
2ε
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E.
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α
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2
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION
STRATEGY 1 : EXPLICIT CONSTRUCTION OF THE CONTROL

(Lebeau-Robbiano, ’95)

A = −div(γ∇.), B = B∗ = 1ω,

Eigenfunctions : Aφk = µkφk. Stable subspaces Eµ = Span {φk, µk ≤ µ} .
NON UNIFORM PARTIAL OBSERVABILITY INEQUALITY

‖q(0)‖2
L2(Ω) ≤ C

eC
√
µ

T

∫ T

0

∫
ω

|q|2 dt dx, ∀qF ∈ Eµ.

THIS USES A SPECTRAL INEQUALITY CONCERNING EIGENFUNCTIONS OF A
‖φ‖2

L2(Ω) ≤ CeC
√
µ‖φ‖2

L2(ω), ∀φ ∈ Eµ,∀µ > 0.

GLOBAL CARLEMAN ESTIMATE FOR THE ELLIPTIC OP. P = −∂2
t +A

CONSTRUCTION OF THE CONTROL : Time slicing procedure.

t

‖y(t)‖L2

0

‖y0‖L2 •

T
•
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There exists a ϕ(t, x) > 0 such that, ∀s > 0 large enough and u(0, .) = 0, we have

s3‖esϕu‖2
L2(Q) + s‖esϕ∇u‖2

L2(Q) + s3e2sϕ(T)|u(T, .)|2L2(Ω)

≤ C
(
‖esϕPu‖2

L2(Q) + se2sϕ(T)|∇xu(T, .)|2L2(Ω) + s|esϕ(0,.)∂tu(0, .)|2L2(ω)

)
,

Apply this inequality to u =
∑
µj≤µ

αj
sinh(

√
µjt)

√
µj

φj and s = C
√
µ.
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t
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frequencies
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PROOF OF THE NULL-CONTROLLABILITY FOR THE HEAT EQUATION
STRATEGY 2 : DIRECT PROOF OF OBSERVABILITY

(Fursikov-Imanuvilov, ’96)
GLOBAL CARLEMAN ESTIMATE FOR THE PARABOLIC OP. P = −∂t +A∗

Set θ(t) = (t(T − t))−1, and Q =]0, T[×Ω.

THEOREM

There exists (another) x 7→ ϕ(x) > 0, such that for any τ > 0 large enough and any q
vanishing on ∂Ω.

‖(τθ)−
1
2 e−τθϕ∂tq‖2

L2(Q) + ‖(τθ)
1
2 e−τθϕ∇q‖2

L2(Q) + ‖(τθ)
3
2 e−τθϕq‖2

L2(Q)

≤ C
(
‖e−τθϕPq‖2

L2(Q) + ‖(τθ)
3
2 e−τθϕq‖2

L2((0,T)×ω)

)
Writing that

‖q(0)‖2
L2(Ω) ≤ C

∫ 3T/4

T/4
‖q(t)‖2

L2(Ω) dt ≤ Cτ‖(τθ)
3
2 e−τθϕq‖2

L2(Q),

≤ C′τ‖(τθ)
3
2 e−τθϕq‖2

L2((0,T)×ω),

gives the observability inequality.
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GOALS AND REFERENCES

GOAL OF THE TALK

Derivation and analysis of methods to compute (an approximation of) the HUM
control for (S).

OUR APPROACH : Combine the penalty idea with numerical approximation.

What happens when ε→ 0, h→ 0, δt→ 0 ?

OTHER APPROACHES AND REFERENCES

Seminal works (Carthel-Glowinski-Lions, ’94) (Glowinski-Lions, ’94)

Uniform controllability results for 1D heat equation (Lopez-Zuazua, ’98) (Zuazua, ’06)

Analysis of the problem by using the controllability properties of the continuous
problem

(Labbé-Trélat, ’06)

“Numerical Carleman” approach (Fernández-Cara – Münch, ’10,’11)

Minimize
{

(y, v), s.t. yv(T) = 0
}
7→
∫ T

0

∫
Ω

e2θϕ|y|2 dt dx+

∫ T

0

∫
ω

(T−t)3e2θϕ|v|2 dt dx.

Variational approach (Münch–Pedregal, ’11)
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ABSTRACT SPACE DISCRETIZATION

(Labbé-Trélat, ’06) (B.-Hubert-Le Rousseau, ’10)
For any h > 0 (supposed to be some space discretization parameter) :

(Eh, (·, ·)h) euclidean space, with norm |·|h.

Mh,Ah ∈ L(Eh,Eh) which are SDP in (Eh, (·, ·)h).

Associated scalar products and norms

〈x, y〉h = (Mhx, y)h , ‖x‖h = 〈x, x〉
1
2
h =

∣∣M 1
2
h x
∣∣

h
, ∀x, y ∈ Eh.

Another Euclidean space (Uh, [·, ·]h), with norm J·Kh.

A linear operator Bh : Uh → Eh, and B?h : Eh → Uh its adjoint.

We shall assume that there exists C > 0 such that

JB?h xKh ≤ C ‖x‖h , ∀h > 0,∀x ∈ Eh,

GENERAL PHILOSOPHY : Choose your favorite scheme !
EXAMPLES

FD : cartesian meshes,Mh = Id, Ah=the 5-point discrete Laplacian in 2D

FV : orthogonal meshes,Mh = diag(|K|)K∈T , Ah =flux balance matrix

Galerkin :Mh =mass matrix, Ah =rigidity matrix, Bh =
(∫
ω
φiφj dx

)
.
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM

(S)

{
∂ty +Ay = Bv,
y(0) = y0,

=⇒ (Sh)

{
Mh∂tyh +Ahyh = Bhvh,

yh(0) = y0,h,

SIMPLIFICATION IN THIS TALK : Mass matrixMh = Id.

PENALTY + DISCRETIZATION

• Given y0,h ∈ Eh and ε > 0, let us consider (recall that dim Eh < +∞)

Jε,h : qF ∈ Eh 7−→
1
2

∫ T

0
JB?h qh(t)K2

h dt +
ε

2
‖qF‖2

h + 〈y0,h, qh(0)〉h ,

where t 7→ qh(t) ∈ Eh is the solution to −∂tqh +A∗h qh = 0, qh(T) = qF.

•We set vε,h = B∗h qε,h(t) and t 7→ yε,h(t) the associated solution to (Sh).
For h > 0 fixed, we may have

lim
ε→0
‖yε,h(T)‖h 6= 0.

If (S) is null-controllable, we can hope that for some C > 0 and any ε > 0, there
exists h∗ε > 0

‖yε,h(T)‖h ≤ C
√
ε‖y0,h‖h, for any h < h∗ε ,

vε,h −−→
h→0

vε, in some sense,

as soon as (y0,h)h converges to y0.

13/ 58
F. Boyer Control of discrete parabolic equations and systems



ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM

(S)

{
∂ty +Ay = Bv,
y(0) = y0,

=⇒ (Sh)

{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h,

ISSUES

The semi-discrete problem (Sh) can be non controllable even if (S) is.

1

−1

1

−1

1

ω

(Kavian ’01, Zuazua ’03)
Indeed, it may exist eigenfunctions satisfiying

A∗hψh = µhψh, and B?hψh = 0.

 Non-controllability since for any vh we have

d
dt
〈y, ψh〉h + µh 〈y, ψh〉h = 0.

It is certainly a theoretical difficulty : what can we do to deal with this issue?

Is it an actual difficulty in practice since µh ∼ C
h2 ?

PENALTY + DISCRETIZATION

• Given y0,h ∈ Eh and ε > 0, let us consider (recall that dim Eh < +∞)

Jε,h : qF ∈ Eh 7−→
1
2

∫ T

0
JB?h qh(t)K2

h dt +
ε

2
‖qF‖2

h + 〈y0,h, qh(0)〉h ,

where t 7→ qh(t) ∈ Eh is the solution to −∂tqh +A∗h qh = 0, qh(T) = qF.

•We set vε,h = B∗h qε,h(t) and t 7→ yε,h(t) the associated solution to (Sh).
For h > 0 fixed, we may have

lim
ε→0
‖yε,h(T)‖h 6= 0.

If (S) is null-controllable, we can hope that for some C > 0 and any ε > 0, there
exists h∗ε > 0

‖yε,h(T)‖h ≤ C
√
ε‖y0,h‖h, for any h < h∗ε ,

vε,h −−→
h→0

vε, in some sense,

as soon as (y0,h)h converges to y0.

13/ 58
F. Boyer Control of discrete parabolic equations and systems



ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM

(S)

{
∂ty +Ay = Bv,
y(0) = y0,

=⇒ (Sh)

{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h,

PENALTY + DISCRETIZATION

• Given y0,h ∈ Eh and ε > 0, let us consider (recall that dim Eh < +∞)

Jε,h : qF ∈ Eh 7−→
1
2

∫ T

0
JB?h qh(t)K2

h dt +
ε

2
‖qF‖2

h + 〈y0,h, qh(0)〉h ,

where t 7→ qh(t) ∈ Eh is the solution to −∂tqh +A∗h qh = 0, qh(T) = qF.

•We set vε,h = B∗h qε,h(t) and t 7→ yε,h(t) the associated solution to (Sh).
For h > 0 fixed, we may have

lim
ε→0
‖yε,h(T)‖h 6= 0.

If (S) is null-controllable, we can hope that for some C > 0 and any ε > 0, there
exists h∗ε > 0

‖yε,h(T)‖h ≤ C
√
ε‖y0,h‖h, for any h < h∗ε ,

vε,h −−→
h→0

vε, in some sense,

as soon as (y0,h)h converges to y0.

13/ 58
F. Boyer Control of discrete parabolic equations and systems



ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

THE SEMI-DISCRETE PARABOLIC PROBLEM

(S)

{
∂ty +Ay = Bv,
y(0) = y0,

=⇒ (Sh)

{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h,

PENALTY + DISCRETIZATION

• Given y0,h ∈ Eh and ε > 0, let us consider (recall that dim Eh < +∞)

Jε,h : qF ∈ Eh 7−→
1
2

∫ T

0
JB?h qh(t)K2

h dt +
ε

2
‖qF‖2

h + 〈y0,h, qh(0)〉h ,

where t 7→ qh(t) ∈ Eh is the solution to −∂tqh +A∗h qh = 0, qh(T) = qF.

•We set vε,h = B∗h qε,h(t) and t 7→ yε,h(t) the associated solution to (Sh).
For h > 0 fixed, we may have

lim
ε→0
‖yε,h(T)‖h 6= 0.

More precisely∥∥∥yε,h(T)− the non-controllable part of e−TAh y0,h

∥∥∥
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ABSTRACT SEMI-DISCRETE CONTROL PROBLEMS

For h > 0 fixed, we may have

lim
ε→0
‖yε,h(T)‖h 6= 0.

We can hope that for some C > 0 and any ε > 0, there exists h∗ε > 0

‖yε,h(T)‖h ≤ C
√
ε‖y0,h‖h, for any h < h∗ε ,

vε,h −−→
h→0

vε, in some sense,

as soon as (y0,h)h converges to y0.

QUESTIONS :

1 Approximate control problem : Is it possible to give an estimate of h∗ε ?
2 Null control problem : Is it possible to choose ε > 0 as a function of h :
ε = φ(h) such that

lim
h→0
‖yφ(h),h(T)‖h = 0, ‖vφ(h),h‖L2(]0,T[,Uh) ≤ C,

and can we estimate those quantities ?
3 If many such h 7→ φ(h) exist, how do I choose one?

14/ 58
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THE MAIN ASSUMPTION
THE DISCRETE LEBEAU-ROBBIANO

(ψj,h, µj,h)j eigenelements of Ah,

Eµ,h = Span(ψj,h, µj,h ≤ µ).

ASSUMPTION (UNIFORM DISCRETE LEBEAU-ROBBIANO INEQUALITY)

There exists h0 > 0, α ∈ [0, 1), β > 0, and κ, ` > 0 such that

‖ψ‖2
h ≤ κeκµ

α

JB?hψK2
h , ∀ψ ∈ Eµ,h, ∀µ <

`

hβ
, ∀h < h0. (Hα,β)

FUNDAMENTAL REMARK

For dimension reasons, such an inequality can not be true for any µ > 0, that is for all
ψ in the whole Eh.
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THE MAIN ASSUMPTION ...
... IS KNOWN TO BE VALID IN SOME CASES

(B.-Hubert-Le Rousseau ’09,’10)
We proved that the uniform discrete Lebeau-Robbiano inequality (Hα,β) holds for

Finite difference schemes on regular Cartesian meshes in any dimension.
A scalar elliptic operator A with diagonal diffusion tensor.
Distributed control problem Bh = 1ω .
We obtain :

α = 1/2 (i.e. the constant is ∼ e
√
µ).

β = 2 (related to α and to the order of the differential operator).

MAIN TOOL : Global semi-discrete elliptic Carleman estimates

THEOREM

There exists C > 0, h0 > 0, s0 > 0, ε0 > 0 such that

s3‖esϕuh‖2
L2(]0,T∗[,Eh) + s3e2sϕ(T∗) ‖uh(T∗, .)‖h ≤ C‖esϕ(−∂2

t +Ah)uh‖2
L2(]0,T∗[,Eh)

+ Cse2sϕ(T∗) ‖∇huh(T∗)‖2
h + Csesϕ(0,.) ‖1ω∂tuh(0)‖2

h,

for all s ≥ s0, 0 < h ≤ h0 and sh ≤ ε0 , and uh ∈ C 2([0, T∗],Eh).

THEN CHOOSE uh(t) =
∑
µj≤µ αj

sinh(√µjt)√
µj

ψj,h and s ∼ √µ⇐ restriction on µ.
17/ 58
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COMMENTS

WHY FINITE DIFFERENCES ?

The proof uses discrete differential calculus :
Conjugate the operator with weights
Compute the square of the new equation.
Integrate by parts a lot of times
4th order operators appear

This computations seem difficult to perform for
Finite Volume : flux balance formalism ...
Galerkin / Finite element : variational formulation ...

WHY sh HAS TO BE SMALL ENOUGH ?

Continuous level
e−sφ∂2

x
(
esφu

)
= ∂2

x u + l.o.t.

Discrete level
e−sφAh

(
esφu

)
=
(

e−sφesφ
)
Ahu + l.o.t,

with (
f
)

i
=

fi+1 + 2fi + fi−1

4
= fi +

(
h2

4
fi+1 − 2fi + fi−1

h2

)
.

Thus, (
e−sφesφ

)
= 1 + h2∂2

x (esφ) + ... = 1 + O
(
(hs)2).
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THE SEMI-DISCRETE CONTROL PROBLEM

(Carthel-Glowinski-Lions, ’94) (Glowinski-Lions, ’94)

(Sh)

{
∂ty +Ahy = Bhv,
yh(0) = y0.

Consider the approximate control problem for (Sh) by penalty introducing

qF ∈ Eh 7→ Jε,h(qF) =
1
2

T∫
0

JB?h q(t)K2
h dt +

ε

2
‖qF‖2

h + 〈y0, q(0)〉h .

We denote by qF,ε,h its minimizer and t 7→ qε,h(t) the associated adjoint state.

THEOREM

Assume that the uniform discrete Lebeau-Robbiano inequality (Hα,β) holds, then there
exists h0 > 0 and constants C,Cobs > 0 such that :

For any h < h0, and ε > e−C/hβ , the control vε,h(t) = B?h qε,h(t) is such that

‖vε,h‖L2(0,T;Uh) ≤ Cobs, and ‖yε,h(T)‖h ≤ Cobs
√
ε.

ASSOCIATED RELAXED OBSERVABILITY INEQUALITY{
∀h < h0,∀ε > e−C/hβ

∀ε < ε0, ∀h < C′

| log ε|1/β

}
, ∀qF ∈ Eh, ‖q(0)‖2

h ≤ C2
obs

 T∫
0

JB?h q(t)K2
h dt + ε ‖qF‖2

h

 .
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TWO CASES OF INTEREST

COMPUTATION OF AN APPROXIMATE CONTROL FOR ε > 0 FIXED :
The sequence (vε,h)h converges towards the HUM-penalized control vε for (S).

COMPUTATION OF A NULL-CONTROL :
Choose a function h 7→ φ(h) such that φ(h) > e−C/hβ for any h.
The sequence (vφ(h),h)h converges, at least weakly, towards a null-control for (S) and
we have ∥∥yφ(h),h(T)

∥∥
h
≤ Cobs

√
φ(h), ∀0 < h < h0.

Recall that, in general, a null-control for (Sh) does not exist

⇒ Taking ε = 0 is meaningless.

Taking ε = φ(h) exponentially small is theoretically possible but

this is not reasonable and in fact completely useless.

In practice, choosing φ(h) = h2p for some p related to the approximation order p
of the scheme under study is sufficient.

See some numerical illustrations later
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THE UNIFORM GLOBAL SEMI-DISCRETE CARLEMAN ESTIMATE

(B. - Le Rousseau, ’12)
FINITE DIFFERENCES ON REGULAR (MULTI-D) CARTESIAN MESHES

We set θ(t) = (t + αh)−1(T − t + αh)−1.

THEOREM

For any τ > 0 large enough, there exists α > 0 and h0 > 0 such that for any function
q and any h < h0 we have

‖(τθ)
1
2 e−τθϕDhq‖2

L2(Q) + ‖(τθ)
3
2 e−τθϕq‖2

L2(Q)

≤ C
(
‖e−τθϕ(−∂t +A∗h )q‖2

L2(Q) + ‖(τθ)
3
2 e−τθϕq‖2

L2((0,T)×ω)

)
+ Ch−2(|e−τθϕq|t=0|2L2(Ω) + |e−τθϕq|t=T |2L2(Ω)

)
THEOREM (RELAXED OBSERVABILITY INEQUALITY)

There exists C > 0 s.t. for any function ah ∈ L∞(]0, T[,Eh), and any h ≤ min(h0, h1)

with h1 ∼ ‖ah‖
− 2

3
∞ , any solution of −∂tq +A∗h q + ahq = 0 satisfies

|q(0)|2L2(Ω) ≤ Cobs‖q‖2
L2((0,T)×ω) + e−

C−1
h +T‖ah‖∞ |q(T)|2L2(Ω).

with Cobs = eC(1+ 1
T +T‖ah‖∞+‖ah‖

2
3∞).
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APPLICATION TO SEMILINEAR SCALAR PARABOLIC PROBLEMS

(Fernández-Cara – Zuazua, ’00), (B. – Le Rousseau, ’12)

∂tyh +Ahyh + g(yh)yh = 1ωvh, yh(0) = y0,h,

SUBLINEAR CASE : |g(s)| ≤ M

There exists C > 0, such that for any initial data y0,h ∈ Eh, and any h < h0, there
exists a semi-discrete control vh such that

‖vh‖L2(]0,T[,Uh) ≤ C ‖y0,h‖h , and ‖yh(T)‖h ≤ Ce−
C−1

h ‖y0‖h .

SUPERLINEAR CASE : |g(s)| ≤ M ln(1 + |s|)r , r < 3/2

In 1D : For any initial data y0,h ∈ Eh and h < h0 there exists a vh such that

‖vh‖L2(]0,T[,Uh) ≤ C‖y0,h‖h
, and ‖yh(T)‖h ≤ C‖y0,h‖h

e−
C−1

h .

In multi-D : same result but with a non-uniform bound of the control

‖vh‖L2(]0,T[,Uh) ≤ C‖y0,h‖h
h−α, and ‖yh(T)‖h ≤ C‖y0,h‖h

e−
C−1

h .

N.B. : it is known that for r > 2 the problem is not null-controllable.
LINEARIZATION + FIXED-POINT PROCEDURE

(Szh ) : ∂tyh +Ahyh + g(zh)︸ ︷︷ ︸
=ah

yh = 1ωvh,

Λh : zh ∈ Some space 7−→ vhthe HUM-pen. control for (Szh )

7−→ yh ∈ the same space as zh.
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INTRODUCTION

We have seen that some uniform approximate/null controllability properties hold for

(Sh)

{
∂tyh +Ahyh = Bhvh,

yh(0) = y0,h.

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?

We study unconditionally stable schemes : the implicit Euler scheme and the
Crank-Nicolson scheme (in fact any θ-scheme with θ ∈ [1/2, 1]).

(Sh,δt)

y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1, ∀n ∈ J0,M − 1K

We show that most of the results for the semi-discrete situation holds for
fully-discrete systems uniformly in δt and h (provided δt is not too large with
respect to h, this will be made precise below).

Finally, we show that, for a fixed h > 0,

vh,δt −−−→
δt→0

vh.

(Zheng, ’08), (Ervedoza-Valein, ’10)

26/ 58
F. Boyer Control of discrete parabolic equations and systems



THE FULLY DISCRETE CONTROL PROBLEM
GENERAL SETTING

THE PRIMAL OPTIMIZATION PROBLEM : Minimize the following functional

Fε,h,δt : v ∈ UM
h 7−→

1
2

M∑
n=1

δt JvnK2
h +

1
2ε
‖L(y0, v)‖2

h ,

where L(y0, v) = L0y0 + Lvv is the value of yM for the corresponding solution of

(Sh,δt)

y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

DUAL OPTIMIZATION PROBLEM : General duality theory gives

Jε,h,δt : qF ∈ Eh 7−→
1
2

M∑
n=1

δt
q
(L∗v qF)

ny2
h

+
ε

2
‖qF‖2

h + 〈y0,L∗0 qF〉h .

Argmin Fε,h,δt = L∗v (Argmin Jε,h,δt) .

ASSOCIATED (RELAXED) OBSERVABILITY INEQUALITY

‖L∗0 qF‖2
h ≤ C2

obs

M∑
n=1

δt
q
(L∗v qF)

ny2
h
+??? ‖qF‖2

h .
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THE FULLY DISCRETE CONTROL PROBLEM
COMPUTATION OF ADJOINTS FOR THE θ-SCHEME

We defined L(y0, v) = L0y0 + Lvv = yM , where (yn)n is given by

(Sh,δt)

y0 = y0,

yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bhvn+1.

A STRAIGHTFORWARD, BUT NECESSARY, COMPUTATION LEADS TO :
• Given qF ∈ Eh, we solve the following backward θ-scheme-like

(S∗h,δt)


qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.

then, we have {
L∗0 qF = q1 − δt(1− θ)Ahq1,

(L∗v qF)n = B?h qn, ∀n ∈ J1,MK.
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THE FULLY DISCRETE CONTROL PROBLEM
THE FULLY DISCRETE DUAL PROBLEM

The dual functional that we will thus consider is the following

Jε,h,δt : qF ∈ Eh 7−→
1
2

M∑
n=1

δt JB?h qnK2
h +

ε

2
‖qF‖2

h −
〈

y0, q1 − δt(1− θ)Ahq1
〉

h
,

where (qn)n is defined by

(S∗h,δt)


qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.
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OBSERVABILITY AND ADJOINT PROBLEM

For qF ∈ Eh given, the adjoint problem associated with the time discretisation
proposed is given by

(S∗h,δt)


qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K.

THEOREM (THE CASE θ > 1/2)

Assume that the uniform discrete L-R inequality (Hα,β) holds, choose 0 < γ ≤ β and
CT > 0. For any δt ≤ CT hγ the following relaxed observability inequality holds∥∥∥q1 −Ahq1

∥∥∥2

h
≤ C2

obs

M∑
n=1

δt JB?h qnK2
h + Ce−C/hγ ‖qF‖2

h .

Thus, for any such δt, there exists a full-discrete control vh,δt s.t.

M∑
n=1

δt JvnK2
h ≤ C2

obs ‖y0‖2
h , and

∥∥∥yM
∥∥∥

h
≤ Cobse−C/hγ ‖y0‖h .

THEOREM ()

Assume that the uniform discrete L-R inequality (Hα,β) holds and let h 7→ φ(h) such
that φ(h) ≥ e−C/hβ . For any δt ≤ CT | logφ(h)| the following relaxed observability
inequality holds∥∥∥q1 −Ahq1

∥∥∥2

h
≤ C2

obs

M∑
n=1

δt JB?h qnK2
h + φ(h) ‖qF‖2

h .

Thus, for any such δt, there exists a full-discrete control vh,δt s.t.

M∑
n=1

δt JvnK2
h ≤ C2

obs ‖y0‖2
h , and

∥∥∥yM
∥∥∥

h
≤ Cobs

√
φ(h) ‖y0‖h .
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MAIN RESULT

•We analyse the error induced by time discretisation in this problem.

THEOREM

Under the same assumptions as in previous results, the following error estimate holds∥∥∥∥vh −
M∑

n=1

1(tn−1,tn)vn
∥∥∥∥

L2(]0,T[,Uh)

≤ Cδt
ρ(Ah)√
φ(h)

(
1 + δt

3
2 ρ(Ah)

3
2

)
‖y0‖h .

REMARKS

The estimate is not uniform in h, even if we are interested in the approximate
control problem where φ(h) = ε > 0.
 The above result is probably not optimal.

We have a similar second order estimate for CN provided a suitable time
interpolation operator is used.
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL
PRINCIPLE OF THE ALGORITHM

The functional we want to minimise reads (ε is fixed or ε = φ(h))

Jε,h,δt : qF ∈ Eh 7−→
1
2

M∑
n=1

δt
q
(L∗v qF)

ny2
h

+
ε

2
‖qF‖2

h + 〈y0,L∗0 qF〉h .

We solve this problem by a conjugate gradient (in (Eh, 〈., .〉h)). (Glowinski-Lions, ’94)
COMPUTATION OF THE GRADIENT

∇Jε,h,δt(qF) = LvL∗v qF + εqF + L0y0 = (LvL∗v + εId)qF + L0y0,

COMPUTATION OF THE HUM OPERATOR : for qF given

(S∗h,δt)


qM+1 = qF,

qM − qM+1

δt
+ θAhqM = 0,

qn − qn+1

δt
+Ah(θqn + (1− θ)qn+1) = 0, ∀n ∈ J1,M − 1K,

then by solving

(Sh,δt)


y0 = 0,
yn+1 − yn

δt
+Ah(θyn+1 + (1− θ)yn) = Bh B?h qn+1︸ ︷︷ ︸

=(L∗v qF)n

, ∀n ∈ J0,M − 1K,

and we finally have LvL∗v qF = yM .
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PRACTICAL COMPUTATION OF THE FULL DISCRETE CONTROL
SOME COMMENTS

Advantages
Many time stepping schemes can be adapted (higher order methods like BDF2 or
RK3, RK4, etc ...).
Any reasonable space discretization method for any space dimension can be chosen,
independently.
You can use some black-box direct and adjoint solver⇒ easy implementation.

Performance issues :
Condition number for ε > 0 (almost independent of δt) :

‖LvL∗v + εId‖ ≤ C + ε,

‖(LvL∗v + εId)−1‖ ∼
C
ε
.

For instance, for ε = φ(h) = h2 we have the same condition number as for the
discrete Laplace matrix ...

Recall that : Nb of iterations of CG ∼
√

condition number ∼ 1/
√
ε.

“Condition number” or ε = 0 :
We have seen that LvL∗v could be not invertible (LvL∗v ψh = 0∗) ! !
Even if we assume that it is invertible and that the uniform observability inequality holds∥∥L∗0 qF

∥∥
h ≤ C‖L∗v qF‖,

then the condition number behaves like∼ eC/hp
.

Comments
For ε = φ(h), the problem is not so ill-posed but preconditioning is a very important and
chalenging issue.
Computational time of each CG iteration can be large and memory consuming : use of
parareal algorithms can be useful. (Lions-Maday-Turinici, ...)
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1

mesh size h

Euler - φ(h)=h2

computed final state ||yM||
’Exact’ sol.  ||yvh

(T)||

1 / (Nb of CG it)

slope 1
M=20

M=80

M=320

M=1280
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CONVERGENCE IN SPACE

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1

mesh size h

Euler - φ(h)=h4

slope 2

computed final state ||yM||
’Exact’ sol. ||yvh

(T)||
1 / (Nb of CG it.)

M=20

M=80

M=320

M=1280

M=5120

M=20480
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CONVERGENCE IN TIME

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.

 0.001

 0.01

 0.1

 1

 0.0001  0.001  0.01  0.1  1

||vh - vh,∆t||

Time step ∆t

Euler scheme

slope 1

φ(h)=h
2

φ(h)=h
4

N =  50

N = 100

N = 200
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WITH UNSTABLE MODES

∂ty− 0.1∂2
x y− 1.5y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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A NONLINEAR CASE

(Fernández-Cara – Münch, ’11)

∂ty− 0.1∂2
x y− 5y log1.4(1 + |y|) = 1]0.2,0.8[v,

T = 0.5, y0(x) = 20 sin(πx).

PICARD ITERATIONS WITH RELAXATION In order to solve Λy = y, we use

yk+1 = ω(Λyk) + (1− ω)yk, ∀k ≥ 0
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A NONLINEAR CASE

(Fernández-Cara – Münch, ’11)

∂ty− 0.1∂2
x y− 5y log1.4(1 + |y|) = 1]0.2,0.8[v,

T = 0.5, y0(x) = 20 sin(πx).

 0.001

 0.01

 0.1

 1

 0.01

mesh size h

Euler - φ(h)=h2

slope 1

computed final state ||yM||

Cost of the control x 10-2

1 / (Nb of CG it)

M=50

M=100

M=200

PICARD ITERATIONS WITH RELAXATION In order to solve Λy = y, we use
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS INSIDE THE COUPLING ZONE

(De Teresa – González-Burgos, ’08) (Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty− ∂x

((
0.1 0
0 0.1(2 + sin(4x))

)
∂xy
)

+

(
0 1]0.5,0.8[(x)
0 0

)
y =

(
0

1]0.2,0.8[(x)

)
v.

Ω =]0, 1[

T = 1

y0(x) =

(
sin(πx)10

sin(3πx)

)
.

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’11, Alabau-Léautaud ’11)

∂ty− 0.1∂2
x y +

(
0 1]0.8,0.9[(x)
0 0

)
y =

(
0

1]0.1,0.6[(x)

)
v.

Ω =]0, 1[

T = 4

y0(x) =

(
sin(πx)10

sin(3πx)

)
.

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’11, Alabau-Léautaud ’11)

∂ty− 0.1∂2
x y +

(
0 1]0.8,0.9[(x)
0 0

)
y =

(
0

1]0.1,0.6[(x)

)
v.

Ω =]0, 1[

T = 4

y0(x) =

(
sin(πx)10

sin(3πx)

)
.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1e-12  1e-11  1e-10  1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

ε

Euler - M=20

slope 1/2

size of the target

cost of the control

ε1/2
||qF||

 N=20 

 N=50 

 N=100 

 N=200 

NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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NUMERICAL PARAMETERS :
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE
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||qF||
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NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.

44/ 58
F. Boyer Control of discrete parabolic equations and systems



2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’11, Alabau-Léautaud ’11)
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NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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2 EQUATIONS WITH 1 CONTROL
THE CONTROL ACTS OUTSIDE THE COUPLING ZONE

(De Teresa-Kavian ’09, De Teresa-Rosier ’11, Alabau-Léautaud ’11)
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NUMERICAL PARAMETERS :

N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
THE KALMAN CONDITION IS NOT SATISFIED

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty− 0.1∂2
x y +

0 0 1
0 0 1
0 0 0

 y =

 0
0

1]0.2,0.8[(x)

 v.

Ω =]0, 1[

T = 1

y0(x) =

sin(πx)10

sin(3πx)
0

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
THE KALMAN CONDITION IS SATISFIED

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty− 0.1∂2
x y +

0 0 1
0 1 1
0 0 0

 y =

 0
0

1]0.2,0.8[(x)

 v.

Ω =]0, 1[

T = 1

y0(x) =

sin(πx)10

sin(3πx)
0

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

 0 0 0
x 0 0

x + 1 0 0

 y =

1]0.2,0.9[
0
0

 v.

Ω =]0, 1[

T = 3

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 1/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

 0 0 0
x1]0,0.8[(x) 0 0

(x + 1)1]0,0.8[(x) 0 0

 y =

1]0.2,0.9[
0
0

 v.

Ω =]0, 1[

T = 3

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

 0 0 0
x1]0,0.3[(x) 0 0

(x + 1)1]0,0.3[(x) 0 0

 y =

1]0.5,1.0[
0
0

 v.

Ω =]0, 1[

T = 3

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)
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0
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Ω =]0, 1[

T = 3

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .
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−0.02

−0.01

0.00
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ZOOM

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.

49/ 58
F. Boyer Control of discrete parabolic equations and systems



3 EQUATIONS WITH 1 CONTROL
VARIABLE COEFFICIENTS - KALMAN NON SATISFIED - LOCALISED COUPLING 2/2

(Benabdallah – Cristofol – De Teresa – Gaitan, ’10)

∂ty− 0.1∂2
x y +

 0 0 0
x1]0,0.3[(x) 0 0

(x + 1)1]0,0.3[(x) 0 0

 y =

1]0.5,1.0[
0
0

 v.

Ω =]0, 1[

T = 3

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01  0.1

mesh size h

Euler method

size of the target

cost of the control

1 / (Nb of CG it)
 M=200 

 M=1000 

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
NO COUPLING - DIFFERENT CONSTANT DIFFUSION COEFFICIENTS

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty−
1
π2 ∂x

((
1 0 0
0 1.2 0
0 0 3

)
∂xy

)
= 1]0.2,0.8[

 1
2
−1

 v.

Ω =]0, 1[

T = 2

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.

50/ 58
F. Boyer Control of discrete parabolic equations and systems



3 EQUATIONS WITH 1 CONTROL
NO COUPLING - DIFFUSION COEFFICIENTS ARE DIFFERENT OUTSIDE ω

(Ammar-Khodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty−∂x

 1
π2

2 + 5× 1]0,0.2[ 0 0
0 2 0
0 0 (2− 1.8× 1]0.8,1[)

 ∂xy

 = 1]0.2,0.8[

 1
2
−1

 v.

Ω =]0, 1[

T = 2

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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3 EQUATIONS WITH 1 CONTROL
NO COUPLING - DIFFUSION COEFFICIENTS ARE DIFFERENT INSIDE ω

(Ammar-Kodja – Benabdallah – Dupaix – González-Burgos, ’09)

∂ty−∂x

 1
π2

2 + 5× 1]0.2,0.6[ 0 0
0 2 0
0 0 (2− 1.8× 1]0.5,0.8[)

 ∂xy

 = 1]0.2,0.8[

 1
2
−1

 v.

Ω =]0, 1[

T = 2

y0(x) =

 sin(2πx)
sin(πx)
− sin(πx)

 .

PARAMETERS : N = 100, uniform mesh, Euler scheme M = 200, φ(h) = h4.
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OUTLINE

1 INTRODUCTION

2 THE SEMI-DISCRETE CONTROL PROBLEM
Abstract framework
Analysis of the numerical method - LR approach
Analysis of the numerical method - FI approach

3 THE FULLY-DISCRETE CONTROL PROBLEM (LR)
Time discretization schemes
Error analysis in time
Practical considerations

4 SOME NUMERICAL RESULTS
1D scalar problems
1D systems
2D results

5 CONCLUSIONS / PERSPECTIVES
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THE 2D HEAT EQUATION
A CONTROL TO THE TRAJECTORIES EXAMPLE

∂ty− 0.05∆y = 1]0.3,0.9[×]0.2,0.8[v,

y(0, x) = sin(2πx1) sin(πx2), and yF(x) = −0.4 sin(πx1) sin(2πx2).
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A 2D SYSTEM OF 3 EQUATIONS

∂ty−

1/π2 0 0
0 1/π2 0
0 0 2/π2

∆y +

1 0 0
2 −2 −1
2 −1 −3

 y =

1ω
0
0

 v,
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THE END

SUMMARY

Analysis of uniform controllability properties with respect to δt and/or h for
semi/fully discrete problems.

Elliptic discrete Carleman estimates
Parabolic discrete Carleman estimates
Optimal relaxed observability inequalities.
Error analysis in time.

We may use numerical simulations to investigate open problems.

PERSPECTIVES

Extend our analysis to other cases
Non symmetric scalar operators.
Systems with few controls.
Boundary control problems.
The fully discrete problem for semilinear problems.
Analysis for other space discretizations (Finite Volume, Finite Element, ...)

From a numerical point of view
A deeper understanding of the structure of the HUM operator should lead to
reasonable preconditioning methods.
Is there more suitable solvers than standard Conjugate Gradient ?
How to compute efficiently the control for semi-linear problems ?

That’s all folks !
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PROOF OF THE DUALITY PROPERTIES

Fε : v ∈ L2(]0, T[,U) 7→ 1
2

∫ T

0
‖v(t)‖2

U dt +
1
2ε
‖yv(T)‖2

E.

Jε : qF ∈ E 7→ 1
2

∫ T

0
‖B∗q(t)‖2

U dt +
ε

2
‖qF‖2

E + (y0, q(0))E.

Existence and uniqueness of minimizers vε and qF,ε is standard (convexity).
Euler-Lagrange equation for Jε (notice that infqF Jε ≤ 0)

0 =

∫ T

0
(BB∗qε(t), q̃(t))E dt + ε(qF,ε, q̃F)E + (y0, q̃(0))E, ∀q̃ sol of (ADJ).

We set vε = B∗qε, and we compute∫ T

0
(∂tyvε +Ayvε , q̃)E dt =

∫ T

0
(BB∗qε, q̃)E dt

 yvε(T) = −εqF,ε,

Choose any ṽ ∈ L2(]0, T[,U) and yṽ the associated solution
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0 =
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0
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We set vε = B∗qε, and we compute

 yvε(T) = −εqF,ε,

Moreover, using the parabolic dissipation property, we have

‖yvε(T)‖2
E = ε2‖qF,ε‖2

E ≤ 2ε|(y0, qε(0))E| ≤ 2ε‖y0‖E‖qε(0)‖E
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PROOF OF THE DUALITY PROPERTIES
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Existence and uniqueness of minimizers vε and qF,ε is standard (convexity).
Euler-Lagrange equation for Jε (notice that infqF Jε ≤ 0)

0 =

∫ T

0
(BB∗qε(t), q̃(t))E dt + ε(qF,ε, q̃F)E + (y0, q̃(0))E, ∀q̃ sol of (ADJ).

We set vε = B∗qε, and we compute

 yvε(T) = −εqF,ε, and ‖yvε(T)‖E ≤ 2‖y0‖E.

Choose any ṽ ∈ L2(]0, T[,U) and yṽ the associated solution

∂tyṽ +Ayṽ = Bṽ,
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Existence and uniqueness of minimizers vε and qF,ε is standard (convexity).
Euler-Lagrange equation for Jε (notice that infqF Jε ≤ 0)

0 =

∫ T

0
(BB∗qε(t), q̃(t))E dt + ε(qF,ε, q̃F)E + (y0, q̃(0))E, ∀q̃ sol of (ADJ).

We set vε = B∗qε, and we compute

 yvε(T) = −εqF,ε, and ‖yvε(T)‖E ≤ 2‖y0‖E.

Choose any ṽ ∈ L2(]0, T[,U) and yṽ the associated solution∫ T

0
(qε, ∂tyṽ +Ayṽ)E dt =

∫ T

0
(Bṽ, qε)E dt =

∫ T

0
(ṽ,B∗qε︸ ︷︷ ︸

=vε

)U dt
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Choose any ṽ ∈ L2(]0, T[,U) and yṽ the associated solution

(qF,ε, yṽ(T))E − (qF,ε, e−TAy0)E =

∫ T

0
(ṽ, vε)U dt
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Euler-Lagrange equation for Jε (notice that infqF Jε ≤ 0)

0 =

∫ T

0
(BB∗qε(t), q̃(t))E dt + ε(qF,ε, q̃F)E + (y0, q̃(0))E, ∀q̃ sol of (ADJ).

We set vε = B∗qε, and we compute

 yvε(T) = −εqF,ε, and ‖yvε(T)‖E ≤ 2‖y0‖E.

Choose any ṽ ∈ L2(]0, T[,U) and yṽ the associated solution

−1
ε

(
yvε(T), yṽ(T)− e−TAy0

)
E

=

∫ T

0
(ṽ, vε)U dt.

This the Euler-Lagrange equation for Fε⇒ vε is the minimizer of Fε.
Back
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