About the HUM method and its application in particular to the numerical approximation of controls of PDEs

Franck BOYER

I2M, Aix-Marseille Université

Collaborations : F. Hubert, J. Le Rousseau, G. Olive

Toulouse, Février 2015

1 INTRODUCTION

Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

S CONCLUSIONS / PERSPECTIVES

1 INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

ABSTRACT PARABOLIC CONTROL PROBLEM

- Two Hilbert spaces : the state space $(E, \langle ., . \rangle)$ and the control space (U, [., .]).
- $\mathcal{A}: D(\mathcal{A}) \subset E \mapsto E$ is some *elliptic* operator such that $-\mathcal{A}$ generates an analytic semigroup in *E*.
- $\mathcal{B}: U \mapsto D(\mathcal{A}^*)'$ the control (bounded) operator, \mathcal{B}^* its adjoint.
- COMPATIBILITY ASSUMPTION : we assume that

$$\left(t\mapsto \mathcal{B}^{\star}e^{-t\mathcal{A}^{\star}}\psi\right)\in L^{2}(0,T;U), \text{ and } \left[\left[\mathcal{B}^{\star}e^{-\mathcal{A}^{\star}}\psi\right]_{L^{2}(0,T;U)}\leq C\left\|\psi\right\|, \ \forall\psi\in E.$$

Our controlled parabolic problem is

(S)
$$\begin{cases} \partial_t y + \mathcal{A}y = \mathcal{B}v & \text{in }]0, T[, \\ y(0) = y_0, \end{cases}$$

Here, $y_0 \in E$ is the initial data, $v \in L^2(]0, \overline{T[, U)}$ is the control we are looking for.

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any $y_0 \in E$ and $v \in L^2(0,T;U)$, there exists a unique $y = y_{v,y_0} \in C^0([0,T],E)$ such that

$$\langle y(t),\psi\rangle - \langle y_0,e^{-t\mathcal{A}^*}\psi\rangle = \int_0^t \left[v(s),\mathcal{B}^*e^{-(t-s)\mathcal{A}^*}\psi\right] ds, \ \forall t\in[0,T],\forall\psi\in E.$$

NOTATION : $\left(\mathcal{L}_T(v|y_0) \stackrel{\text{def}}{=} y_{v,y_0}(T)\right)$.

(S)
$$\begin{cases} \partial_t y + \mathcal{A} y = \mathcal{B} v & \text{in }]0, T[, \\ y(0) = y_0. \end{cases}$$

For a given (fixed) control time T > 0 and any $\delta \ge 0$, we set

$$\operatorname{Adm}(y_0, \delta) \stackrel{\text{def}}{=} \left\{ v \in L^2(0, T; U), \text{ s.t. } \left\| \mathcal{L}_T(v | y_0) \right\| \leq \delta \right\}.$$

APPROXIMATE CONTROL PROBLEM FROM THE INITIAL DATA y₀

Do we have

$$\mathrm{Adm}(y_0,\delta) \neq \emptyset, \ \forall \delta > 0 ?$$

NULL-CONTROL PROBLEM FROM THE INITIAL DATA y₀

Do we have

$$\mathrm{Adm}(y_0,0) \neq \emptyset ?$$

(Fattorini-Russel, '71) (Lebeau-Robbiano, '95)

(Fursikov-Imanuvilov, '96) (Alessandrini-Escauriaza, '08)

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, '11)

INTRODUCTION

Some facts about the Hilbert Uniqueness Method and its penalized version

- **3** THE HUM APPROACH IN THE DISCRETE FRAMEWORK
 - The semi-discrete setting
 - The fully discrete setting
 - Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

(Lions, '88) (Glowinski–Lions, '90s)

IDEAS

- To formulate control problems as constrainted optimisation problems.
- To write the associated **unconstrainted** dual optimisation problem.
- To find conditions for the solvability of the dual problem and prove that there are satisfied.

COST OF THE CONTROL We set

$$F(v) \stackrel{\text{\tiny def}}{=} \frac{1}{2} \int_0^T \left[\! \left[v(t) \right] \! \right]^2 dt, \quad \forall v \in L^2(0,T;U),$$

and for any $\delta \ge 0$, we define (it it exists !), v^{δ} to be the unique minimiser

$$F(v^{\delta}) = \inf_{v \in \operatorname{Adm}(v_0, \delta)} F(v).$$
 (P^{\delta})

DUAL PROBLEMS

- The dual pb of (P^0) is not coercive in the natural space *E*. We need to introduce a **big** abstract space obtained as the completion of *E* with respect to a suitable norm.
- The dual pb of $(P^{\delta}), \delta > 0$ is coercive in *E* but is not smooth.

THE PENALIZED HUM

PRIMAL PROBLEM

$$\left(F_{\varepsilon}(v) \stackrel{\text{\tiny def}}{=} \frac{1}{2} \int_{0}^{T} \left[v(t) \right]^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v|y_{0}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U),$$

we consider the following problem : to find $v_{\varepsilon} \in L^2(0,T;U)$ such that

$$F_{\varepsilon}(v_{\varepsilon}) = \inf_{v \in L^2(0,T;U)} F_{\varepsilon}(v).$$
 (P_{\varepsilon})

PROPOSITION

For any $\varepsilon > 0$, the functional F_{ε} is strictly convex, continuous and coercive. Therefore, it admits a unique minimiser $v_{\varepsilon} \in L^2(0, T; U)$.

DUAL PROBLEM

(Fenchel-Rockafellar duality theorem)

$$J_{\varepsilon}(q^{F}) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[\left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^{F} \right] \right]^{2} dt + \frac{\varepsilon}{2} \left\| q^{F} \right\|^{2} + \left\langle y_{0}, e^{-T\mathcal{A}^{\star}} q^{F} \right\rangle, \quad \forall q^{F} \in E.$$

PROPOSITION

For any $\varepsilon > 0$, the functional J_{ε} is strictly convex, continuous and coercive. Therefore, it admits a unique minimiser $q_{\varepsilon}^F \in E$.

REMARK

We do not require any particular assumption on the operators A and B. In particular we do not assume that the PDE (S) is (or is not) controllable.

PROPOSITION (DUALITY PROPERTIES PRECISED)

For any $\varepsilon > 0$, the minimisers v_{ε} and q_{ε}^{F} of the functionals F_{ε} and J_{ε} respectively, are related through the formulas

$$v_{\varepsilon}(t) = \mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q_{\varepsilon}^{F}, \text{ for a.e. } t \in]0, T[,$$

and

$$\mathcal{L}_{T}(v_{\varepsilon}|y_{0}) = y_{v_{\varepsilon},y_{0}}(T) = -\varepsilon q_{\varepsilon}^{F}.$$

As a consequence, we have

$$\inf_{\mathcal{P}(0,T;U)} F_{\varepsilon} = F_{\varepsilon}(v_{\varepsilon}) = -J_{\varepsilon}(q_{\varepsilon}^{F}) = -\inf_{E} J_{\varepsilon}.$$

(**B., '13**)

THEOREM

O *Problem (S) is approximately controllable from the initial data y₀ if and only if*

$$\mathcal{L}_T(v_{\varepsilon}|y_0) = y_{v_{\varepsilon},y_0}(T) \xrightarrow[\varepsilon \to 0]{} 0.$$

2 Problem (S) is null-controllable from the initial data y_0 if and only if

$$M_{y_0}^2 \stackrel{ ext{def}}{=} 2 \sup_{arepsilon>0} \left(\inf_{L^2(0,T;U)} F_arepsilon
ight) = 2 \sup_{arepsilon>0} F_arepsilon(v_arepsilon) < +\infty.$$

IN THE NULL-CONTROLLABLE CASE

$$\llbracket v_{\varepsilon} \rrbracket_{L^2(0,T;U)} \leq M_{y_0}, \text{ and } \Vert \mathcal{L}_T (v_{\varepsilon} | y_0) \Vert \leq M_{y_0} \sqrt{\varepsilon}.$$

Moreover we have $\llbracket v^0 \rrbracket_{L^2(0,T;U)} = M_{y_0}$ and

$$v_{\varepsilon} \xrightarrow[\varepsilon \to 0]{\varepsilon \to 0} v^0$$
, strongly in $L^2(0, T; U)$, and

$$egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig|y_0ig) \ \hline & \sqrt{arepsilon} \ \hline & \sqrt{arepsilon} \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig|y_0ig) \ \hline & arepsilon \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig) \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig) \ \hline & arepsilon \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig) \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig) \ \hline & arepsilon \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}ig(v_arepsilon ig) \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}}iggned \ \end{array} & egin{aligned} & \mathcal{L}_{{\scriptscriptstyle T}$$

where v^0 is the unique HUM null-control (that is the one of minimal L^2 -norm).

NON OBSERVABLE ADJOINT STATES AND HUM

Non observable adjoint states :
$$\left[Q_F \stackrel{\text{def}}{=} \left\{ q^F \in E, \text{ s.t. } \mathcal{B}^* e^{-t\mathcal{A}^*} q^F = 0, \forall t \ge 0 \right\}.$$

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any $y_0 \in E$, the penalised-HUM sequence of controls $(v_{\varepsilon})_{\varepsilon}$ satisfies

$$\mathcal{L}_{T}(v_{\varepsilon}|y_{0}) \xrightarrow[\varepsilon \to 0]{} \mathbb{P}_{Q_{F}}\left(e^{-T\mathcal{A}}y_{0}\right).$$

PROPOSITION (SELFADJOINT CASE)

Assume that \mathcal{A} is selfadjoint, and set $Y_T \stackrel{\text{def}}{=} e^{-T\mathcal{A}^*} Q_F e^{-T\mathcal{A}} Q_F$ then

$$\mathbb{P}_{Q_F}\left(e^{-T\mathcal{A}}y_0\right)=e^{-T\mathcal{A}}\left(\mathbb{P}_{\overline{Y_T}}y_0\right).$$

Therefore, the system is approximately controllable from y_0 if and only if $\mathbb{P}_{\overline{Y_T}}y_0 = 0$.

- The set of (approximately) controllable initial data is Y_T^{\perp} .
- For any $y_0 \in Y_T$ we have

$$u_{\varepsilon} = 0, \quad \forall \varepsilon > 0,$$

$$\operatorname{Adm}(y_0, \delta) \neq \emptyset \quad \Leftrightarrow \quad \delta \ge \left\| e^{-T\mathcal{A}} y_0 \right\|.$$

Non observable adjoint states :
$$\left[Q_F \stackrel{\text{def}}{=} \left\{ q^F \in E, \text{ s.t. } \mathcal{B}^{\star} e^{-t\mathcal{A}^{\star}} q^F = 0, \forall t \geq 0 \right\}.$$

THEOREM (CONVERGENCE OF THE PENALISED HUM FINAL STATE)

For any $y_0 \in E$, the penalised-HUM sequence of controls $(v_{\varepsilon})_{\varepsilon}$ satisfies

$$\mathcal{L}_{T}(v_{\varepsilon}|y_{0}) \xrightarrow[\varepsilon \to 0]{} \mathbb{P}_{Q_{F}}\left(e^{-T\mathcal{A}}y_{0}\right).$$

COROLLARY (APP. CONTROLLABILITY AND UNIQUE CONTINUATION)

The system (S) is approximately controllable from the initial data y_0 if and only if

$$\left[\mathcal{B}^{\star}e^{-(T-t)\mathcal{A}^{\star}}q^{F}=0, \quad \forall t\in[0,T]\right]\Longrightarrow\left\langle y_{0},e^{-T\mathcal{A}^{\star}}q^{F}\right\rangle=0.$$
(UC)

PROPOSITION (APP. CONTROLLABILITY AND WEAK OBSERVABILITY) *The property* (UC) *is equivalent to the following* **weak observability inequality**

$$\left|\left\langle y_{0}, e^{-T\mathcal{A}^{\star}}q^{F}\right\rangle\right|^{2} \leq \frac{C_{\varepsilon,y_{0}}^{2}}{\left[\!\left[\mathcal{B}^{\star}e^{-(T-.)\mathcal{A}^{\star}}q^{F}\right]\!\right]_{L^{2}(0,T;U)}^{2}} + \varepsilon \left\|q^{F}\right\|^{2}, \ \forall q^{F} \in E, \forall \varepsilon > 0.$$

THEOREM (NULL-CONTROLLABILITY AND OBSERVABILITY)

Problem (S) is null-controllable from y_0 if and only if, there exists $\widetilde{M}_{y_0} \ge 0$ such that

$$\left|\left\langle y_0, e^{-T\mathcal{A}^{\star}} q^F \right\rangle\right|^2 \leq \widetilde{M}_{y_0}^2 \left[\!\left[\mathcal{B}^{\star} e^{-(T-.)\mathcal{A}^{\star}} q^F\right]\!\right]_{L^2(0,T;U)}^2, \ \forall q^F \in E.$$

Moreover, the best constant \widetilde{M}_{y_0} is equal to the cost of the HUM control $[v^0]_{L^2(0,T;U)}$.

THE PENALIZED HUM APPROACH ...

For each $\varepsilon > 0$, let $y_{0,\varepsilon} \in E$ such that $(y_{0,\varepsilon})_{\varepsilon}$ is bounded in *E* and

$$e^{-T\mathcal{A}}y_{0,\varepsilon}\xrightarrow[\varepsilon\to 0]{\varepsilon\to 0}e^{-TA}y_0.$$

ASSOCIATED HUM FUNCTIONALS

$$\begin{split} \tilde{F}_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[v(t) \right]^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v | \mathbf{y}_{0,\varepsilon}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U), \\ \tilde{J}_{\varepsilon}(q^{F}) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[\left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^{F} \right]^{2} dt + \frac{\varepsilon}{2} \left\| q^{F} \right\|^{2} + \left\langle \mathbf{y}_{0,\varepsilon}, e^{-T\mathcal{A}^{\star}} q^{F} \right\rangle, \quad \forall q^{F} \in E. \end{split}$$

We denote by \tilde{v}_{ε} the unique minimiser of \tilde{F}_{ε} . CONTROLLABILITY CONDITIONS

(S) is app. cont. from
$$y_0 \iff \mathcal{L}_{\mathcal{T}}(\tilde{v}_{\varepsilon} | y_{0,\varepsilon}) \xrightarrow[\varepsilon \to 0]{} 0$$
.

 $\sup_{\varepsilon>0} \left(\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} \right) < +\infty \Longrightarrow (\mathbf{S}) \text{ is null-controllable from } y_0.$

(S) is null-controllable from
$$y_0$$

$$\sup_{\varepsilon>0} \frac{1}{\varepsilon} \left\| e^{-T\mathcal{A}}(y_0 - y_{0,\varepsilon}) \right\|^2 < +\infty \} \Longrightarrow \sup_{\varepsilon>0} \left(\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} \right) < +\infty.$$

THE PENALIZED HUM APPROACH ...

For each $\varepsilon > 0$, let $y_{0,\varepsilon} \in E$ such that $(y_{0,\varepsilon})_{\varepsilon}$ is bounded in *E* and

$$e^{-T\mathcal{A}}y_{0,\varepsilon}\xrightarrow[\varepsilon\to 0]{\varepsilon\to 0}e^{-TA}y_0.$$

ASSOCIATED HUM FUNCTIONALS

$$\begin{split} \tilde{F}_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[v(t) \right]^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v | \mathbf{y}_{\mathbf{0},\varepsilon}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U), \\ \tilde{J}_{\varepsilon}(q^{F}) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[\left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^{F} \right] \right]^{2} dt + \frac{\varepsilon}{2} \left\| q^{F} \right\|^{2} + \left\langle \mathbf{y}_{\mathbf{0},\varepsilon}, e^{-T\mathcal{A}^{\star}} q^{F} \right\rangle, \quad \forall q^{F} \in E. \end{split}$$

We denote by \tilde{v}_{ε} the unique minimiser of \tilde{F}_{ε} . CONTROLLABILITY CONDITIONS

(S) is null-controllable from
$$y_0$$

$$\sup_{\varepsilon > 0} \frac{1}{\varepsilon} \left\| e^{-T\mathcal{A}}(y_0 - y_{0,\varepsilon}) \right\|^2 < +\infty \right\} \Longrightarrow \sup_{\varepsilon > 0} \left(\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} \right) < +\infty.$$

DISCUSSION : Assume $\mathcal{A} = \mathcal{A}^*$ and $Q_F \neq \{0\}$, then take $y_{0,\varepsilon} = \varepsilon^{\alpha} z, z \in e^{-T\mathcal{A}^*} Q_F$

$$\inf_{L^2(0,T;U)} \tilde{F}_{\varepsilon} = \frac{\varepsilon^{2\alpha-1}}{2} \left\| e^{-T\mathcal{A}} z \right\|^2 \xrightarrow[\varepsilon \to 0]{} +\infty, \text{ as soon as } \alpha < 1/2.$$

 $y_{0,\varepsilon} \xrightarrow[\varepsilon \to 0]{} 0$ \leftarrow this initial data is indeed null-controllable !!.

THE PENALIZED HUM APPROACH ...

For each $\varepsilon > 0$, let $y_{0,\varepsilon} \in E$ such that $(y_{0,\varepsilon})_{\varepsilon}$ is bounded in *E* and

$$e^{-T\mathcal{A}}y_{0,\varepsilon}\xrightarrow[\varepsilon\to 0]{\varepsilon\to 0}e^{-TA}y_0.$$

ASSOCIATED HUM FUNCTIONALS

$$\tilde{F}_{\varepsilon}(v) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[v(t) \right]^{2} dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}(v | \mathbf{y}_{\mathbf{0},\varepsilon}) \right\|^{2}, \quad \forall v \in L^{2}(0,T;U),$$
$$\tilde{J}_{\varepsilon}(q^{F}) \stackrel{\text{def}}{=} \frac{1}{2} \int_{0}^{T} \left[\left[\mathcal{B}^{\star} e^{-(T-t)\mathcal{A}^{\star}} q^{F} \right]^{2} dt + \frac{\varepsilon}{2} \left\| q^{F} \right\|^{2} + \left\langle \mathbf{y}_{\mathbf{0},\varepsilon}, e^{-T\mathcal{A}^{\star}} q^{F} \right\rangle, \quad \forall q^{F} \in E.$$

We denote by \tilde{v}_{ε} the unique minimiser of \tilde{F}_{ε} .

PROPOSITION (RELAXED OBSERVABILITY INEQUALITY)

Assume that

$$\sup_{\varepsilon>0}\frac{1}{\varepsilon}\left\|e^{-\mathcal{T}\mathcal{A}}(y_0-y_{0,\varepsilon})\right\|^2<+\infty.$$

The system (S) is null-controllable from the initial data y₀ if and only if

$$\left|\left\langle \mathbf{y}_{0,\varepsilon}, e^{-T\mathcal{A}^{\star}} q^{F} \right\rangle\right|^{2} \leq M\left(\left[\left[\mathcal{B}^{\star} e^{-(T-.)\mathcal{A}^{\star}} q^{F}\right]\right]_{L^{2}(0,T;U)}^{2} + \varepsilon \left\|q^{F}\right\|^{2}\right), \ \forall q^{F} \in E.$$

We do not require the system to be null-controllable from any of the $(y_{0,\varepsilon})_{\varepsilon}$.

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

• The semi-discrete setting

- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

SEMI-DISCRETE (UNIFORM) CONTROL PROBLEMS

FRAMEWORK

For any h > 0, we are given

- A discrete state space $(E_h, \langle \cdot, \cdot \rangle_h)$.
- An approximate operator \mathcal{A}_h on E_h .
- A discrete control space $(U_h, [\cdot, \cdot]_h)$.
- A linear operator $\mathcal{B}_h : U_h \to E_h, \mathcal{B}_h^*$ being its adjoint $\langle \mathcal{B}_h u, x \rangle_h = [\mathcal{B}_h^* x, u]_h$.

The semi-discrete control problem is (S_h) $\begin{cases}
\partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \\
y_h(0) = y_{0,h}.
\end{cases}$

Its solution is refered to as $t \mapsto y_{v_h, y_{0,h}}(t) \in E_h$ and we set

$$\mathcal{L}^h_T(v_h|y_{0,h}) \stackrel{\text{\tiny def}}{=} y_{v_h,y_{0,h}}(T).$$

QUESTIONS

Assume that $(y_{0,h})_h$ are, in some sense, approximations of a $y_0 \in E$.

- Can we relate the controllability properties of (*S*) starting from y_0 to the ones of (S_h) starting from $y_{0,h}$?
- **2** Can we obtain uniform bounds (w.r.t. h) for the associated controls v_h ?

MAIN ISSUES RELATED TO DISCRETISATION

• It may happen that (S_h) is not controllable even if (S) is. EXAMPLE : the 2D 5-point discrete Laplace operator A_h .

(Kavian, Zuazua)

For any control $v_h \in L^2(0,T;U_h)$, $\frac{d}{dt} \langle y_h(t), \psi_h \rangle_h + \mu_h \langle y_h(t), \psi_h \rangle = 0$,

and thus

$$\left\langle \mathcal{L}_{T}^{h}(\mathbf{v}_{h}|\mathbf{y}_{0,h}),\psi_{h}\right\rangle_{h}=\left\langle \mathbf{y}_{h}(T),\psi_{h}\right\rangle_{h}=e^{-\mu_{h}T}\left\langle \mathbf{y}_{0,h},\psi_{h}\right\rangle_{h}.$$
(1)

REMARK : The eigenvalue μ_h is very large $\sim \frac{C}{h^2}$ thus $\langle \mathcal{L}_T^h(v_h | y_{0,h}), \psi_h \rangle_h$ is exponentially small.

Even if (S) and (S_h) are both controllable, it is not necessarily desirable to compute a null-control v_h of (S_h) to obtain a suitable approximation of a null-control of (S).

$$F_{\varepsilon,h}(v_h) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[v_h(t) \right]_h^2 dt + \frac{1}{2\varepsilon} \left\| \mathcal{L}_T^h(v_h | y_{0,h}) \right\|_h^2, \quad \forall v_h \in L^2(0,T;U_h),$$
$$J_{\varepsilon,h}(q_h^F) \stackrel{\text{def}}{=} \frac{1}{2} \int_0^T \left[\left[\mathcal{B}_h^{\star} e^{-(T-t)\mathcal{A}_h^{\star}} q_h^F \right]_h^2 dt + \frac{\varepsilon}{2} \left\| q_h^F \right\|_h^2 + \left\langle y_{0,h}, e^{-T\mathcal{A}_h^{\star}} q_h^F \right\rangle_h, \quad \forall q_h^F \in E_h.$$

- For each value of h > 0, all the previous results apply.
- We denote by $v_{\varepsilon,h}$ the unique minimiser of $F_{\varepsilon,h}$.

GOAL

One would like to let $(\varepsilon, h) \to (0, 0)$ but this should be done with some care.

COMMENTS

• Even if (S) is controllable from y_0 , in the cases where $Q_{F,h} \neq \{0\}$ we may have

$$\lim_{\varepsilon \to 0} \left\| \mathcal{L}_{T}^{h}(v_{\varepsilon,h} | y_{0,h}) \right\|_{h} \neq 0, \ \forall h > 0$$

② One can prove that for any h > 0

$$\sup_{\varepsilon>0} \llbracket v_{\varepsilon,h} \rrbracket_{L^2(0,T;U_h)} < +\infty.$$

$\phi(h)$ -NULL CONTROLLABILITY

Let $h \in]0, +\infty[\mapsto \phi(h) \in]0, +\infty[$ be given such that $\lim_{h\to 0} \phi(h) = 0.$

DEFINITION

For a given family of initial data $Y_0 = (y_{0,h})_h \in \prod_{h>0} E_h$, we say that the family of problems (S_h) is $\phi(h)$ -null controllable from Y_0 , if there exists a $h_0 > 0$ such that

$$M_{Y_0}^2 \stackrel{\text{def}}{=} 2 \sup_{0 < h < h_0} \left(\inf_{L^2(0,T;U_h)} F_{\phi(h),h} \right) < +\infty,$$

where $F_{\phi(h),h}$ is built upon $y_{0,h}$.

THEOREM (RELAXED OBSERVABILITY)

For a given $Y_0 \in E_{\text{init}}$, the problems (S_h) are $\phi(h)$ -null-controllable from Y_0 if and only if there exists $h_0 > 0$ and $\widetilde{M}_{Y_0} > 0$, such that, for any $0 < h < h_0$

$$\left|\left\langle y_{0,h}, e^{-T\mathcal{A}_{h}^{\star}} q_{h}^{F} \right\rangle_{h}\right|^{2} \leq \widetilde{M}_{Y_{0}}^{2} \left(\left[\left[\mathcal{B}_{h}^{\star} e^{-(T-.)\mathcal{A}_{h}^{\star}} q_{h}^{F} \right] \right]_{L^{2}(0,T;U_{h})}^{2} + \phi(h) \left\| q_{h}^{F} \right\|_{h}^{2} \right), \quad \forall q_{h}^{F} \in E_{h}$$

In such case, the best constant \widetilde{M}_{Y_0} is equal to M_{Y_0} and

$$\left[\!\left[v_{\phi(h),h}\right]\!\right]_{L^2(0,T;U_h)} \leq M_{Y_0}, \text{ and } \left\|\mathcal{L}^h_T(v_{\phi(h),h}|y_{0,h})\right\|_h \leq M_{Y_0}\sqrt{\phi(h)}, \ \forall 0 < h < h_0.$$

$\phi(h)$ -NULL CONTROLLABILITY

Let $h \in]0, +\infty[\mapsto \phi(h) \in]0, +\infty[$ be given such that $\lim_{h\to 0} \phi(h) = 0$.

DEFINITION

For a given family of initial data $Y_0 = (y_{0,h})_h \in \prod_{h>0} E_h$, we say that the family of problems (S_h) is $\phi(h)$ -null controllable from Y_0 , if there exists a $h_0 > 0$ such that

$$M_{Y_0}^2 \stackrel{\text{def}}{=} 2 \sup_{0 < h < h_0} \left(\inf_{L^2(0,T;U_h)} F_{\phi(h),h} \right) < +\infty,$$

where $F_{\phi(h),h}$ is built upon $y_{0,h}$.

PROPOSITION

Assume that, for some $C_{obs} > 0$, the following relaxed observability inequality holds

$$\left\|e^{-T\mathcal{A}_{h}^{\star}}q_{h}^{F}\right\|_{h}^{2} \leq C_{\text{obs}}^{2}\left(\left[\left[\mathcal{B}_{h}^{\star}e^{-(T-.)\mathcal{A}_{h}^{\star}}q_{h}^{F}\right]\right]_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \quad \left| \begin{array}{c} \forall q_{h}^{F} \in E_{h}, \\ \forall 0 < h < h_{0} \end{array}\right|_{L^{2}(0,T;U_{h})}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2} + \phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right)$$

then for any **bounded** family Y_0 , the problems (S_h) are $\phi(h)$ -null-controllable from Y_0 and we have

$$M_{Y_0} \leq C_{\mathrm{obs}} \left(\sup_{0 < h < h_0} \left\| y_{0,h} \right\|_h
ight).$$

MAIN EXAMPLES

(Lasiecka-Triggiani, '00) (Labbé-Trélat, '06)

- We suppose given $\widetilde{P}_h : E_h \to D((\mathcal{A}^*)^{\frac{1}{2}})$ and $\widetilde{Q}_h : U_h \to U$ such that $\|y_h\|_h = \|\widetilde{P}_h y_h\|, \forall y_h \in E_h, \text{ and } [\![u_h]\!]_h = [\![\widetilde{Q}_h u_h]\!].$
- We set $P_h = (\widetilde{P}_h)^* : D((\mathcal{A}^*)^{\frac{1}{2}})' \to E_h$ and $Q_h = (\widetilde{Q}_h)^* : U \to U_h$ and we assume that

$$P_h \widetilde{P}_h = \mathrm{Id}_{E_h}, \text{ and } Q_h \widetilde{Q}_h = \mathrm{Id}_{U_h}.$$

• We define now A_h and B_h through their adjoints by the formulas

$$\mathcal{A}_h^{\star} = P_h \mathcal{A}^{\star} \widetilde{P}_h, \ \mathcal{B}_h^{\star} = Q_h \mathcal{B}^{\star} \widetilde{P}_h.$$

• + Standard approximation properties ...

EXAMPLE : Finite element Galerkin approximation.

(Labbé-Trélat, '06)

THEOREM

Assume that (S) is null-controllable at time T. There exists a $\beta > 0$, depending on the approximation properties of E_h and U_h such that the relaxed-observability inequality holds as soon as

$$\liminf_{h o 0} rac{\phi(h)}{h^eta} > 0.$$

In that case, for any $y_0 \in E$, we can define $y_{0,h} = P_h y_0$ and build the associated penalised HUM discrete controls $v_{\phi(h),h}$.

Then, there is a null-control $v \in Adm(y_0, 0)$ such that, up to a subsequence, we have

$$\widetilde{Q}_{h}v_{\phi(h),h} \xrightarrow[h \to 0]{} v$$
, in $L^{2}(0,T;U)$, and $\widetilde{P}_{h}y_{h} \xrightarrow[h \to 0]{} y_{v,y_{0}}$, in $L^{2}(0,T;E)$.

- The limit control *v* may not be the HUM control.
- Proving strong convergence of the discrete control is very difficult.
- In practive, the power β is low : for the 1D heat equation, Neumann boundary control, \mathbb{P}^1 finite element, we get $\beta = 0.45$. It means that

(B.-Hubert-Le Rousseau, '09-...)

We assume that A_h is SPD and let $(\psi_{j,h}, \mu_{j,h})_j$ its eigenelements.

ASSUMPTION : DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists $h_0 > 0$, $\alpha \in [0, 1)$, $\beta > 0$, and $\kappa, \ell > 0$ such that, for any $h < h_0$ and for any $(a_j)_j \in \mathbb{R}^{\mathbb{N}}$, we have

$$\Big|\sum_{\mu_{j,h}\leq\mu}a_{j}\psi_{j,h}\Big|\Big|_{h}^{2}\leq\kappa e^{\kappa\mu^{\alpha}}\left[\!\!\left[\mathcal{B}_{h}^{\star}\Big(\sum_{\mu_{j,h}\leq\mu}a_{j}\psi_{j,h}\Big)\right]\!\!\right]_{h}^{2},\quad\forall\mu<\frac{\ell}{h^{\beta}}.\qquad(\mathcal{H}_{\alpha,\beta})$$

THEOREM

Assume that assumption $(\mathcal{H}_{\alpha,\beta})$ holds, then there exists $h_0 > 0$, C > 0 such that, the relaxed observability inequality holds as soon as the function ϕ satisfies

$$\liminf_{h\to 0} \frac{\phi(h)}{e^{-C/h^\beta}} > 0.$$

Thus, for any bounded family of initial data $Y_0 \in E_{init}$, and for any $0 < h < h_0$ we have

$$\left[\!\left[v_{\phi(h),h}\right]\!\right]_{L^{2}(0,T;U_{h})} \leq C_{\text{obs}} \left\|y_{0,h}\right\|_{h}, \text{ and } \left\|\mathcal{L}^{h}_{T}\left(v_{\phi(h),h}\big|y_{0,h}\right)\right\|_{h} \leq C_{\text{obs}} \left\|y_{0,h}\right\|_{h} \sqrt{\phi(h)}.$$

DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists $h_0 > 0$, $\alpha \in [0, 1)$, $\beta > 0$, and $\kappa, \ell > 0$ such that, for any $h < h_0$ and for any $(a_j)_j \in \mathbb{R}^{\mathbb{N}}$, we have

$$\left\|\sum_{\mu_{j,h}\leq\mu}a_{j}\psi_{j,h}\right\|_{h}^{2}\leq\kappa e^{\kappa\mu^{\alpha}}\left[\!\!\left[\mathcal{B}_{h}^{\star}\left(\sum_{\mu_{j,h}\leq\mu}a_{j}\psi_{j,h}\right)\right]\!\!\right]_{h}^{2},\quad\left\forall\mu<\frac{\ell}{h^{\beta}}\right]\!\!.\qquad\left(\mathcal{H}_{\alpha,\beta}\right)$$

IMPORTANT OBSERVATION

Excepted in very particular cases, the assumption $(\mathcal{H}_{\alpha,\beta})$ has no chance to hold true without restriction on μ , see the counter-example of Kavian.

DISCRETE LEBEAU-ROBBIANO SPECTRAL INEQUALITY

There exists $h_0 > 0$, $\alpha \in [0, 1)$, $\beta > 0$, and $\kappa, \ell > 0$ such that, for any $h < h_0$ and for any $(a_j)_j \in \mathbb{R}^{\mathbb{N}}$, we have

$$\Big\|\sum_{\mu_{j,h}\leq\mu}a_{j}\psi_{j,h}\Big\|_{h}^{2}\leq\kappa e^{\kappa\mu^{\alpha}}\left[\!\!\left[\mathcal{B}_{h}^{\star}\Big(\sum_{\mu_{j,h}\leq\mu}a_{j}\psi_{j,h}\Big)\right]\!\!\right]_{h}^{2},\quad\forall\mu<\frac{\ell}{h^{\beta}}.\qquad(\mathcal{H}_{\alpha,\beta})$$

THEOREM

We assume that A_h is the usual finite difference approximation of $-\operatorname{div}(\gamma \nabla)$ for a smooth γ on a regular Cartesian mesh and that $\mathcal{B}_h = 1_{\omega}$. Then,

Assumption $(\mathcal{H}_{\alpha,\beta})$ holds for $\alpha = 1/2$ and $\beta = 2$.

MAIN TOOL OF THE PROOF : Uniform discrete elliptic Carleman estimates for an augmented semi-discrete elliptic operator $-\partial_s^2 + A_h$.

OPTIMALITY : The maximal eigenvalue of \mathcal{A}_h is $\sim \frac{C}{h^2}$ thus $(\mathcal{H}_{\alpha,\beta})$ gives a bound for a constant portion of the spectrum of \mathcal{A}_h . Moreover, $\alpha = 1/2$ is the exponent of the usual Lebeau-Robbiano inequality.

CONSEQUENCE : The $\phi(h)$ -null-controllability holds for any $\phi(h) \ge e^{-C/h^2}$.

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

THE FULLY DISCRETE SETTING

We have introduced and analyzed the $\phi(h)$ -null-controllability hold for

$$\begin{cases} S_h \end{pmatrix} \begin{cases} \partial_t y_h + \mathcal{A}_h y_h = \mathcal{B}_h v_h, \\ y_h(0) = y_{0,h}. \end{cases}$$

WHAT ABOUT TIME DISCRETIZATION OF SUCH A SYSTEM ?

We study **unconditionally stable schemes** : the θ -scheme with $\theta \in [1/2, 1]$

$$(S_{h,\delta t}) \begin{cases} \frac{y_h^{n+1} - y_h^n}{\delta t} + \mathcal{A}_h(\theta y_h^{n+1} + (1-\theta)y_h^n) = \mathcal{B}_h v_h^{n+1}, \ \forall n \in [\![0, M-1]\!], \\ y_h^0 = y_{0,h} \in E_h, \end{cases}$$

where, $\delta t = T/M$, $v_{h,\delta t} = (v_h^n)_{1 \le n \le M} \in (U_h)^M$ is a fully-discrete control function whose cost is defined by

$$\llbracket v_{h,\delta t} \rrbracket_{L^2_{\delta t}(0,T;U_h)} \stackrel{\text{def}}{=} \left(\sum_{n=1}^M \delta t \llbracket v_h^n \rrbracket_h^2 \right)^{\frac{1}{2}}.$$

The value at the final time iteration of the controlled solution of $(S_{h,\delta t})$ is denoted by

$$\left(\mathcal{L}_{T}^{h,\delta t}\left(v_{h,\delta t}\middle|y_{0,h}\right)\stackrel{\text{def}}{=}y_{h}^{M}\right)$$

THE PENALISED HUM PRIMAL FUNCTIONAL

$$F_{\varepsilon,h,\delta t}(v_{h,\delta t}) \stackrel{\text{def}}{=} \frac{1}{2} \left[\left[v_{h,\delta t} \right] \right]_{L^{\delta}_{\delta t}(0,T;U_h)}^2 + \frac{1}{2\varepsilon} \left\| \mathcal{L}_T^{h,\delta t}(v_{h,\delta t} | y_{0,h}) \right\|_h^2.$$

DEFINITION (DUAL FUNCTIONAL)

We define the functional

$$\begin{split} J_{\varepsilon,h,\delta t}(q_{h}^{F}) &\stackrel{\text{def}}{=} \frac{1}{2} \left[\left[\mathcal{B}_{h}^{\star} \mathcal{L}_{T}^{*,h,\delta t} \left(q_{h}^{F} \right) \right] \right]_{L^{2}_{\delta t}(0,T;U_{h})}^{2} + \frac{\varepsilon}{2} \left\| q_{h}^{F} \right\|_{h}^{2} \\ &- \left\langle y_{0,h}, q_{h}^{1} - \delta t(1-\theta) \mathcal{A}_{h} q_{h}^{1} \right\rangle_{h}, \ \forall q_{h}^{F} \in E_{h}, \end{split}$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F}) = (q_{h}^{n})_{1 \leq n \leq M}$ is the solution of the following adjoint problem

$$\begin{cases} q_{h}^{M+1} = q_{h}^{F}, \\ \frac{q_{h}^{M} - q_{h}^{M+1}}{\delta t} + \theta \mathcal{A}_{h} q_{h}^{M} = 0, \\ \frac{q_{h}^{n} - q_{h}^{n+1}}{\delta t} + \mathcal{A}_{h} (\theta q_{h}^{n} + (1-\theta) q_{h}^{n+1}) = 0, \quad \forall n \in [\![1, M-1]\!]. \end{cases}$$

THE PENALISED HUM PRIMAL FUNCTIONAL

$$F_{\varepsilon,h,\delta t}(v_{h,\delta t}) \stackrel{\text{def}}{=} \frac{1}{2} \left[\left[v_{h,\delta t} \right]_{L^{2}_{\delta t}(0,T;U_{h})}^{2} + \frac{1}{2\varepsilon} \left\| \mathcal{L}_{T}^{h,\delta t}(v_{h,\delta t} | y_{0,h}) \right\|_{h}^{2} \right]$$

$$\begin{split} J_{\varepsilon,h,\delta t}(q_{h}^{F}) &\stackrel{\text{def}}{=} \frac{1}{2} \left[\left[\mathcal{B}_{h}^{\star} \mathcal{L}_{T}^{\star,h,\delta t} \left(q_{h}^{F} \right) \right] \right]_{L^{2}_{\delta t}(0,T;U_{h})}^{2} + \frac{\varepsilon}{2} \left\| q_{h}^{F} \right\|_{h}^{2} \\ &- \left\langle y_{0,h}, q_{h}^{1} - \delta t(1-\theta) \mathcal{A}_{h} q_{h}^{1} \right\rangle_{h}, \ \forall q_{h}^{F} \in E_{h}, \end{split}$$

THEOREM (DUALITY)

The functionals $F_{\varepsilon,h,\delta t}$ and $J_{\varepsilon,h,\delta t}$ are in duality, in the sense that their respective minimisers $v_{\varepsilon,h,\delta t} \in L^2(0,T;U_h)$ and $q^F_{\varepsilon,h,\delta t} \in E_h$ satisfy

$$\inf_{L^2_{\delta t}(0,T;U_h)} F_{\varepsilon,h,\delta t} = F_{\varepsilon,h,\delta t}(v_{\varepsilon,h,\delta t}) = -J_{\varepsilon,h,\delta t}(q^F_{\varepsilon,h,\delta t}) = -\inf_{E_h} J_{\varepsilon,h,\delta t},$$

and moreover

$$v_{\varepsilon,h} = \mathcal{B}_h^{\star} \mathcal{L}_T^{\star,h,\delta t} \left(q_{\varepsilon,h,\delta t}^F
ight).$$

THEOREM (CASE $\theta \in [1/2, 1]$)

Assume that the discrete Lebeau-Robbiano inequality $(\mathcal{H}_{\alpha,\beta})$ holds and let ϕ be such that

$$\left(\liminf_{h\to 0}\frac{\phi(h)}{e^{-C/h^\beta}}>0.\right)$$

Then, there exists $h_0 > 0$, $C_T > 0$, $C_{obs} > 0$ such that for any $0 < h < h_0$ and any $\delta t \leq C_T |\log \phi(h)|^{-1}$, the following relaxed observability inequality holds

$$\left\|q_{h}^{1}-\delta t(1-\theta)\mathcal{A}_{h}q_{h}^{1}\right\|_{h}^{2} \leq C_{\text{obs}}^{2}\left(\left[\left|\mathcal{B}_{h}^{\star}q_{h}^{n}\right]\right]_{L_{\delta t}^{2}(0,T;U_{h})}^{2}+\phi(h)\left\|q_{h}^{F}\right\|_{h}^{2}\right), \ \forall q_{h}^{F}\in E_{h}.$$

Thus, for any such δt and h and any initial data $y_{0,h} \in E_h$, the full-discrete control $v_{\phi(h),h,\delta t}$, obtained by minimising $F_{\phi(h),h,\delta t}$ (or equivalently $J_{\phi(h),h,\delta t}$) satisfies

$$\begin{split} \left\| \mathcal{V}_{\phi(h),h,\delta t} \right\|_{L^{2}_{\delta t}(0,T;U_{h})} &\leq C_{\text{obs}} \left\| y_{0,h} \right\|_{h}, \\ \left\| \mathcal{L}_{T}^{h,\delta t} \left(v_{\phi(h),h,\delta t} \middle| y_{0,h} \right) \right\|_{h} &\leq C_{\text{obs}} \sqrt{\phi(h)} \left\| y_{0,h} \right\|_{h}. \end{split}$$

CASE $\theta = 1/2$: An additional condition on δt is required.

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals $J_{\varepsilon,h}$ or $J_{\varepsilon,h,\delta t}$ (with $\varepsilon = \phi(h)$).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any $h > 0, \delta t > 0, \varepsilon > 0$ and any $q_h^F \in E_h$, we have

$$abla J_{arepsilon,h}(q_h^F) = \underbrace{\mathcal{L}_{\scriptscriptstyle T}^h \Big(\mathcal{B}_h^\star e^{-(T-.)} \mathcal{A}_h^\star q_h^F ig| 0 \Big)}_{\stackrel{ ext{def}}{\equiv} \Lambda^h q_h^F} + arepsilon_{\scriptscriptstyle T}^h \Big(0 ig|_{y_{0,h}} \Big),$$

$$\nabla J_{\varepsilon,h,\delta t}(q_{h}^{F}) = \underbrace{\mathcal{L}_{T}^{h,\delta t} \Big(\mathcal{B}_{h}^{\star} \mathcal{L}_{T}^{*,h,\delta t} \Big(q_{h}^{F} \Big) | 0 \Big)}_{\stackrel{\text{def}_{\Lambda},\delta t}{=} q_{h}^{F}} + \varepsilon q_{h}^{F} + \mathcal{L}_{T}^{h,\delta t} \big(0 | y_{0,h} \big)$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F})$ is the solution of the adjoint fully-discrete pb associated with q_{h}^{F} .

COMPUTATION OF GRAMIAN OPERATORS

The computation of $\Lambda_{\bullet} q_h^F$ amounts to

- Solve a backward parabolic problem.
- $\textbf{O} Apply \, \mathcal{B}_h^{\star}$
- Solve a forward parabolic problem with the control previously computed.

SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals $J_{\varepsilon,h}$ or $J_{\varepsilon,h,\delta t}$ (with $\varepsilon = \phi(h)$).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any $h > 0, \delta t > 0, \varepsilon > 0$ and any $q_h^F \in E_h$, we have

$$\nabla J_{\varepsilon,h}(q_h^F) = \underbrace{\mathcal{L}_T^h \Big(\mathcal{B}_h^\star e^{-(T-.)\mathcal{A}_h^\star} q_h^F | 0 \Big)}_{\stackrel{\text{def} \Lambda^h q_h^F}{=}} + \varepsilon q_h^F + \mathcal{L}_T^h \big(0 \big| y_{0,h} \big) ,$$

$$\nabla J_{\varepsilon,h,\delta t}(q_{h}^{F}) = \underbrace{\mathcal{L}_{T}^{h,\delta t} \Big(\mathcal{B}_{h}^{\star} \mathcal{L}_{T}^{*,h,\delta t} \Big(q_{h}^{F} \Big) | 0 \Big)}_{\stackrel{\text{def}}{=} \Lambda^{h,\delta t} q_{h}^{F}} + \varepsilon q_{h}^{F} + \mathcal{L}_{T}^{h,\delta t} \big(0 | y_{0,h} \big) ,$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F})$ is the solution of the adjoint fully-discrete pb associated with q_{h}^{F} .

EQUATIONS TO SOLVE

The semi/fully-discrete controls ar computed by solving the equations

$$(\Lambda^h + \varepsilon \mathrm{Id})q_h^F = -\mathcal{L}_T^h(0|y_{0,h}),$$

$$(\Lambda^{h,\delta t} + \varepsilon \mathrm{Id})q_h^F = -\mathcal{L}_T^{h,\delta t}(0|y_{0,h}).$$

In practice, we use a conjugate gradient algorithm.
SOLVING THE CONTROL PROBLEMS

GENERAL PRINCIPLE : Minimise dual functionals $J_{\varepsilon,h}$ or $J_{\varepsilon,h,\delta t}$ (with $\varepsilon = \phi(h)$).

PROPOSITION (GRADIENTS AND GRAMIAM OPERATORS)

For any $h > 0, \delta t > 0, \varepsilon > 0$ and any $q_h^F \in E_h$, we have

$$abla J_{arepsilon,h}(q_h^F) = \underbrace{\mathcal{L}_T^h \Big(\mathcal{B}_h^\star e^{-(T-.)\mathcal{A}_h^\star} q_h^F | 0 \Big)}_{rac{\det_{\Lambda^h \sigma^F}}{def_{\Lambda^h \sigma^F}}} + arepsilon q_h^F + \mathcal{L}_T^h (0 | y_{0,h}) \,,$$

$$\nabla J_{\varepsilon,h,\delta t}(q_{h}^{F}) = \underbrace{\mathcal{L}_{T}^{h,\delta t} \Big(\mathcal{B}_{h}^{\star} \mathcal{L}_{T}^{*,h,\delta t} \Big(q_{h}^{F} \Big) | 0 \Big)}_{\stackrel{\text{def}}{=} \Lambda^{h,\delta t} q_{h}^{F}} + \varepsilon q_{h}^{F} + \mathcal{L}_{T}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{F} + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big| y_{0,h} \big) + \varepsilon q_{h}^{h,\delta t} \big(0 \big| y_{0,h} \big$$

where $\mathcal{L}_{T}^{*,h,\delta t}(q_{h}^{F})$ is the solution of the adjoint fully-discrete pb associated with q_{h}^{F} .

CONDITION NUMBER

$$\text{Basic estimate} \ : \ \varepsilon \left\| q_h^F \right\|_h \le \left\| (\Lambda^{\bullet} + \varepsilon \text{Id}) q_h^F \right\|_h \le (C + \varepsilon) \left\| q_h^F \right\|_h$$

$$\operatorname{Cond}(\Lambda^{\bullet} + \varepsilon \operatorname{Id}) \sim \frac{1}{\varepsilon}.$$

TWO MAIN PRINCIPLES

• $\varepsilon = \phi(h)$ should not be too small in order to maintain a reasonable condition number (i.e. computational cost)

$$\operatorname{Cond}(\Lambda^{\bullet} + \phi(h)\operatorname{Id}) \sim \frac{1}{\phi(h)}.$$

2 The size of the computed solution at time T is

$$\|y_h(T)\|_h \approx C_{\text{obs}}\sqrt{\phi(h)}.$$

It seems reasonnable to choose

$$\left(\phi(h)\sim_{h\to 0}h^{2p},\right)$$

where p is the order of accuracy of the numerical method under study.

REMARKS

- Computing a null-control for (S_h) , i.e. taking $\varepsilon = \phi(h) = 0$, is not possible in general.
- Choosing $\phi(h)$ much smaller than h^{2p} (like e^{-C/h^2}) is a useless computational effort.

How to choose $h \mapsto \phi(h)$?

We set
$$E = E_h = \mathbb{R}$$
, $\mathcal{A} = \lambda > 0$, $\mathcal{A}_h = (\lambda + \delta_h) \in \mathbb{R}$ with $\delta_h \xrightarrow[h \to 0]{} 0$, $\mathcal{B} = \mathcal{B}_h = 1$.

$$(S) \begin{cases} y' + \lambda y = v, \\ y(0) = 1, \end{cases} \text{ and } (S_h) \begin{cases} y'_h + (\lambda + \delta_h)y_h = v_h, \\ y_h(0) = 1. \end{cases}$$

Uncontrolled solution $e^{-T\mathcal{A}_h}y_{0,h} = e^{-(\lambda+\delta_h)T}$.

GRAMIAM "OPERATORS"

$$\Lambda_h q^F = \frac{1 - e^{-2(\lambda + \delta_h)T}}{2(\lambda + \delta_h)} q^F, \text{ and } \Lambda q^F = \frac{1 - e^{-2\lambda T}}{2\lambda} q^F, \forall q^F \in \mathbb{R},$$

PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are

$$v_{\varepsilon,h}(t) = -e^{-(T-t)(\lambda+\delta_h)} \frac{2(\lambda+\delta_h)e^{-(\lambda+\delta_h)T}}{1-e^{-2(\lambda+\delta_h)T} + (2\varepsilon(\lambda+\delta_h))},$$
$$v(t) = -e^{-(T-t)\lambda} \frac{2\lambda e^{-\lambda T}}{1-e^{-2\lambda T}}.$$

How to choose $h \mapsto \phi(h)$?

$$(S) \begin{cases} y' + \lambda y = v, \\ y(0) = 1, \end{cases} \text{ and } (S_h) \begin{cases} y'_h + (\lambda + \delta_h)y_h = v_h, \\ y_h(0) = 1. \end{cases}$$

PROPOSITION

The corresponding semi-discrete penalised and exact HUM controls are

$$v_{\varepsilon,h}(t) = -e^{-(T-t)(\lambda+\delta_h)} \frac{2(\lambda+\delta_h)e^{-(\lambda+\delta_h)T}}{1-e^{-2(\lambda+\delta_h)T} + \left(2\varepsilon(\lambda+\delta_h)\right)},$$
$$v(t) = -e^{-(T-t)\lambda} \frac{2\lambda e^{-\lambda T}}{1-e^{-2\lambda T}}.$$

ERROR ESTIMATES

$$\begin{split} \llbracket v - v_{\varepsilon,h} \rrbracket_{L^2(0,T;U)} &\leq C(\lambda,T) (|\delta_h| + \varepsilon), \text{ for } \delta_h \text{ and } \varepsilon \text{ small}, \\ \mathcal{L}_T (v_{\varepsilon,h} | \mathbf{1}) &= C_1(\lambda,T) \delta_h + C_2(\lambda,T) \varepsilon + O(\varepsilon^2 + \delta_h^2), \end{split}$$

with $C_i(\lambda, T) > 0$.

CONCLUSION : The *optimal* choice is to take $\varepsilon = \phi(h) \sim \delta_h$.

How to choose $h \mapsto \phi(h)$?

$$\partial_t y - \partial_x^2 y = \mathbf{1}_{\Omega} v$$
, in $\Omega =]0, 1[,$

in the particular case where $\omega = \Omega$.

STANDARD FINITE DIFFERENCE APPROXIMATION ON A UNIFORM GRID

$$\partial_t y_i - \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} = v_i, \quad \forall i \in \{1, ..., N\}.$$

Eigenfunctions of ${\cal A}$

$$\phi_k(x) = \sin(k\pi x), \ \lambda_k = k^2 \pi^2, \ \forall k \ge 1.$$

EIGENFUNCTIONS OF \mathcal{A}_h

$$\phi_{k,h} = (\sin(k\pi x_i))_i, \ \lambda_{k,h} = \frac{4\sin^2\left(\frac{k\pi h}{2}\right)}{h^2}, \ \forall 1 \le k \le 1/h.$$

EQUATIONS FOR THE *k*-TH EIGENMODE

$$y' + \lambda_k y = v, \quad y'_h + \lambda_{k,h} y_h = v_h.$$

Here

$$\delta_{k,h} = \lambda_{k,h} - \lambda_k \underset{h \to 0}{\sim} - \frac{k^4 \pi^4}{12} h^2.$$

I INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[}v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

N	М						М					
N	20	80	320	1280	$+\infty$	N		20	80	320	1280	$+\infty$
20	14	16	16	16	16	20		24	30	28	27	32
50	22	26	29	29	31	50		83	87	87	93	106
100	30	38	44	49	48	100) 1	235	240	233	262	265
200	45	58	69	77	82	200) ′	778	850	1098	1230	1374

(A) Case $\phi(h) = h^2$

(B) Case $\phi(h) = h^4$

TABLE : Conjugate gradient iterates; $\omega =]0.3, 0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

Ν	20	80	M 320	1280	$+\infty$
20 50 100 200	$ \begin{array}{c} 7.17 \cdot 10^{-2} \\ 7.98 \cdot 10^{-2} \\ 8.5 \cdot 10^{-2} \\ 9.1 \cdot 10^{-2} \end{array} $	$\begin{array}{c} 6.54\cdot 10^{-2} \\ 7.08\cdot 10^{-2} \\ 7.44\cdot 10^{-2} \\ 7.75\cdot 10^{-2} \end{array}$	$\begin{array}{c} 6.38 \cdot 10^{-2} \\ 6.85 \cdot 10^{-2} \\ 7.15 \cdot 10^{-2} \\ 7.39 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 6.34\cdot 10^{-2} \\ 6.79\cdot 10^{-2} \\ 7.07\cdot 10^{-2} \\ 7.3\cdot 10^{-2} \end{array}$	$\begin{array}{c} 6.33 \cdot 10^{-2} \\ 6.78 \cdot 10^{-2} \\ 7.05 \cdot 10^{-2} \\ 7.27 \cdot 10^{-2} \end{array}$

TABLE : Optimal energy; $\phi(h) = h^2$; $\omega =]0.3, 0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

N	М						
	20	80	320	1280	$+\infty$		
20	0.11	$8.92\cdot 10^{-2}$	$8.43\cdot 10^{-2}$	$8.3\cdot10^{-2}$	$8.26\cdot 10^{-2}$		
50	0.12	$8.94 \cdot 10^{-2}$	$8.29 \cdot 10^{-2}$	$8.12 \cdot 10^{-2}$	$8.07 \cdot 10^{-2}$		
100	0.12	$9.1 \cdot 10^{-2}$	$8.33 \cdot 10^{-2}$	$8.13 \cdot 10^{-2}$	$8.06 \cdot 10^{-2}$		
200	0.13	$9.33\cdot10^{-2}$	$8.41 \cdot 10^{-2}$	$8.17 \cdot 10^{-2}$	$8.09 \cdot 10^{-2}$		

TABLE : Optimal energy; $\phi(h) = h^4$; $\omega =]0.3, 0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

FIGURE : Convergence analysis with $\phi(h) = h^2$; $\omega =]0.3, 0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

FIGURE : Convergence analysis with $\phi(h) = h^4$; $\omega =]0.3, 0.8[$

$$\partial_t y - 0.1 \partial_x^2 y = 1_{]0.3, 0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

FIGURE : Convergence analysis with $\phi(h) = 1000h^6$; $\omega =]0.3, 0.8[$

THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

$$\partial_t y - 0.1 \partial_x^2 y = \mathbf{1}_{\Omega} v,$$

$$T = 0.5, y_0(x) = \sin(\pi x)^{10}$$

FIGURE : $\phi(h) = h^2$; Semi-discrete scheme

THE 1D HEAT EQUATION WITH A NON-LOCALISED CONTROL

$$\partial_t y - 0.1 \partial_x^2 y = \mathbf{1}_{\Omega} v,$$

$$T = 0.5, y_0(x) = \sin(\pi x)^{10}$$

FIGURE : $\phi(h) = h^4$; Semi-discrete scheme

A 1D PARABOLIC EQUATION WITH UNSTABLE MODES

$$\partial_t y - 0.1 \partial_x^2 y - 1.5 y = 1_{]0.3,0.8[} v,$$

 $T = 1, y_0(x) = \sin(\pi x)^{10}.$

(Fernández-Cara – Münch, '11) (B.–Le Rousseau, '13)

$$\partial_t y - 0.1 \partial_x^2 y - 5y \log^{1.4} (1 + |y|) = 1_{]0.2, 0.8[} v,$$

 $T = 0.5, y_0(x) = 20 \sin(\pi x).$

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

SHORT REVIEW OF KNOWN RESULTS

• In the case a_{21} = cte the system is null-controllable if and only if $a_{21} \neq 0$ (Kalman-like condition)

(Ammar-Khodja-Benabdallah-Dupaix-González-Burgos, '09)

• In the case where $\text{Supp}(a_{21}) \cap \omega \neq \emptyset$, the system is null-controllable

(González-Burgos-de Teresa, '10)

• In the case where $\text{Supp}(a_{21}) \cap \omega = \emptyset$ and a_{21} has a constant sign, the system is null-controllable

(Rosier-de Teresa, '11)

- In the case where $\text{Supp}(a_{21}) \cap \omega = \emptyset$ and a_{21} changes it sign :
 - There are structural conditions for the system to be even approximatively controllable (B.– Olive, '13)
 - A minimal time condition for the null-controllability can occur (Ammar-Khodja–Benabdallah–González-Burgos–de Teresa, '14)

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 1 : $a_{21}(x) = \mathbf{1}_{]0.2, 0.9[}(x), \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 1 : $a_{21}(x) = \mathbf{1}_{[0.2, 0.9]}(x), \, \omega =]0.1, 0.5[, \, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 2 : $a_{21}(x) = \mathbf{1}_{]0.7, 0.9[}(x), \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$

A TWO EQUATION CASCADE SYSTEM

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 2 : $a_{21}(x) = \mathbf{1}_{]0.7, 0.9[}(x), \omega =]0.1, 0.5[, y_0(x) = (\sin(3\pi x), \sin(\pi x)^{10})^t.$

A TWO EQUATION CASCADE SYSTEM

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 3 : $a_{21}(x) = (x - \alpha) \mathbf{1}_{]0,0.5[}(x), \omega =]0.5, 1[, y_0(x) = (\sin(2\pi x), 3\sin(2\pi x))^t.$

FIGURE : $\alpha = 1/4$

A TWO EQUATION CASCADE SYSTEM

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 \\ a_{21}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbf{1}_{\omega} v.$$

CASE 3 : $a_{21}(x) = (x - \alpha) \mathbf{1}_{]0,0.5[}(x), \omega =]0.5, 1[, y_0(x) = (\sin(2\pi x), 3\sin(2\pi x))'.$

FIGURE : $\alpha = 1/8$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

VERY SHORT REVIEW :

- If the supports of all the a_{ij} intersect the control domain ω and keeps a constant sign on a part of ω , then the system is null-controllable.
- Necessary and sufficient conditions for approximate controllability are known in the general case.

A THREE EQUATION CASCADE SYSTEM

$$\partial_{t}y - 0.1\partial_{x}^{2}y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x)v.$$
CASE 1: $a_{21} = \mathbf{1}_{]0,0.5[}, a_{32} = 1, \omega =]0.5, 1[.$
Cost of the control \rightarrow
Size of the target \rightarrow
Optimal energy \rightarrow
Optimal energy \rightarrow
 10^{-3}
 10^{-2}
 h

A THREE EQUATION CASCADE SYSTEM

$$\partial_{t}y - 0.1\partial_{x}^{2}y + \begin{pmatrix} 0 & 0 & 0 \\ a_{21}(x) & 0 & 0 \\ 0 & a_{32}(x) & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x)v.$$
CASE 2 : $a_{21} = \mathbf{1}_{]0,0.5[}, a_{32}(x) = x - 1/2, \omega =]0.5, 1[.$
Cost of the control \rightarrow
Size of the target $-$
Optimal energy \rightarrow
Optimal energy \rightarrow
 10^{-3}
 10^{-2}
 h

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

Here also necessary and sufficient conditions for approximate controllability are known

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

CASE 2 : \mathcal{O}_2 and \mathcal{O}_3 are located in different connected components of $\Omega \setminus \omega$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

CASE 3 : \mathcal{O}_2 and \mathcal{O}_3 are located in the same connected component of $\Omega \setminus \omega$

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) \nu.$$

CASE 3 : \mathcal{O}_2 and \mathcal{O}_3 are located in the same connected component of $\Omega \setminus \omega$

F. Boyer HUM method and applications

$$\partial_t y - 0.1 \partial_x^2 y + \begin{pmatrix} 0 & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_2}(x) & 0 & 0 \\ \mathbf{1}_{\mathcal{O}_3}(x) & 0 & 0 \end{pmatrix} y = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{1}_{\omega}(x) v.$$

Case 4.2 : $\mathcal{O}_2 =]0.35, 0.65[, \mathcal{O}_3 =]0.4, 0.6[, \omega =]0, 0.2[\cup]0.8, 1[$

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

$$\partial_t y - 0.05\Delta y = 1_{]0.3,0.9[\times]0.2,0.8[\nu]},$$

$$y(0,x) = \sin(2\pi x_1)\sin(\pi x_2), \text{ and } y_F(x) = -0.4\sin(\pi x_1)\sin(2\pi x_2).$$

$$\Omega =]-1, 1[\times]0, 1[, \ \omega =]0.75, 1[\times]0, 1[.$$

$$\partial_t y - \partial_{x_1}^2 y - \frac{x_1^2}{2} \partial_{x_2}^2 y = 1_\omega v,$$

$$\Omega =] - 1, 1[\times]0, 1[, \ \omega =]0.75, 1[\times]0.6, 1[.$$
$$\partial_t y - \partial_{x_1}^2 y - x_1^2 \partial_{x_2}^2 y = 1_\omega v,$$

INTRODUCTION

2 Some facts about the Hilbert Uniqueness Method and its penalized version

3 THE HUM APPROACH IN THE DISCRETE FRAMEWORK

- The semi-discrete setting
- The fully discrete setting
- Practical considerations

4 NUMERICAL RESULTS

- 1D Scalar equations
- 1D Parabolic systems
- Some 2D results

5 CONCLUSIONS / PERSPECTIVES

THE END

SUMMARY

- In the PDE world
 - Many **standard** results in controllability theory can be deduced from the analysis of the penalized HUM approach.
 - The penalized HUM approach always converge towards *something* as the penalization parameter tends to 0.
- In the discrete world
 - Necessity to relate the penalization parameter to discretisation parameters in a clever way.
 - Analysis of uniform null-controllability properties with respect to δt and/or *h* for semi/fully discrete problems.
 - Associated relaxed observability inequalities.
 - We may use numerical simulations to investigate open problems.
 - Even for non controllable problems, the numerical method applies and gives interesting results.

PERSPECTIVES

- Extend our analysis in the discrete setting to other cases
 - Non symmetric scalar operators.
 - Parabolic systems with few controls.
 - Boundary control problems.
 - Analysis for other space discretizations (Finite Volume, Finite Element, ...)
- From a computational point of view
 - A deeper understanding of HUM operators ~> preconditioning methods.
 - More suitable solvers than standard Conjugate Gradient ?