An introduction to finite volume methods for diffusion problems

F. Boyer

Laboratoire d'Analyse, Topologie et Probabilités Aix-Marseille Université

French-Mexican Meeting on Industrial and Applied Mathematics Villahermosa, Mexico, November 25-29 2013

INTRODUCTION

- **2** 1D Finite Volume method for the Poisson problem
- **3** The basic FV scheme for the 2D Laplace problem
- **4** The DDFV method
- **5** A REVIEW OF SOME OTHER MODERN METHODS

6 Comparisons : Benchmark from the FVCA 5 conference

The main points that I will not discuss

- The 3D case : many things can be done ... with some efforts.
- Parabolic equation.
- Non-linear problems.

1 INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D FINITE VOLUME METHOD FOR THE POISSON PROBLEM

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

$\scriptstyle (3)$ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

FLOW OF AN INCOMPRESSIBLE FLUID IN A POROUS MEDIUM

div v = f, mass conservation, f represents sinks/wells, $v = -\varphi(x, \nabla p)$, filtration velocity constitutive law.

LINEAR REGIME

• Darcy law :

$$v = -\frac{K(x)}{\mu}\nabla p,$$

the tensor K(x) is the permeability, μ the viscosity.

FLOW OF AN INCOMPRESSIBLE FLUID IN A POROUS MEDIUM

div v = f, mass conservation, f represents sinks/wells, $v = -\varphi(x, \nabla p)$, filtration velocity constitutive law.

NON-LINEAR REGIMES

• Darcy-Forchheimer law : in case of high pressure gradients

$$-\nabla p = \frac{1}{k}v + \beta |v|v, \iff v = \frac{-2k\nabla p}{1 + \sqrt{1 + 4\beta k^2 |\nabla p|}}.$$

• Power law : Non-newtonian effects

$$|v|^{n-1}v = -k\nabla p, \iff v = -|k\nabla p|^{\frac{1}{n}-1}(k\nabla p).$$

MONOTONICITY

Observe that in each case, $\nabla p \mapsto v = -\varphi(x, \nabla p)$ is monotone.

Real flows in porous media

HETEROGENEITIES, DISCONTINUITIES, ANISOTROPY

Example of the underground structure

Each color represents a different medium

$$-\operatorname{div}\left(\varphi(x,\nabla p)\right) = f.$$

- $\varphi(x, \cdot)$ can be linear in some areas.
- $\varphi(x, \cdot)$ can be non-linear in other areas.
- Some rocks are very permeable, other are almost impermeable.
- Some rocks have an isotropic structure, other are very anisotropic due to the particular structure at the pore scale.

TRANSMISSION CONDITIONS

- Pressure is continuous at interfaces.
- Mass flux $\varphi(x, \nabla p) \cdot \boldsymbol{\nu}$ is continuous across interfaces.

OTHER MODELS IN POROUS MEDIA

Multiphase (water/oil) flows

- Coupling of a Darcy-like equation (→ velocity) with an hyperbolic problem (→ oil concentration=saturation).
- În practice, a time splitting scheme can be used :
 - 1) We solve a Darcy problem whose permeability is a function of saturation

$$-\operatorname{div}(K(u^n)\nabla p) = f, + B.C.$$

2) We solve the nonlinear conservation law by using the previously computed velocity $v^n = -K(u^n)\nabla p$

$$\frac{(\theta u)^{n+1} - (\theta u)^n}{\delta t} + \operatorname{div}\left(f(u^n)v^n\right) = 0.$$

Remarks

- In this course, I will only concentrate on the first step **but** it is worth mentioning that FV methods have been initially introduced in the hyperbolic framework.
- **2** We need a good approximation of the mass fluxes $(v \cdot \nu)$ at interfaces of the mesh in the second step, with explicit formulas if possible.

Additional equation for a pollutant

 $\partial_t(\theta c) + \operatorname{div}(cv) - \operatorname{div}(D(c,v)\nabla c) = 0,$

here D(c, v) is a diffusion/dispersion full tensor depending on the concentration and the Darcy velocity v, typically through the tensor product $v \otimes v$.

Electrocardiology

(Coudière-Pierre-Turpault '09)

$$\begin{split} u &= u_i - u_e, \\ C(\partial_t u + f(u)) &= -\text{div} \left(G_e \nabla u_e \right), & \text{in the heart,} \\ \text{div} \left((G_i + G_e) \nabla u_e \right) &= -\text{div} \left(G_i \nabla u \right), & \text{in the heart,} \\ \text{div} \left(G_T \nabla u_T \right) &= 0, & \text{in the torso,} \\ \left(G_i \nabla u_e \right) \cdot \boldsymbol{\nu} &= -(G_i \nabla u) \cdot \boldsymbol{\nu}, & \text{at the interface heart/torso,} \\ \left(G_e \nabla u_e \right) \cdot \boldsymbol{\nu} &= -(G_T \nabla u_T) \cdot \boldsymbol{\nu}, & \text{at the interface heart/torso.} \end{split}$$

DRIFT-DIFFUSION MODELS FOR SEMI-CONDUCTORS

(Chainais-Hillairet - Peng '03,'04)

$$\begin{cases} \partial_t N - \operatorname{div} \left(\nabla N - N \nabla \psi \right) = 0, \\ \partial_t P - \operatorname{div} \left(\nabla P + P \nabla \psi \right) = 0, \\ \lambda^2 \Delta \psi = N - P, \end{cases}$$

MAXWELL, STOKES, ELASTICITY ...

1 INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

(3) The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

FINITE DIFFERENCES METHODS

- Mostly based on Taylor expansions of (smooth) solutions.
- Cartesian geometry only (at least without any additional tools).
- "Replace" derivatives by differential quotients

$$\frac{\partial u}{\partial x} \rightsquigarrow \frac{u_{i+1} - u_i}{\Delta x}, \quad \frac{\partial^2 u}{\partial x^2} \rightsquigarrow \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2},$$

GALERKIN METHODS

- Based on a variational formulation of the PDE.
- Solve the formulation on a suitable finite dimensional subspace of the energy space
 - Piecewise polynomials : Finite Elements
 - Fourier-like basis : Spectral Methods

FINITE VOLUME METHODS

• Based on the conservation form of the PDE :

 $\operatorname{div}(\operatorname{\mathbf{something}}) = \operatorname{source}.$

 \bullet Integrate the balance equation on each cell κ and apply Stokes formula

$$\int_{\mathcal{K}} \text{source} = \sum_{\text{edges of } \mathcal{K}} \text{Outward flux of something across the edge}$$

• Approximate each flux and write the discrete balance equation obtained from this approximation.

THE QUEST OF AN IDEAL SCHEME

Geometry : $FE : \checkmark$, $FV : \checkmark$, $FD : \bigstar$

Weak constraints on the meshes $FE : \checkmark / 3$, $FV : \checkmark$, FD : 3

- Non conforming meshes.
- Local refinement.
- Very stretched cells.

EXPECTED PROPERTIES OF THE SCHEME

- Local mass conservativity, and mass flux consistency.
- Preservation of basic properties of the PDEs (well-posedness,...).
- Preservation of physical bounds on solutions.

• Accuracy on coarse meshes with high anisotropies and heterogeneities. $FE: \mathbf{X}, FV: \mathbf{X}/\mathbf{V}$

Here, we restrict ourselves to low order schemes For higher order methods ~> Discontinuous Galerkin

FE : *****. FV :

FE : 🗸 . FV : 🗸

 $FE: \mathbf{X}/\mathbf{V}, FV: \mathbf{X}/\mathbf{V}$

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

• Notations. Construction

- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

$\scriptstyle (3)$ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

NOTATIONS

THE PDE UNDER STUDY

$$\begin{cases} -\partial_x(\mathbf{k}(\mathbf{x})\partial_x u) = f(\mathbf{x}), & \text{in } \Omega =]0, 1[, \\ u(0) = u(1) = 0. \end{cases}$$

- f is an integrable function (let say continuous ...).
- k is bounded, smooth, and $\inf k > 0$.

A FV mesh \mathcal{T} of]0,1[

• Control volumes : Compact (~ disjoint) intervals $(\kappa_i)_{1 \le i \le N}$ that cover $[0, 1] = \overline{\Omega}$

$$\kappa_i = [x_{i-1/2}, x_{i+1/2}],$$
 $x_i \qquad h_{i+1/2} \qquad x_{i+1}$
 $x_{i-1/2} \qquad \tilde{\kappa_i} \qquad x_{i+1/2} \qquad \tilde{\kappa_{i+1}} \qquad x_{i+3/2}$

- Centers : A set of points $x_i \in \kappa_i$, $\forall i$. Not necessarily mass centers
- **Boundary** : To ease presentation, we set $x_0 = 0$ and $x_{N+1} = 1$.
- We set $h_i = |\kappa_i| = x_{i+1/2} x_{i-1/2}$ the measure (=length) of κ_i .
- We set $h_{i+1/2} = x_{i+1} x_i$ the distance between neighboring centers.

A cell-centered scheme

- Concerns one single unknown u_i per control volume, *supposed* to be an approximation of the exact solution at the center x_i .
- Consists in writing a (discrete) flux balance equation on each control volume.

Assume the solution is smooth

$$\int_{\mathcal{K}_i} \partial_x (-\mathbf{k} \partial_x \mathbf{u}) \, dx = \int_{\mathcal{K}_i} f(x) \, dx, \quad \forall i = 1, ..., N.$$

1/2

- A cell-centered scheme
 - Concerns one single unknown u_i per control volume, *supposed* to be an approximation of the exact solution at the center x_i .
 - Consists in writing a (discrete) flux balance equation on each control volume.

Assume the solution is smooth

$$\left[-(k\partial_x u)(x_{i+1/2})\right] - \left[-(k\partial_x u)(x_{i-1/2})\right] = \int_{\mathcal{K}_i} f(x) \, dx, \quad \forall i = 1, \dots, N.$$

A cell-centered scheme

- Concerns one single unknown u_i per control volume, *supposed* to be an approximation of the exact solution at the center x_i .
- Consists in writing a (discrete) flux balance equation on each control volume.

Assume the solution is smooth

$$\left[-(k\partial_x u)(x_{i+1/2})\right] - \left[-(k\partial_x u)(x_{i-1/2})\right] = \int_{\mathcal{K}_i} f(x) \, dx, \quad \forall i = 1, \dots, N.$$

FLUX APPROXIMATION

$$-(k\partial_x u)(x_{i+1/2}) \approx -k(x_{i+1/2}) \frac{u(x_{i+1})-u(x_i)}{h_{i+1/2}}$$

A cell-centered scheme

- Concerns one single unknown u_i per control volume, *supposed* to be an approximation of the exact solution at the center x_i .
- Consists in writing a (discrete) flux balance equation on each control volume.

Assume the solution is smooth

$$\begin{bmatrix} -k(x_{i+1/2})\frac{u(x_{i+1}) - u(x_i)}{h_{i+1/2}} \end{bmatrix} - \begin{bmatrix} -k(x_{i-1/2})\frac{u(x_i) - u(x_{i-1})}{h_{i-1/2}} \end{bmatrix}$$
$$\bigotimes \int_{\mathcal{K}_i} f(x) \, dx = h_i f_i,$$

where f_i is the mean-value of f on κ_i .

1/2

THE FV SCHEME - VERSION #1 We look for $u^{\mathcal{T}} = (u_i)_{1 \leq i \leq N} \in \mathbb{R}^{\mathcal{T}}$ satisfying

$$\left(-k_{i+1/2}\frac{u_{i+1}-u_i}{h_{i+1/2}}+k_{i-1/2}\frac{u_i-u_{i-1}}{h_{i-1/2}}=h_if_i, \quad \forall i \in \{1,\dots,N\},\right)$$

with $u_0 = u_{N+1} = 0$ (homogeneous Dirichlet BC).

THE FV SCHEME - VERSION #1 We look for $u^{\mathcal{T}} = (u_i)_{1 \leq i \leq N} \in \mathbb{R}^{\mathcal{T}}$ satisfying

$$-k_{i+1/2}\frac{u_{i+1}-u_i}{h_{i+1/2}}+k_{i-1/2}\frac{u_i-u_{i-1}}{h_{i-1/2}}=h_if_i, \ \forall i\in\{1,\ldots,N\},$$

with $u_0 = u_{N+1} = 0$ (homogeneous Dirichlet BC). THE FV SCHEME - VERSION #2 We look for $u^{\tau} = (u_i)_{1 \le i \le N} \in \mathbb{R}^{\tau}$ satisfying

$$\left(F_{i+1/2}(u^{\mathcal{T}}) - F_{i-1/2}(u^{\mathcal{T}}) = h_i f_i, \quad \forall i \in \{1, \dots, N\}, \right)$$

with

$$F_{i+1/2}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} -k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}}, \quad i = 1, \dots, N-1,$$

$$F_{1/2}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} -k_{1/2} \frac{u_1 - 0}{h_{1/2}},$$

$$F_{N+1/2}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} -k_{N+1/2} \frac{0 - u_N}{h_{N+1/2}}.$$

2/2

1 INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

$\scriptstyle (3)$ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

FIRST STEP OF THE ANALYSIS

Matrix form of the scheme $Au^{\mathcal{T}} = B$ with

$$u^{\mathcal{T}} = (u_i)_{1 \le i \le N}, \quad B = (h_i f_i)_{1 \le i \le N},$$

where A is **tridiagonal** and given by

$$a_{i,i} = \frac{k_{i+1/2}}{h_{i+1/2}} + \frac{k_{i-1/2}}{h_{i-1/2}}, \quad a_{i,i+1} = -\frac{k_{i+1/2}}{h_{i+1/2}}, \quad a_{i,i-1} = -\frac{k_{i-1/2}}{h_{i-1/2}}$$

FIRST STEP OF THE ANALYSIS

Matrix form of the scheme $Au^{\mathcal{T}} = B$ with

$$u^{\mathcal{T}} = (u_i)_{1 \le i \le N}, \quad B = (h_i f_i)_{1 \le i \le N},$$

where A is **tridiagonal** and given by

$$a_{i,i} = \frac{k_{i+1/2}}{h_{i+1/2}} + \frac{k_{i-1/2}}{h_{i-1/2}}, \quad a_{i,i+1} = -\frac{k_{i+1/2}}{h_{i+1/2}}, \quad a_{i,i-1} = -\frac{k_{i-1/2}}{h_{i-1/2}}$$

• Observe that A is symmetric and positive definite

$$(Au^{T}, v^{T}) = \sum_{i=1}^{N} (F_{i+1/2}(u^{T}) - F_{i-1/2}(u^{T}))v_i$$

$$= -F_{1/2}(u^{T})v_1 + F_{N+1/2}(u^{T})v_N + \sum_{i=1}^{N-1} F_{i+1/2}(u^{T})(v_i - v_{i+1})$$

$$= -\sum_{i=0}^{N} F_{i+1/2}(u^{T})(v_{i+1} - v_i)$$

$$= \sum_{i=0}^{N} k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}} (v_{i+1} - v_i)$$

$$= \sum_{i=0}^{N} h_{i+1/2}k_{i+1/2} \left(\frac{u_{i+1} - u_i}{h_{i+1/2}}\right) \left(\frac{v_{i+1} - v_i}{h_{i+1/2}}\right)$$

BE parts -

FIRST STEP OF THE ANALYSIS

Matrix form of the scheme $Au^{\mathcal{T}} = B$ with

$$u^{\mathcal{T}} = (u_i)_{1 \le i \le N}, \quad B = (h_i f_i)_{1 \le i \le N},$$

where A is **tridiagonal** and given by

$$a_{i,i} = \frac{k_{i+1/2}}{h_{i+1/2}} + \frac{k_{i-1/2}}{h_{i-1/2}}, \quad a_{i,i+1} = -\frac{k_{i+1/2}}{h_{i+1/2}}, \quad a_{i,i-1} = -\frac{k_{i-1/2}}{h_{i-1/2}}$$

"Variationnal" formulation of the FV scheme To find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that

$$\underbrace{\sum_{i=0}^{N} h_{i+1/2} k_{i+1/2} \left(\frac{u_{i+1} - u_i}{h_{i+1/2}} \right) \left(\frac{v_{i+1} - v_i}{h_{i+1/2}} \right)}_{\text{sum on the interfaces}} = \underbrace{\sum_{i=1}^{N} h_i f_i v_i}_{\text{sum on the control volumes}} \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}.$$

Comments

- Matrix assembly for FV schemes is done by interfaces/edges.
- Variationnal formulation is useful in the analysis.

Let $u^{\mathcal{T}}$ be the solution to

$$Au^{\mathcal{T}} = (h_i f_i)_{1 \le i \le N}.$$

THEOREM (DISCRETE MAXIMUM PRINCIPLE)

$$(f_i \ge 0, \forall i) \Longrightarrow (u_i \ge 0, \forall i).$$

▶ Proof

Theorem $(L^{\infty}$ -stability)

There exists C > 0 depending only on k such that

 $\|u^{\mathcal{T}}\|_{\infty} \le C \|f\|_{\infty}.$

LEMMA (DISCRETE POINCARÉ INEQUALITY)

For any $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, we have

$$\|u^{\mathcal{T}}\|_{2} \stackrel{\text{def}}{=} \left(\sum_{i=1}^{N} h_{i}|u_{i}|^{2}\right)^{\frac{1}{2}} \leq \|u^{\mathcal{T}}\|_{\infty} \leq \underbrace{\left(\sum_{i=0}^{N} h_{i+1/2} \left|\frac{u_{i+1}-u_{i}}{h_{i+1/2}}\right|^{2}\right)^{\frac{1}{2}}}_{\text{discrete } H_{0}^{1} \text{ norm}}.$$

PROOF : Telescoping summation + Cauchy-Schwarz

$$u_i = (u_i - u_{i-1}) + (u_{i-1} - u_{i-2}) + \dots + (u_1 - 0).$$

THEOREM $(L^2$ -STABILITY)

For any $u^{\tau} \in \mathbb{R}^{\tau}$ solution of $Au^{\tau} = (h_i f_i)_{1 \le i \le N}$, we have the estimate

$$||u^{\mathcal{T}}||_2 \le \frac{||f||_2}{\inf k}.$$

In fact, we have a much better estimate : a discrete H^1 estimate.

Comparison with Finite Differences

We assume k(x) = 1; the PDE is then $-\partial_x^2 u = f$. We choose mass centers $x_i = \frac{x_{i-1/2} + x_{i+1/2}}{2}$.

• Inside the domain :

$$FV \Leftrightarrow FD \Leftrightarrow \frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} = f_i,$$

the schemes are identical (except possibly the source term discretisation).

We assume k(x) = 1; the PDE is then $-\partial_x^2 u = f$. We choose mass centers $x_i = \frac{x_{i-1/2} + x_{i+1/2}}{2}$.

• Inside the domain :

$$FV \Leftrightarrow FD \Leftrightarrow \frac{-u_{i+1} + 2u_i - u_{i-1}}{h^2} = f_i,$$

the schemes are identical (except possibly the source term discretisation).

• On the boundary :

$$FV \Leftrightarrow \frac{u_2 - u_1}{h} - \frac{u_1 - 0}{h/2} = hf_1.$$
$$FD \Leftrightarrow \frac{\frac{u_2 - u_1}{h} - \frac{u_1 - 0}{h/2}}{3h/4} = f_1.$$

Here the two schemes are not exactly the same.

Comparison with Finite Differences

The FV scheme inside the domain writes

$$-\frac{\frac{u_{i+1}-u_i}{h_{i+1/2}} - \frac{u_i - u_{i-1}}{h_{i-1/2}}}{h_i} = f_i \qquad \left(= \frac{1}{h_i} \int_{K_i} (-\partial_x^2 u) \, dx = -\partial_x^2 u(x_i) + O(h) \right).$$

Is the scheme consistent in the usual FD sense ? Let $u \in \mathcal{C}^2$

The FV scheme is not consistent in the FD sense

... however the scheme is L^{∞} stable and convergent $!_{21/137}$

The FV scheme inside the domain reads

$$-\frac{\frac{u_{i+1}-u_i}{h_{i+1/2}}-\frac{u_i-u_{i-1}}{h_{i-1/2}}}{h_i}=f_i.$$

AN ALTERNATE CONSISTENCY PROPERTY Assume that $u \in C^3$. We set

$$\bar{u}_i \stackrel{\text{def}}{=} u(x_i) + \frac{h_i^2}{8} \partial_x^2 u(x_i) = u(x_i) + O(h^2).$$

We find that

$$\partial_x^2 u(x_i) - \frac{\frac{\bar{u}_{i+1} - \bar{u}_i}{h_{i+1/2}} - \frac{\bar{u}_i - \bar{u}_{i-1}}{h_{i-1/2}}}{h_i} = O(h)$$
!!

 \Rightarrow This proves (in a quite non-natural way) the first order convergence of the scheme

$$\sup_{i} |u(x_i) - u_i| \le \sup_{i} |u(x_i) - \bar{u}_i| + \sup_{i} |\bar{u}_i - u_i| \le Ch.$$

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

$\scriptstyle (3)$ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

- The **flux** notion is crucial in the Finite Volume framework but it does not enter the game in the previous proof.
- Consistency in the FD sense is not adapted to FV.
- The previous convergence proof is not natural and does not have a simple generalisation to more complex problems.

CONCLUSION

We need new tools and proofs.

RECALL THE SCHEME UNDER FLUX BALANCE FORM :

$$F_{i+1/2}(u^{\tau}) - F_{i-1/2}(u^{\tau}) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$

$$F_{i+1/2}(u^{\tau}) = -k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}}, \quad 0 = 1, \dots, N.$$

Recall the scheme under flux balance form :

$$F_{i+1/2}(u^{\tau}) - F_{i-1/2}(u^{\tau}) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$

$$F_{i+1/2}(u^{\tau}) = -k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}}, \quad 0 = 1, \dots, N.$$

The exact solution u satisfies :

$$\overline{F}_{i+1/2}(u) - \overline{F}_{i-1/2}(u) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$

where the **exact fluxes** are defined by

$$\overline{F}_{i+1/2}(u) = -k_{i+1/2}(\partial_x u)(x_{i+1/2}).$$

RECALL THE SCHEME UNDER FLUX BALANCE FORM :

$$F_{i+1/2}(u^{\tau}) - F_{i-1/2}(u^{\tau}) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$

$$F_{i+1/2}(u^{\tau}) = -k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}}, \quad 0 = 1, \dots, N.$$

The exact solution u satisfies :

$$\overline{F}_{i+1/2}(u) - \overline{F}_{i-1/2}(u) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$

where the **exact fluxes** are defined by

$$\overline{F}_{i+1/2}(u) = -k_{i+1/2}(\partial_x u)(x_{i+1/2}).$$

"Projection" of the exact solution on ${\mathcal T}$:

$$\mathbb{P}^{\mathcal{T}}u = (u(x_i))_{1 \le i \le N} \in \mathbb{R}^{\mathcal{T}}$$

FLUX CONSISTENCY ERROR TERMS

$$R_{i+1/2}(u) \stackrel{\text{def}}{=} \underbrace{\left(-k_{i+1/2} \frac{u(x_{i+1}) - u(x_i)}{h_{i+1/2}}\right)}_{=F_{i+1/2}(\mathbb{P}^T u)} - \underbrace{\left(-k_{i+1/2}(\partial_x u)(x_{i+1/2})\right)}_{=\overline{F}_{i+1/2}(u)}.$$

FV ERROR ESTIMATE

We define the error $e^{\tau} = u^{\tau} - \mathbb{P}^{\tau} u$. RECALL

$$F_{i+1/2}(u^{\tau}) - F_{i-1/2}(u^{\tau}) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$
(1)

$$\overline{F}_{i+1/2}(u) - \overline{F}_{i-1/2}(u) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$
(2)

$$R_{i+1/2}(u) = F_{i+1/2}(\mathbb{P}^{\tau}u) - \overline{F}_{i+1/2}(u), \quad \forall i \in \{0, \dots, N\}.$$
 (3)
FV ERROR ESTIMATE

We define the error $e^{\tau} = u^{\tau} - \mathbb{P}^{\tau} u$. RECALL

$$F_{i+1/2}(u^{\tau}) - F_{i-1/2}(u^{\tau}) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$
(1)

$$\overline{F}_{i+1/2}(u) - \overline{F}_{i-1/2}(u) = h_i f_i, \quad \forall i \in \{1, \dots, N\},$$
(2)

$$R_{i+1/2}(u) = F_{i+1/2}(\mathbb{P}^{\tau}u) - \overline{F}_{i+1/2}(u), \quad \forall i \in \{0, \dots, N\}.$$
 (3)

The Finite Volume computation

• We subtract (1) and (2), and we use (3)

$$F_{i+1/2}(u^{\tau} - \mathbb{P}^{\tau}u) - F_{i-1/2}(u^{\tau} - \mathbb{P}^{\tau}u) = -R_{i+1/2}(u) + R_{i-1/2}(u).$$

• We multiply the equations by e_i and make the sum

$$\sum_{i=0}^{N} h_{i+1/2} k_{i+1/2} \left(\frac{e_{i+1} - e_i}{h_{i+1/2}} \right)^2 = -\sum_{i=0}^{N} h_{i+1/2} R_{i+1/2}(u) \left(\frac{e_{i+1} - e_i}{h_{i+1/2}} \right).$$

• We use Cauchy-Schwarz inequality

$$\|e^{\tau}\|_{\infty} \leq \left(\sum_{i=0}^{N} h_{i+1/2} \left(\frac{e_{i+1}-e_{i}}{h_{i+1/2}}\right)^{2}\right)^{\frac{1}{2}} \leq \frac{1}{C} \left(\sum_{i=0}^{N} h_{i+1/2} |R_{i+1/2}(u)|^{2}\right)^{\frac{1}{2}}$$

IT REMAINS TO ESTIMATE THE TERMS $R_{i+1/2}(u)$ Assume that $u \in C^2$, then Taylor formulas lead to

$$\begin{aligned} \left| R_{i+1/2}(u) \right| &= \left| \left(-k_{i+1/2} \frac{u(x_{i+1}) - u(x_i)}{h_{i+1/2}} \right) - \left(-k_{i+1/2} (\partial_x u)(x_{i+1/2}) \right) \right| . \\ &\leq \|k\|_{\infty} \|\partial_x^2 u\|_{\infty} h. \end{aligned}$$

We conclude

$$\sup_{i} |u_i - u(x_i)| = ||e^{\mathcal{T}}||_{\infty} \le ||k||_{\infty} ||\partial_x^2 u||_{\infty} h$$

IT REMAINS TO ESTIMATE THE TERMS $R_{i+1/2}(u)$ Assume that $u \in C^2$, then Taylor formulas lead to

$$\begin{aligned} \left| R_{i+1/2}(u) \right| &= \left| \left(-k_{i+1/2} \frac{u(x_{i+1}) - u(x_i)}{h_{i+1/2}} \right) - \left(-k_{i+1/2} (\partial_x u)(x_{i+1/2}) \right) \right|. \\ &\leq \|k\|_{\infty} \|\partial_x^2 u\|_{\infty} h. \end{aligned}$$

We conclude

$$\left(\sup_{i} |u_i - u(x_i)| = \|e^{\mathcal{T}}\|_{\infty} \le \|k\|_{\infty} \|\partial_x^2 u\|_{\infty} h\right)$$

Remarks :

• If we have $x_{i+1/2} = \frac{x_i + x_{i+1}}{2}$, then the scheme is second order. However, in general, **this is not true**, since we have more naturally

$$x_i = \frac{x_{i-1/2} + x_{i+1/2}}{2}$$

• Observe that, if there **one single** interface such that $R_{i+1/2}(u) = O(1)$, then the scheme is only of order 1/2.

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

(3) The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

Assumption : the diffusion coefficient k is piecewise constant and the mesh is assumed to be *compatible* with the jumps of k (i.e. k is constant on each control volume).

DISCONTINUOUS COEFFICIENTS

Assumption : the diffusion coefficient k is piecewise constant and the mesh is assumed to be *compatible* with the jumps of k (i.e. k is constant on each control volume).

Remarks

- The diffusion coefficient $k_{i+1/2} = k(x_{i+1/2})$ is not defined anymore.
- The solution u has no chance to be \mathcal{C}^2 ! Indeed, if f is \mathcal{C}^0 , we only have

$$k(\partial_x u) \in \mathcal{C}^1.$$

• Therefore, it is the **total flux** which is smooth

Exact total flux :
$$\overline{F}_{i+1/2}(u) = -\left(k(\partial_x u)\right)(x_{i+1/2}).$$

DISCONTINUOUS COEFFICIENTS

Assumption : the diffusion coefficient k is piecewise constant and the mesh is assumed to be *compatible* with the jumps of k (i.e. k is constant on each control volume).

Remarks

- The diffusion coefficient $k_{i+1/2} = k(x_{i+1/2})$ is not defined anymore.
- The solution u has no chance to be \mathcal{C}^2 ! Indeed, if f is \mathcal{C}^0 , we only have

$$k(\partial_x u) \in \mathcal{C}^1.$$

• Therefore, it is the **total flux** which is smooth

Exact total flux :
$$\overline{F}_{i+1/2}(u) = -\left(k(\partial_x u)\right)(x_{i+1/2}).$$

DEFINITION OF THE NUMERICAL FLUX We still consider the two-point formula

$$F_{i+1/2}(u^{\mathcal{T}}) = -k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}},$$

but how do we choose the diffusion coefficient $k_{i+1/2}$?

$$k_{i+1/2} = k_i$$
? $k_{i+1/2} = k_{i+1}$? $k_{i+1/2} = (k_i + k_{i+1})/2$?

• $x \mapsto k(x)$ is a constant = k_i thus $u \in \mathcal{C}^2$ in κ_i .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}) \approx k_i \frac{u(x_{i+1/2}) - u(x_i)}{x_{i+1/2} - x_i}.$$

In the control volume κ_{i+1}

• $x \mapsto k(x)$ is a constant $= k_{i+1}$ thus $u \in C^2$ in κ_{i+1} .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}^+) \approx k_{i+1} \frac{u(x_{i+1}) - u(x_{i+1/2})}{x_{i+1} - x_{i+1/2}}.$$

• $x \mapsto k(x)$ is a constant $= k_i$ thus $u \in C^2$ in κ_i .

$$\Rightarrow (k\partial_x u)(\bar{x_{i+1/2}}) \approx k_i \frac{u(x_{i+1/2}) - u(x_i)}{x_{i+1/2} - x_i}.$$

In the control volume κ_{i+1}

• $x \mapsto k(x)$ is a constant $= k_{i+1}$ thus $u \in \mathcal{C}^2$ in κ_{i+1} .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}^+) \approx k_{i+1} \frac{u(x_{i+1}) - u(x_{i+1/2})}{x_{i+1} - x_{i+1/2}}.$$

We write the total flux continuity at $x_{i+1/2}$

$$\overline{F}_{i+1/2}(u) = -(k\partial_x u)(x_{i+1/2}^+) = -(k\partial_x u)(\bar{x_{i+1/2}}).$$

• $x \mapsto k(x)$ is a constant $= k_i$ thus $u \in C^2$ in κ_i .

$$\Rightarrow (k\partial_x u)(\bar{x_{i+1/2}}) \approx k_i \frac{u(x_{i+1/2}) - u(x_i)}{x_{i+1/2} - x_i}.$$

In the control volume κ_{i+1}

• $x \mapsto k(x)$ is a constant $= k_{i+1}$ thus $u \in \mathcal{C}^2$ in κ_{i+1} .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}^+) \approx k_{i+1} \frac{u(x_{i+1}) - u(x_{i+1/2})}{x_{i+1} - x_{i+1/2}}.$$

We write the total flux continuity at $x_{i+1/2}$

$$\overline{F}_{i+1/2}(u) = -(k\partial_x u)(x_{i+1/2}^+) = -(k\partial_x u)(x_{i+1/2}^-).$$

WE TRY TO ELIMINATE THE INTERFACE VALUE

$$\overline{F}_{i+1/2}(u) = -\frac{\frac{x_{i+1} - x_{i+1/2}}{k_{i+1}}(k\partial_x u)(x_{i+1/2}^+) + \frac{x_{i+1/2} - x_i}{k_i}(k\partial_x u)(x_{i+1/2}^-)}{\frac{x_{i+1} - x_{i+1/2}}{k_{i+1}} + \frac{x_{i+1/2} - x_i}{k_i}}$$

• $x \mapsto k(x)$ is a constant = k_i thus $u \in \mathcal{C}^2$ in κ_i .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}) \approx k_i \frac{u(x_{i+1/2}) - u(x_i)}{x_{i+1/2} - x_i}.$$

In the control volume κ_{i+1}

• $x \mapsto k(x)$ is a constant $= k_{i+1}$ thus $u \in \mathcal{C}^2$ in κ_{i+1} .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}^+) \approx k_{i+1} \frac{u(x_{i+1}) - u(x_{i+1/2})}{x_{i+1} - x_{i+1/2}}.$$

We write the total flux continuity at $x_{i+1/2}$

$$\overline{F}_{i+1/2}(u) = -(k\partial_x u)(x_{i+1/2}^+) = -(k\partial_x u)(\bar{x}_{i+1/2}).$$

WE TRY TO ELIMINATE THE INTERFACE VALUE

$$\overline{F}_{i+1/2}(u) \approx -\frac{u(x_{i+1}) - u(x_i)}{\frac{x_{i+1} - x_{i+1/2}}{k_{i+1}} + \frac{x_{i+1/2} - x_i}{k_i}}$$

• $x \mapsto k(x)$ is a constant = k_i thus $u \in \mathcal{C}^2$ in κ_i .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}) \approx k_i \frac{u(x_{i+1/2}) - u(x_i)}{x_{i+1/2} - x_i}.$$

In the control volume κ_{i+1}

• $x \mapsto k(x)$ is a constant $= k_{i+1}$ thus $u \in \mathcal{C}^2$ in κ_{i+1} .

$$\Rightarrow (k\partial_x u)(x_{i+1/2}^+) \approx k_{i+1} \frac{u(x_{i+1}) - u(x_{i+1/2})}{x_{i+1} - x_{i+1/2}}.$$

We write the total flux continuity at $x_{i+1/2}$

$$\overline{F}_{i+1/2}(u) = -(k\partial_x u)(x_{i+1/2}^+) = -(k\partial_x u)(\bar{x_{i+1/2}}).$$

WE TRY TO ELIMINATE THE INTERFACE VALUE

$$\overline{F}_{i+1/2}(u) \approx -\underbrace{\frac{h_{i+1/2}}{\underbrace{\frac{x_{i+1}-x_{i+1/2}}{k_{i+1}} + \frac{x_{i+1/2}-x_i}{k_i}}}{\underbrace{\frac{\det}{k_{i+1/2}}, \text{ harmonic mean}}} \frac{u(x_{i+1}) - u(x_i)}{h_{i+1/2}}$$

DISCONTINUOUS COEFFICIENTS

The FV scheme is thus the following : To find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that

$$F_{i+1/2}(u^{\tau}) - F_{i-1/2}(u^{\tau}) = h_i f_i, \quad \forall 1 \le i \le N,$$

with

$$F_{i+1/2}(u^{\mathcal{T}}) = -k_{i+1/2} \frac{u_{i+1} - u_i}{h_{i+1/2}},$$

$$k_{i+1/2} = \frac{h_{i+1/2}k_ik_{i+1}}{(x_{i+1} - x_{i+1/2})k_i + (x_{i+1/2} - x_i)k_{i+1}}.$$

Theoretical results

- Existence and uniqueness of the solution.
- L^{∞} and L^2 stability.
- First order H^1 -convergence for any source term in $f \in L^2(\Omega)$.
- We observe (without proof) a second order convergence in L^{∞} .

The other choices of $k_{i+1/2}$ lead to a poor convergence rate.

- $k_{i+1/2}$ = arithmetic mean \rightsquigarrow convergence rate $\frac{1}{2}$.
- $k_{i+1/2}$ = harmonic mean \rightsquigarrow convergence rate 1.

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

(3) The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

(Eymard, Gallouët, Herbin, '00 \rightarrow '09)

Definition in 2D

- Ω a connected bounded polygonal domain in \mathbb{R}^2 .
- An admissible orthogonal mesh \mathcal{T} is made of
 - a finite set of non empty compact convex polygonal subdomains of Ω refered to as κ , called control volumes such that

• If
$$\kappa \neq \mathcal{L}$$
, then $\overset{\circ}{\kappa} \cap \overset{\circ}{\mathcal{L}} = \emptyset$.

•
$$\overline{\Omega} = \bigcup_{\mathcal{K} \in \mathcal{T}} \kappa.$$

- A set of points, called centers, $(x_{\mathcal{K}})_{\mathcal{K}\in\mathcal{T}}$ such that
 - For any $\kappa \in \mathcal{T}, x_{\mathcal{K}} \in \overset{\circ}{\kappa}$.
 - For any κ, ε ∈ T, κ ≠ ε such that κ ∩ ε is a segment, then it is an edge of κ and an edge of ε is denoted κ|ε and satisfies the orthogonality condition

$$[x_{\mathcal{K}}, x_{\mathcal{L}}] \perp \mathcal{K} | \mathcal{L}.$$

NOTATIONS

- Mesh size : size(\mathcal{T}) = max_{$\kappa \in \mathcal{T}$} (diam(κ)).
- Set of edges : $\mathcal{E}, \mathcal{E}_{ext}, \mathcal{E}_{int}, \mathcal{E}_{\mathcal{K}}$
- Unit normals : $\boldsymbol{\nu}_{\mathcal{K}}, \, \boldsymbol{\nu}_{\mathcal{K}\sigma}, \, \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}}$
- Volumes/Areas/Measures : $|\kappa|$, $|\sigma|$
- Distances : $d_{\mathcal{K}\sigma}, d_{\mathcal{L}\sigma}, d_{\mathcal{K}\mathcal{L}}, d_{\sigma}$

NOTATIONS. GENERALITIES.

Consider the following problem

$$\begin{cases} -\Delta u = f, & \text{in } \Omega\\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

and an admissible orthogonal mesh ${\mathcal T}$

Flux balance equation on the control volume κ

$$|\kappa| f_{\mathcal{K}} \stackrel{\text{def}}{=} \int_{\mathcal{K}} f = \int_{\mathcal{K}} -\Delta u = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \underbrace{-\int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\mathcal{K}\sigma}}_{\stackrel{\text{def}}{=} \overline{F_{\mathcal{K},\sigma}(u)}}$$

The Two-Point Flux Approximation Scheme (TPFA)

NOTATIONS. GENERALITIES.

LOCAL CONSERVATIVITY PROPERTY FOR THE INITIAL PROBLEM

$$\overline{F}_{\mathcal{K},\sigma}(u) = -\overline{F}_{\mathcal{L},\sigma}(u), \text{ for } \sigma = \kappa | \mathcal{L}.$$

NOTATIONS. GENERALITIES.

LOCAL CONSERVATIVITY PROPERTY FOR THE INITIAL PROBLEM

$$\overline{F}_{\mathcal{K},\sigma}(u) = -\overline{F}_{\mathcal{L},\sigma}(u), \quad \text{for } \sigma = \kappa | \mathcal{L}.$$

Cell-Centered Unknowns

KNOWNS We are looking for $u_{\mathcal{K}} \sim u(x_{\mathcal{K}})$ **Notation :** $u^{\mathcal{T}} = (u_{\mathcal{K}})_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$.

The Two-Point Flux Approximation Scheme (TPFA)

NOTATIONS. GENERALITIES.

LOCAL CONSERVATIVITY PROPERTY FOR THE INITIAL PROBLEM

$$\overline{F}_{\mathcal{K},\sigma}(u) = -\overline{F}_{\mathcal{L},\sigma}(u), \quad \text{for } \sigma = \kappa | \mathcal{L}.$$

Cell-centered unknowns We are looking for $u_{\mathcal{K}} \sim u(x_{\mathcal{K}})$ Notation : $u^{\mathcal{T}} = (u_{\mathcal{K}})_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$.

NUMERICAL FLUXES

A family of maps $u^{\mathcal{T}} \mapsto F_{\mathcal{K},\sigma}(u^{\mathcal{T}})$ in order to approximate $\overline{F}_{\mathcal{K},\sigma}(u)$

NUMERICAL SCHEME

We look for
$$u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$$
 such that $|\kappa| f_{\kappa} = \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(u^{\mathcal{T}})$ for any $\kappa \in \mathcal{T}$.

CONSTRUCTION OF NUMERICAL FLUXES.

CASE OF AN INTERIOR EDGE

$$\sigma \in \mathcal{E}_{int}, \, \sigma = \kappa | \mathcal{L}.$$

$$x_{\mathcal{L}} - x_{\mathcal{K}} = d_{\mathcal{K}\mathcal{L}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}}.$$

For $x \in \sigma$, $(\nabla u(x)) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} + O(\text{size}(\mathcal{T}))$
$$\implies \overline{F}_{\mathcal{K},\sigma}(u) = -|\sigma| \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} + O(\text{size}(\mathcal{T})^2)$$

CONSTRUCTION OF NUMERICAL FLUXES.

CASE OF AN INTERIOR EDGE

$$\sigma \in \mathcal{E}_{int}, \, \sigma = \kappa | \mathcal{L}.$$

$$x_{\mathcal{L}} - x_{\mathcal{K}} = d_{\mathcal{K}\mathcal{L}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}}.$$

For $x \in \sigma$, $(\nabla u(x)) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} + O(\operatorname{size}(\mathcal{T}))$
$$\implies \overline{F}_{\mathcal{K},\sigma}(u) = -|\sigma| \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} + O(\operatorname{size}(\mathcal{T})^2)$$

Thus, we define

$$\left(F_{\mathcal{K},\sigma}(u^{\mathcal{T}})\stackrel{\mathrm{def}}{=} -|\sigma|\frac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{KL}}}\right)$$

REMARK AND DEFINITION

The scheme is built so as to be conservative

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -F_{\mathcal{L},\sigma}(u^{\mathcal{T}})$$

We set

$$F_{\mathcal{K},\mathcal{L}}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -F_{\mathcal{L},\sigma}(u^{\mathcal{T}}).$$

CONSTRUCTION OF NUMERICAL FLUXES.

CASE OF A BOUNDARY EDGE

$$\sigma \in \mathcal{E}_{ext}.$$

$$(\nabla u(x)) \cdot \boldsymbol{\nu}_{\kappa\sigma} \sim \frac{u(x_{\sigma}) - u(x_{\kappa})}{d_{\kappa\sigma}} = \frac{\mathbf{0} - u(x_{\kappa})}{d_{\kappa\sigma}} \Leftarrow \text{Boundary data}$$
$$\implies \overline{F}_{\kappa,\sigma}(u) = -|\sigma| \frac{-u(x_{\kappa})}{d_{\kappa\sigma}} + O(\text{size}(\mathcal{T})^2)$$

 $x_{\sigma} - x_{\kappa} = d_{\kappa\sigma} \boldsymbol{\nu}_{\kappa\sigma}.$

Thus we define

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) \stackrel{\mathrm{def}}{=} -|\sigma| rac{-u_{\mathcal{K}}}{d_{\mathcal{K}\sigma}}.$$

THE TWO-POINT FLUX APPROXIMATION SCHEME (TPFA) Construction of the scheme.

DEFINITION OF THE TPFA SCHEME

We look for $u^{\mathcal{T}} = (u_{\mathcal{K}})_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that

$$\begin{cases} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = |\kappa| f_{\mathcal{K}}, & \forall \kappa \in \mathcal{T}, \\ F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -|\sigma| \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}}, & \text{for } \sigma = \kappa | \mathcal{L} \in \mathcal{E}_{int}, \\ F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -|\sigma| \frac{-u_{\mathcal{K}}}{d_{\mathcal{K}\sigma}}, & \text{for } \sigma \in \mathcal{E}_{ext}. \end{cases}$$
(TPFA)

- It is a linear system of N equations with N unknowns (N=nb of control volumes in \mathcal{T}).
- The scheme is also known as VF4/FV4 : 4-point stencil for a triangle 2D mesh.
- On a 2D uniform Cartesian mesh : we recover the usual 5-point scheme.

THE TWO-POINT FLUX APPROXIMATION SCHEME (TPFA) CONSTRUCTION OF THE SCHEME.

DEFINITION OF THE TPFA SCHEME

We look for $u^{\mathcal{T}} = (u_{\mathcal{K}})_{\mathcal{K} \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ such that

$$\begin{cases} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = |\kappa| f_{\mathcal{K}}, & \forall \kappa \in \mathcal{T}, \\ F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -|\sigma| \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}}, & \text{for } \sigma = \kappa | \mathcal{L} \in \mathcal{E}_{int}, \\ F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -|\sigma| \frac{-u_{\mathcal{K}}}{d_{\mathcal{K}\sigma}}, & \text{for } \sigma \in \mathcal{E}_{ext}. \end{cases}$$
 (TPFA)

NOTATIONS - PIECEWISE CONSTANT APPROXIMATION

- We define $f^{\mathcal{T}} = (f_{\mathcal{K}})_{\mathcal{K}\in\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$.
- With each set of unknowns $v^{\tau} \in \mathbb{R}^{\tau}$, we associate the **piecewise** constant function

$$v^{\mathcal{T}}(x) = \sum_{\kappa \in \mathcal{T}} v_{\kappa} \mathbf{1}_{\kappa}(x).$$

• Natural norms $||v^{\mathcal{T}}||_{L^{\infty}} = \sup_{\kappa \in \mathcal{T}} |v_{\kappa}|, \quad ||v^{\mathcal{T}}||_{L^{2}} = \left(\sum_{\kappa \in \mathcal{T}} |\kappa| |v_{\kappa}|^{2}\right)^{\frac{1}{2}}.$

FV methods are non-conforming methods

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

⁽³⁾ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

Analysis of the TPFA scheme

NOTATIONS : Oriented difference quotients

• For any couple of neighboring control volumes (κ, \mathcal{L}) we set

$$D_{\mathcal{K}\mathcal{L}}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}}.$$

• For any interior edge $\sigma \in \mathcal{E}_{int}$ we set

$$D_{\sigma}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} D_{\mathcal{KL}}(u^{\mathcal{T}}) = D_{\mathcal{LK}}(u^{\mathcal{T}}).$$

• For any exterior edge $\sigma \in \mathcal{E}_{ext}$ we set $D_{\sigma}(u^{\tau}) \stackrel{\text{def}}{=} \frac{0 - u_{\mathcal{K}}}{d_{\mathcal{K}\sigma}} \boldsymbol{\nu}_{\mathcal{K}\sigma}.$

LEMMA (DISCRETE INTEGRATION BY PARTS)

Let $u^{\tau} \in \mathbb{R}^{\mathcal{T}}$ be a solution of (TPFA) if it exists, then for any $v^{\tau} \in \mathbb{R}^{\mathcal{T}}$

$$\underbrace{\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| D_{\sigma}(u^{\tau}) \cdot D_{\sigma}(v^{\tau})}_{\stackrel{\text{def}}{=} [u^{\tau}, v^{\tau}]_{1,\tau}} = \sum_{\kappa \in \mathcal{T}} |\kappa| v_{\kappa} f_{\kappa} = (v^{\tau}, f^{\tau})_{L^{2}}.$$

 \rightsquigarrow Local conservativity of the scheme is crucial here.

LEMMA (DISCRETE INTEGRATION BY PARTS)

Let $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ be a solution of (TPFA) if it exists, then for any $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

$$\underbrace{\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| D_{\sigma}(u^{\tau}) \cdot D_{\sigma}(v^{\tau})}_{\underset{\sigma \in \mathcal{F}}{\underbrace{\det}} [u^{\tau}, v^{\tau}]_{1, \tau}} = \sum_{\kappa \in \mathcal{T}} |\kappa| v_{\kappa} f_{\kappa} = (v^{\tau}, f^{\tau})_{L^{2}}.$$

\rightsquigarrow Local conservativity of the scheme is crucial here.

PROPOSITION

The bilinear form

$$(u^{\mathcal{T}}, v^{\mathcal{T}}) \in \mathbb{R}^{\mathcal{T}} \times \mathbb{R}^{\mathcal{T}} \mapsto [u^{\mathcal{T}}, v^{\mathcal{T}}]_{1,\mathcal{T}},$$

is an inner product in $\mathbb{R}^{\mathcal{T}}$ that we call discrete H_0^1 inner product. The associated norm $\|\cdot\|_{1,\mathcal{T}}$ is called discrete H_0^1 norm.

Theorem

For any source term $f \in L^2(\Omega)$, the scheme (TPFA) has a unique solution $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ and we have

$$\|u^{\mathcal{T}}\|_{1,\mathcal{T}}^{2} \leq \|u^{\mathcal{T}}\|_{L^{2}} \|f^{\mathcal{T}}\|_{L^{2}} \leq \|u^{\mathcal{T}}\|_{L^{2}} \|f\|_{L^{2}}.$$

In order to get a useful discrete- H^1 estimate, we need

THEOREM (DISCRETE POINCARÉ INEQUALITY)

For any orthogonal admissible mesh \mathcal{T} , we have

 $\|v^{\mathcal{T}}\|_{L^2} \leq \operatorname{diam}(\Omega) \|v^{\mathcal{T}}\|_{1,\mathcal{T}}, \quad \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}.$

▶ Proof

MATRIX OF THE SYSTEM :

- A is symmetric definite positive (See : Discrete integration by parts).
- A is a M-matrix \Rightarrow Discrete maximum principle

$$f^{\mathcal{T}} \ge 0 \Longrightarrow u^{\mathcal{T}} \ge 0.$$

Indeed, the line of the system $Au^{\mathcal{T}}=f^{\mathcal{T}}$ corresponding to the control volume κ reads

$$\sum_{\mathcal{L}\in V_{\mathcal{K}}} \underbrace{\tau_{\mathcal{K}\mathcal{L}}}_{\geq 0} (u_{\mathcal{K}} - u_{\mathcal{L}}) = |\kappa| f_{\mathcal{K}}.$$

Analysis of the TPFA scheme

DISCRETE GRADIENT. COMPACTNESS. CONVERGENCE

DIAMOND CELLS

DISCRETE GRADIENT

For any $v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, and any $\mathcal{D} \in \mathfrak{D}$, we set

$$\nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}} \stackrel{\text{def}}{=} \begin{cases} \frac{d u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = dD_{\sigma}(u^{\mathcal{T}}), & \text{for } \sigma \in \mathcal{E}_{int}, \\ \frac{d - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K}\sigma} = dD_{\sigma}(u^{\mathcal{T}}), & \text{for } \sigma \in \mathcal{E}_{ext}, \\ \nabla^{\mathcal{T}} v^{\mathcal{T}} \stackrel{\text{def}}{=} \sum_{\mathcal{D} \in \mathfrak{D}} \mathbf{1}_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}} \in (L^{2}(\Omega))^{2}. \end{cases}$$

Link with the discrete H_0^1 norm

$$\|v^{\mathcal{T}}\|_{1,\mathcal{T}}^2 = \frac{1}{d} \|\nabla^{\mathcal{T}}v^{\mathcal{T}}\|_{L^2}^2.$$

44/137

THEOREM (WEAK COMPACTNESS)

Let $(\mathcal{T}_n)_n$ be a sequence of admissible orthogonal meshes such that $\operatorname{size}(\mathcal{T}_n) \to 0$ and $(u^{\mathcal{T}_n})_n$ a familly of discrete functions defined on each of these meshes and such that

$$\sup_{n} \|u^{\mathcal{T}_n}\|_{1,\mathcal{T}_n} < +\infty.$$

Then

There exists a function u ∈ L²(Ω) and a subsequence (u<sup>T_{φ(n)})_n that strongly converges towards u in L²(Ω).
</sup>

THEOREM (WEAK COMPACTNESS)

Let $(\mathcal{T}_n)_n$ be a sequence of admissible orthogonal meshes such that $\operatorname{size}(\mathcal{T}_n) \to 0$ and $(u^{\mathcal{T}_n})_n$ a familly of discrete functions defined on each of these meshes and such that

$$\sup_{n} \|u^{\mathcal{T}_n}\|_{1,\mathcal{T}_n} < +\infty.$$

Then

• There exists a function $u \in L^2(\Omega)$ and a subsequence $(u^{\mathcal{T}_{\varphi(n)}})_n$ that strongly converges towards u in $L^2(\Omega)$.

Moreover,

- The function u belongs to $H_0^1(\Omega)$.
- The sequence of discrete gradients (∇^{T_φ(n)} u^{T_φ(n)})_n weakly converges towards ∇u in (L²(Ω))^d.

> Proof

THEOREM (CONVERGENCE OF THE TPFA SCHEME)

Let $f \in L^2(\Omega)$ and $u \in H^1_0(\Omega)$ be the unique solution to the PDE.

Let $(\mathcal{T}_n)_n$ be a family of admissible orthogonal meshes such that $\operatorname{size}(\mathcal{T}_n) \to 0$.

For any n, let $u^{\tau_n} \in \mathbb{R}^{\tau_n}$ be the unique solution of the TPFA scheme on the mesh \mathcal{T}_n associated with the source term f.

THEOREM (CONVERGENCE OF THE TPFA SCHEME)

Let $f \in L^2(\Omega)$ and $u \in H^1_0(\Omega)$ be the unique solution to the PDE.

Let $(\mathcal{T}_n)_n$ be a family of admissible orthogonal meshes such that $\operatorname{size}(\mathcal{T}_n) \to 0.$

For any n, let $u^{\tau_n} \in \mathbb{R}^{\tau_n}$ be the unique solution of the TPFA scheme on the mesh \mathcal{T}_n associated with the source term f.

Then, we have

- **9** The sequence $(u^{\mathcal{T}_n})_n$ strongly converges towards u in $L^2(\Omega)$.
- **2** The sequence $(\nabla^{\tau_n} u^{\tau_n})_n$ weakly converges towards ∇u in $(L^2(\Omega))^d$.
- Strong convergence of the gradients DOES NOT HOLD (excepted for f = u = 0).

FIRST REMARKS

- Convergence of the scheme : no need of any regularity assumption on u.
- For error estimates we will assume that $u \in H^2(\Omega)$.
FIRST REMARKS

- Convergence of the scheme : no need of any regularity assumption on u.
- For error estimates we will assume that $u \in H^2(\Omega)$.

PRINCIPLE OF THE ANALYSIS

• We want to compare $u^{\mathcal{T}}$ with the projection $\mathbb{P}^{\mathcal{T}} u = (u(x_{\mathcal{K}}))_{\mathcal{K}}$ of the exact solution on the mesh. The error is thus defined by

$$e^{\mathcal{T}} \stackrel{\text{def}}{=} \mathbb{P}^{\mathcal{T}} u - u^{\mathcal{T}}.$$

FIRST REMARKS

- Convergence of the scheme : no need of any regularity assumption on u.
- For error estimates we will assume that $u \in H^2(\Omega)$.

PRINCIPLE OF THE ANALYSIS

• We want to compare $u^{\mathcal{T}}$ with the projection $\mathbb{P}^{\mathcal{T}} u = (u(x_{\mathcal{K}}))_{\mathcal{K}}$ of the exact solution on the mesh. The error is thus defined by

$$e^{\mathcal{T}} \stackrel{\text{def}}{=} \mathbb{P}^{\mathcal{T}} u - u^{\mathcal{T}}.$$

• We compare the numerical fluxes computed on $\mathbb{P}^{\tau}u$ with exact fluxes

$$|\sigma|R_{\mathcal{K},\sigma}(u) \stackrel{\text{def}}{=} F_{\mathcal{K},\sigma}(\mathbb{P}^{\mathcal{T}}u) - \overline{F}_{\mathcal{K},\sigma}(u),$$

that is

$$R_{\mathcal{K},\sigma}(u) = \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} - \frac{1}{|\sigma|} \int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx, \quad \forall \sigma \in \mathcal{E}_{int}.$$

Analysis of the TPFA scheme

$$|\sigma|R_{\mathcal{K},\sigma}(u) \stackrel{\text{def}}{=} F_{\mathcal{K},\sigma}(\mathbb{P}^{\mathcal{T}}u) - \overline{F}_{\mathcal{K},\sigma}(u).$$

• We subtract the exact fluxes balance equation (that is the PDE integrated on κ)

$$|\kappa|f_{\mathcal{K}} = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \overline{F}_{\mathcal{K},\sigma} = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(\mathbb{P}^{\tau}u) - \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| R_{\mathcal{K},\sigma}(u),$$

and the numerical scheme

$$|\kappa| f_{\mathcal{K}} = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(u^{\mathcal{T}}).$$

We get

$$\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(e^{\mathcal{T}}) = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| R_{\mathcal{K},\sigma}(u), \quad \forall \kappa \in \mathcal{T}.$$
(*)

$$|\sigma|R_{\mathcal{K},\sigma}(u) \stackrel{\text{def}}{=} F_{\mathcal{K},\sigma}(\mathbb{P}^{\mathcal{T}}u) - \overline{F}_{\mathcal{K},\sigma}(u).$$

• We get

$$\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(e^{\mathcal{T}}) = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| R_{\mathcal{K},\sigma}(u), \quad \forall \kappa \in \mathcal{T}.$$
(*)

$$|\sigma|R_{\mathcal{K},\sigma}(u) \stackrel{\text{def}}{=} F_{\mathcal{K},\sigma}(\mathbb{P}^{\mathcal{T}}u) - \overline{F}_{\mathcal{K},\sigma}(u).$$

• We get

$$\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma}(e^{\mathcal{T}}) = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| R_{\mathcal{K},\sigma}(u), \quad \forall \kappa \in \mathcal{T}.$$
(*)

- We multiply (\star) by e_{κ} and we sum over κ .
- We Notice that the flux consistency error terms are conservative $R_{\mathcal{K},\sigma}(u) = -R_{\mathcal{L},\sigma}(u)$, thus we get

$$\|e^{\mathcal{T}}\|_{1,\mathcal{T}}^2 = [e^{\mathcal{T}}, e^{\mathcal{T}}]_{1,\mathcal{T}} = \sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| D_{\sigma} (e^{\mathcal{T}})^2 = \sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| R_{\sigma} (u) D_{\sigma} (e^{\mathcal{T}}).$$

• We use the Cauchy-Schwarz inequality

$$\|e^{\tau}\|_{1,\tau} \le \left(\sum_{\sigma\in\mathcal{E}} d_{\sigma}|\sigma||R_{\sigma}(u)|^2\right)^{\frac{1}{2}}.$$

Recall

$$\|e^{\mathcal{T}}\|_{1,\mathcal{T}} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| |R_{\sigma}(u)|^{2}\right)^{\frac{1}{2}}.$$
$$|R_{\sigma}(u)| = \left|\frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} - \frac{1}{|\sigma|} \int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} dx\right|, \quad \forall \sigma \in \mathcal{E}_{int}.$$

THEOREM (ERROR ESTIMATE - Version 1)

Assume $u \in \mathcal{C}^2(\overline{\Omega})$, there exists C > 0 depending only on Ω s.t. $(\|\mathbb{P}^{\tau}u - u^{\tau}\|_{L^2} =) \qquad \|e^{\tau}\|_{L^2} \leq \operatorname{diam}(\Omega)\|e^{\tau}\|_{1,\tau} \leq \operatorname{Csize}(\tau)\|D^2u\|_{L^{\infty}},$ $\|u - u^{\tau}\|_{L^2} \leq \operatorname{Csize}(\tau)\|D^2u\|_{L^{\infty}}.$

MAIN TOOL : CONSISTENCY ERROR TERMS ESTIMATE

For
$$u \in \mathcal{C}^2(\overline{\Omega})$$
, $|R_{\sigma}(u)| \leq C ||D^2 u||_{\infty} \text{size}(\mathcal{T}).$

Analysis of the TPFA scheme

Recall

$$\|e^{\tau}\|_{1,\tau} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| |R_{\sigma}(u)|^{2}\right)^{\frac{1}{2}}.$$
$$|R_{\sigma}(u)| = \left|\frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} - \frac{1}{|\sigma|} \int_{\sigma} \nabla u \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} dx\right|, \quad \forall \sigma \in \mathcal{E}_{int}.$$

THEOREM (ERROR ESTIMATE - Version 2)

Assume $u \in H^2(\Omega)$, there exists C > 0 depending only on Ω and $\operatorname{reg}(\mathcal{T})$ s.t. $\left(\|\mathbb{P}^{\mathcal{T}}u - u^{\mathcal{T}}\|_{L^2} = \right) \qquad \|e^{\mathcal{T}}\|_{L^2} \leq \operatorname{diam}(\Omega)\|e^{\mathcal{T}}\|_{1,\mathcal{T}} \leq C\operatorname{size}(\mathcal{T})\|D^2u\|_{L^2},$ $\|u - u^{\mathcal{T}}\|_{L^2} \leq C\operatorname{size}(\mathcal{T})\|D^2u\|_{L^2}.$

MAIN TOOL : CONSISTENCY ERROR TERMS ESTIMATE

For
$$u \in H^{2}(\Omega)$$
, $|R_{\sigma}(u)| \leq C \text{size}(\mathcal{T}) \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} |D^{2}u|^{2} dx\right)^{\frac{1}{2}}$, Proof
where $C > 0$ only depends on $\operatorname{reg}(\mathcal{T}) \stackrel{\text{def}}{=} \sup_{\substack{\sigma \in \mathcal{E} \\ \nabla \mathcal{L} \text{ for elliptic problems}}} \left(|\sigma|/d_{\mathcal{L}\sigma} + |\sigma|/d_{\mathcal{L}\sigma}\right)$.

• In practice, we observe a super-convergence phenomenon

$$||e^{\mathcal{T}}||_{L^2(\Omega)} \sim C \operatorname{size}(\mathcal{T})^2,$$

the same as for \mathbb{P}^1 finite element approximation (Aubin–Nitschze trick).

 \rightsquigarrow Still an open problem up to now.

- DISCRETE FUNCTIONAL ANALYSIS
 - Discrete Poincaré inequalities
 (Eymard-Gallouët-Herbin, '00)
 (Omnes-Le, '13)
 - Discrete Gagliardo-Nirenberg-Sobolev embeddings (Bessemoulin-Chatard - Chainais-Hillairet - Filbet, '12)
 - Discrete Besov estimates (Andreianov -B. Hubert,'07)
 - Discrete Aubin–Lions–Simon lemma

(Gallouët-Latché, '12)

IMPLEMENTATION

We need to build the linear system $Au^{T} = b$ to be solved. General philosophy : loop over edges

• If $\sigma = \kappa | \mathcal{L}$ is an interior edge, we define the transmissivity $\tau_{\sigma} \stackrel{\text{def}}{=} \frac{|\sigma|}{d_{\mathcal{K}\mathcal{L}}}$, and we assemble the contributions of the flux

$$F_{\mathcal{K}\mathcal{L}}(u^{\mathcal{T}}) = -|\sigma| \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}} = \tau_{\sigma}(u_{\mathcal{K}} - u_{\mathcal{L}}).$$

$$\begin{cases} A(\kappa,\kappa) \leftrightarrow A(\kappa,\kappa) + \tau_{\sigma}, \\ A(\kappa, \mathcal{L}) \leftrightarrow A(\kappa, \mathcal{L}) - \tau_{\sigma}, \\ A(\mathcal{L}, \mathcal{L}) \leftrightarrow A(\mathcal{L}, \mathcal{L}) + \tau_{\sigma}, \\ A(\mathcal{L},\kappa) \leftrightarrow A(\mathcal{L},\kappa) - \tau_{\sigma}. \end{cases}$$

Required data structure :

- Connectivity informations for each edge
- Positions of centers and vertices of the mesh.

IMPLEMENTATION

We need to build the linear system $Au^{T} = b$ to be solved. General philosophy : loop over edges

• If $\sigma = \kappa | \mathcal{L}$ is an interior edge, we define the transmissivity $\tau_{\sigma} \stackrel{\text{def}}{=} \frac{|\sigma|}{d_{\mathcal{K}\mathcal{L}}}$, and we assemble the contributions of the flux

$$x_{\kappa} \xrightarrow{\mathcal{D}_{\kappa\sigma}} \mathcal{D}_{L\sigma} \xrightarrow{x_{L}} |\sigma|$$

$$F_{\mathcal{K}\mathcal{L}}(u^{\mathcal{T}}) = -|\sigma| \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}} = \tau_{\sigma}(u_{\mathcal{K}} - u_{\mathcal{L}}).$$

$$\begin{cases} b(\kappa) \leftrightarrow b(\kappa) + \int_{\mathcal{D}_{\mathcal{K}_{\sigma}}} f(x) \, dx, \\ b(\mathcal{L}) \leftrightarrow b(\mathcal{L}) + \int_{\mathcal{D}_{\mathcal{L}_{\sigma}}} f(x) \, dx. \end{cases}$$

or any quadrature approximation, e.g.

$$\begin{cases} b(\kappa) \leftrightarrow b(\kappa) + |\mathcal{D}_{\mathcal{K}\sigma}| f(x_{\mathcal{K}}), \\ b(\mathcal{L}) \leftrightarrow b(\mathcal{L}) + |\mathcal{D}_{\mathcal{L}\sigma}| f(x_{\mathcal{L}}). \end{cases}$$

Required data structure :

- Connectivity informations for each edge
- Positions of centers and vertices of the mesh.

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

⁽³⁾ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

The problem under study

$$\begin{cases} -\operatorname{div}\left(k(x)\nabla u\right) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

with $k \in L^{\infty}(\Omega, \mathbb{R})$ and $\inf_{\Omega} k > 0$. TPFA SCHEME General structure unchanged

eneral structure unchanged

$$\forall \kappa \in \mathcal{T}, \ |\kappa| f_{\kappa} = \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(u^{\tau}),$$

but we need to adapt the numerical flux definitions

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = |\sigma| k_{\sigma} \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}}.$$

QUESTION

How to choose the coefficient k_{σ} ?

SAME STRATEGY AS IN 1D

- The solution *u* is "continuous" (in the trace sense on edges).
- The gradient of *u* is **not** continuous.
- However, the total flux $k(x)\nabla u(x) \cdot \boldsymbol{\nu}$ is (weakly) continuous across edges.
- We introduce an artificial unknown on each edge u_{σ} .
- \bullet We define the fluxes across σ coming from κ and from $\mathcal L$

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = |\sigma|k_{\mathcal{K}}\frac{u_{\sigma}-u_{\mathcal{K}}}{d_{\mathcal{K}\sigma}}, \quad F_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = |\sigma|k_{\mathcal{L}}\frac{u_{\sigma}-u_{\mathcal{L}}}{d_{\mathcal{L}\sigma}}.$$

• We impose local conservativity (= total flux continuity)

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = -F_{\mathcal{L},\sigma}(u^{\mathcal{T}}).$$

• We deduce the value of u_{σ} and then the formula for the numerical flux

$$\implies u_{\sigma} = \frac{\frac{k_{\mathcal{K}}}{d_{\mathcal{K}\sigma}}u_{\mathcal{K}} + \frac{k_{\mathcal{L}}}{d_{\mathcal{L}\sigma}}u_{\mathcal{L}}}{\frac{k_{\mathcal{K}}}{d_{\mathcal{K}\sigma}} + \frac{k_{\mathcal{L}}}{d_{\mathcal{L}\sigma}}},$$
$$\implies F_{\mathcal{K}\mathcal{L}}(u^{\mathcal{T}}) = |\sigma| \left(\frac{d_{\mathcal{K}\mathcal{L}}}{\frac{d_{\mathcal{K}\mathcal{L}}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}\right) \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}} \quad \bullet \text{ Consistency estimate}$$

(Jaffré - Roberts, '05) (Angot - B. - Hubert, '09)

FRAMEWORK

- A 2D porous matrix (constant, isotropic permeability k = 1).
- Small thickness (= b) fractures/barriers inside the domain for which permeability is very different from the one in the ambient medium.

The model

- \bullet We "replace" the fractures/barriers by hypersurfaces, neglecting their thickness b.
- We account for the flow inside fractures through an asymptotic model
 - Assumption 1 : The flow is mostly transverse to the fracture/barrier direction.
 - Assumption 2 : Pressure is essentially linear in the transverse direction.
- We arrive to the following transmission conditions

$$\begin{bmatrix} \llbracket \nabla u \cdot \boldsymbol{n} \rrbracket = 0, \\ \nabla u \cdot \boldsymbol{n} = -\frac{k}{b} \llbracket u \rrbracket.$$

A SLIGHTLY MORE COMPLEX PROBLEM

(S)

Conditions (S) lead to $F_{\mathcal{K},\mathcal{L}} \stackrel{\text{def}}{=} F_{\mathcal{K},\sigma} = -F_{\mathcal{L},\sigma} = -|\sigma|k\frac{u_{\mathcal{L},\sigma} - u_{\mathcal{K},\sigma}}{b}$. We can then eliminate $u_{\mathcal{K},\sigma}$ and $u_{\mathcal{L},\sigma}$, and finally obtain

$$F_{\mathcal{K},\mathcal{L}} = -|\sigma| rac{eta d_{\mathcal{K}\mathcal{L}}}{1+eta d_{\mathcal{K}\mathcal{L}}} rac{u_{\mathcal{L}}-u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}}}$$

with $\beta = \frac{k}{b}$.

NUMERICAL RESULTS :

Dirichlet BC (given pressure) on top and bottom sides. Neumann BC (impermeable walls) elsewhere.

Impermeable barriers

Intermediate properties

No fracture/barrier limit

INTRODUCTION

- Complex flows in porous media
- Very short battle : FV / FE /FD

2 1D Finite Volume method for the Poisson problem

- Notations. Construction
- Analysis of the scheme in the FD spirit
- Analysis of the scheme in the FV spirit
- Extensions

⁽³⁾ The basic FV scheme for the 2D Laplace problem

- Notations. Construction
- Analysis of the TPFA scheme
- Extensions of the TPFA scheme
- TPFA drawbacks

TPFA DRAWBACKS

• Cartesian meshes : Control volumes are rectangular parallelepipeds thus choosing $x_{\mathcal{K}}$ as the mass center is OK

- Cartesian meshes :
- Conforming triangular meshes : We take x_{κ} =circumcenter; **BUT**:
 - It is not guaranteed that $x_{\mathcal{K}} \in \mathcal{K}$ (even $x_{\mathcal{K}} \in \Omega$ is not sure).
 - We can have $x_{\mathcal{K}} = x_{\mathcal{L}}$ for $\mathcal{K} \neq \mathcal{L} \Rightarrow d_{\mathcal{K}\mathcal{L}} = 0$!
 - However, the scheme still works if

 $(x_{\mathcal{L}} - x_{\mathcal{K}}) \cdot \boldsymbol{\nu}_{\mathcal{KL}} > 0 \quad \Leftrightarrow$ Delaunay condition

• For almost any point distribution in Ω , there exists a unique corresponding Delaunay triangulation.

• Dual construction :

Voronoï diagram of a set of point.

• There exists efficient algorithms for Delaunay triangulation and Voronoi diagrams.

- For a non conforming triangle mesh : orthogonality condition is impossible to fulfill.
- For a non Cartesian quadrangle mesh : orthogonality condition is impossible to fulfill.
- The homogeneous anisotropic case :

$$-\mathrm{div}(A\nabla u) = f,$$

the admissibility condition becomes A-orthogonality

$$x_{\mathcal{L}} - x_{\mathcal{K}} /\!\!/ A \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \Longleftrightarrow A^{-1} (x_{\mathcal{L}} - x_{\mathcal{K}}) \perp \sigma.$$

 \rightsquigarrow thus the mesh needs to be adapted to the PDE under study.

• The heterogeneous anisotropic case :

$$-\operatorname{div}(A(x)\nabla u) = f,$$

the orthogonality condition will depend on $x \ \dots$

• Nonlinear problems :

$$-\mathrm{div}(\varphi(x,\nabla u)) = f,$$

it is impossible to approximate fluxes by using only two points since a complete gradient approximation is necessary.

The discrete gradient given by TPFA is not useful

- It is only an approximation of the gradient in the normal direction at each edge.
- Gradient convergence is always weak.

SUMMARY

- We need more than 2 unknowns to build suitable flux approximations.
- Approximation of the gradient of the solution in all directions is necessary.
- Cells-centered schemes : We use unknowns in the neighboring control volumes.
- Primal/dual schemes : We use new unknowns on vertices (dual mesh).
- Mimetic/hybrid/mixed schemes : We use new unknowns on edges/faces.

4 The DDFV method

• Derivation of the scheme

- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

(Hermeline '00) (Domelevo-Omnes '05) (Andreianov-Boyer-Hubert '07)

• Scalar elliptic problem

$$-\operatorname{div}(A(x)\nabla u) = f, \text{ in } \Omega,$$

with homogeneous Dirichlet boundary conditions and $x \mapsto A(x) \in M_2(\mathbb{R})$ be a bounded, uniformly coercive matrix-valued function.

- GENERAL MESHES
 - Possibly non conforming meshes
 - Without the orthogonality condition
- BASIC IDEAS
 - To consider unknowns at the center of each control volume but also on **vertices**.
 - To add new discrete balance equations associated with each vertex.
- It is more expensive than TPFA # unknowns ($\approx \times 2$) but much more robust and efficient.

NOTATION

Approximate solution : $u^{\tau} = \left((u_{\mathcal{K}})_{\mathcal{K}}, (u_{\mathcal{K}^*})_{\mathcal{K}^*} \right) \in \mathbb{R}^{\tau} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$

65/137

Approximate solution : $u^{\mathcal{T}} = \left((u_{\mathcal{K}})_{\mathcal{K}}, (u_{\mathcal{K}^*})_{\mathcal{K}^*} \right) \in \mathbb{R}^{\mathcal{T}} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$

65/ 137

Approximate solution : $u^{\mathcal{T}} = \left((u_{\mathcal{K}})_{\mathcal{K}}, (u_{\mathcal{K}^*})_{\mathcal{K}^*} \right) \in \mathbb{R}^{\mathcal{T}} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$

65/ 137

Primal unknown u_{κ} Primal control vol. $\kappa \in \mathfrak{M}$

• Dual unknown u_{κ^*} Dual control vol. $\kappa^* \in \mathfrak{M}^*$

 $\textbf{Diamond cells } \boldsymbol{\mathcal{D}} \in \boldsymbol{\mathfrak{D}}$

Primal unknown u_{κ} Primal control vol. $\kappa \in \mathfrak{M}$

• Dual unknown u_{κ^*} Dual control vol. $\kappa^* \in \mathfrak{M}^*$

• Dual unknown u_{κ^*} Dual control vol. $\kappa^* \in \mathfrak{M}^*$

Primal unknown u_{κ} Primal control vol. $\kappa \in \mathfrak{M}$

• Dual unknown u_{κ^*} Dual control vol. $\kappa^* \in \mathfrak{M}^*$

 $\textbf{Diamond cells } \boldsymbol{\mathcal{D}} \in \boldsymbol{\mathfrak{D}}$

NOTATIONS IN EACH DIAMOND CELL

Mesh regularity measurement

$$\sin \alpha_{\mathcal{T}} \stackrel{\text{def}}{=} \min_{\mathcal{D} \in \mathfrak{D}} |\sin \alpha_{\mathcal{D}}|,$$
$$\operatorname{reg}(\mathcal{T}) \stackrel{\text{def}}{=} \max \left(\frac{1}{\alpha_{\mathcal{T}}}, \max_{\substack{\mathcal{K} \in \mathfrak{M} \\ \mathcal{D} \in \mathfrak{D}_{\mathcal{K}}}} \frac{\operatorname{diam}(\mathcal{K})}{\operatorname{diam}(\mathcal{D})}, \max_{\substack{\mathcal{K}^* \in \mathfrak{M} \\ \mathcal{D} \in \mathfrak{D}_{\mathcal{K}^*}}} \frac{\operatorname{diam}(\mathcal{K}^*)}{\operatorname{diam}(\mathcal{D})}, \dots \right).$$

NOTATIONS IN EACH DIAMOND CELL

DISCRETE GRADIENT

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right).$$

Comes from

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}} - x_{\mathcal{K}}) = u_{\mathcal{L}} - u_{\mathcal{K}},$$

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}^*} - x_{\mathcal{K}^*}) = u_{\mathcal{L}^*} - u_{\mathcal{K}^*}.$$

67/ 137
NOTATIONS IN EACH DIAMOND CELL

DISCRETE GRADIENT

$$abla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{ ext{def}}{=} rac{1}{\sin lpha_{\mathcal{D}}} \left(rac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} oldsymbol{
u} + rac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} oldsymbol{
u}^*
ight).$$

EQUIVALENT DEFINITION $\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{1}{2|\mathcal{D}|} \bigg(|\sigma|(u_{\mathcal{L}} - u_{\mathcal{K}})\boldsymbol{\nu} + |\sigma^*|(u_{\mathcal{L}^*} - u_{\mathcal{K}^*})\boldsymbol{\nu}^* \bigg),$

NOTATIONS IN EACH DIAMOND CELL

DISCRETE GRADIENT

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right).$$

STILL ANOTHER DEFINITION $\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \nabla \left(\Pi_{\mathcal{D}} u^{\mathcal{T}} \right)$, with $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ affine in

NOTATIONS IN EACH DIAMOND CELL

DISCRETE GRADIENT

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{\sin \alpha_{\mathcal{D}}} \left(\frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{|\sigma^*|} \boldsymbol{\nu} + \frac{u_{\mathcal{L}^*} - u_{\mathcal{K}^*}}{|\sigma|} \boldsymbol{\nu}^* \right).$$

DDFV FLUXES

Across the primal edge σ : $F_{\mathcal{KL}}(u^{\mathcal{T}}) = -|\sigma| (A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}),$ Across the dual edge $\sigma^* : F_{\mathcal{K}^* \mathcal{L}^*}(u^{\mathcal{T}}) = -|\sigma^*| (A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}^*).$

FV for elliptic problems

67/137

FINITE VOLUME FORMULATION : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$ such that

$$\begin{cases} -\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} |\sigma| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}} \right) = |\kappa| f_{\mathcal{K}}, \quad \forall \kappa \in \mathfrak{M}, \\ -\sum_{\sigma^*\in\mathcal{E}_{\mathcal{K}^*}} |\sigma^*| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^*} \right) = |\kappa^*| f_{\mathcal{K}^*}, \, \forall \kappa^* \in \mathfrak{M}^*, \end{cases}$$
(DDFV)

with $A_{\mathcal{D}} = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) \, dx.$

FINITE VOLUME FORMULATION : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$ such that

$$\begin{cases} -\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} |\sigma| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}} \right) = |\kappa| f_{\mathcal{K}}, \quad \forall \kappa \in \mathfrak{M}, \\ -\sum_{\sigma^*\in\mathcal{E}_{\mathcal{K}^*}} |\sigma^*| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^*} \right) = |\kappa^*| f_{\mathcal{K}^*}, \, \forall \kappa^* \in \mathfrak{M}^*, \end{cases}$$
(DDFV)

with $A_{\mathcal{D}} = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) \, dx.$

DISCRETE DIVERGENCE OPERATOR

Given a discrete vector field $\xi^{\mathfrak{D}} = (\xi^{\mathcal{D}})_{\mathcal{D} \in \mathfrak{D}} \in (\mathbb{R}^2)^{\mathfrak{D}}$, we set

$$\mathbf{div}^{\boldsymbol{\kappa}} \boldsymbol{\xi}^{\mathfrak{D}} \stackrel{\text{\tiny def}}{=} \frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| \left(\boldsymbol{\xi}^{\mathcal{D}}, \boldsymbol{\nu}_{\mathcal{K}}\right), \quad \forall \kappa \in \mathfrak{M},$$

$$\operatorname{div}^{\mathcal{K}^{*}}\xi^{\mathfrak{D}} \stackrel{\text{def}}{=} \frac{1}{|\kappa^{*}|} \sum_{\sigma^{*} \in \mathcal{E}_{\mathcal{K}^{*}}} |\sigma^{*}| \left(\xi^{\mathcal{D}}, \boldsymbol{\nu}_{\mathcal{K}^{*}}\right), \quad \forall \kappa^{*} \in \mathfrak{M}^{*},$$

which defines an operator

$$\mathbf{div}^{\boldsymbol{\mathcal{T}}}: \boldsymbol{\xi}^{\boldsymbol{\mathfrak{D}}} \in (\mathbb{R}^2)^{\boldsymbol{\mathfrak{D}}} \mapsto \left((\mathbf{div}^{\boldsymbol{\mathcal{K}}} \boldsymbol{\xi}^{\boldsymbol{\mathfrak{D}}})_{\boldsymbol{\mathcal{K}} \in \boldsymbol{\mathfrak{M}}}, (\mathbf{div}^{\boldsymbol{\mathcal{K}}^{\boldsymbol{\ast}}} \boldsymbol{\xi}^{\boldsymbol{\mathfrak{D}}})_{\boldsymbol{\mathcal{K}}^{\boldsymbol{\ast}} \in \boldsymbol{\mathfrak{M}}^{\boldsymbol{\ast}}} \right) \in \mathbb{R}^{\boldsymbol{\mathcal{T}}}.$$

FINITE VOLUME FORMULATION : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$ such that

$$\begin{cases} -\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} |\sigma| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}} \right) = |\kappa| f_{\mathcal{K}}, \quad \forall \kappa \in \mathfrak{M}, \\ -\sum_{\sigma^*\in\mathcal{E}_{\mathcal{K}^*}} |\sigma^*| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^*} \right) = |\kappa^*| f_{\mathcal{K}^*}, \, \forall \kappa^* \in \mathfrak{M}^*, \end{cases}$$
(DDFV)

with $A_{\mathcal{D}} = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) \, dx.$

 $(\text{DDFV}) \iff \text{Find } u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} \text{ such that } - \operatorname{div}^{\mathcal{T}}(A^{\mathfrak{D}} \nabla^{\mathfrak{D}} u^{\mathcal{T}}) = f^{\mathcal{T}}.$

FINITE VOLUME FORMULATION : Find $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} = \mathbb{R}^{\mathfrak{M}} \times \mathbb{R}^{\mathfrak{M}^*}$ such that

$$\begin{cases} -\sum_{\sigma\in\mathcal{E}_{\mathcal{K}}} |\sigma| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}} \right) = |\kappa| f_{\mathcal{K}}, \quad \forall \kappa \in \mathfrak{M}, \\ -\sum_{\sigma^*\in\mathcal{E}_{\mathcal{K}^*}} |\sigma^*| \left(A_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \boldsymbol{\nu}_{\mathcal{K}^*} \right) = |\kappa^*| f_{\mathcal{K}^*}, \, \forall \kappa^* \in \mathfrak{M}^*, \end{cases}$$
(DDFV)

with $A_{\mathcal{D}} = \frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} A(x) \, dx.$

 $(\text{DDFV}) \iff \text{Find } u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}} \text{ such that } - \operatorname{div}^{\mathcal{T}}(A^{\mathfrak{D}} \nabla^{\mathfrak{D}} u^{\mathcal{T}}) = f^{\mathcal{T}}.$

PROPOSITION (DISCRETE DUALITY FORMULA / STOKES FORMULA) For any $\xi^{\mathfrak{D}} \in (\mathbb{R}^2)^{\mathfrak{D}} v^{\tau} \in \mathbb{R}^{\mathcal{T}}$, we have

$$\sum_{\kappa \in \mathfrak{M}} |\kappa| \mathbf{div}^{\kappa}(\xi^{\mathfrak{D}}) v_{\kappa} + \sum_{\kappa^* \in \mathfrak{M}^*} |\kappa^*| \mathbf{div}^{\kappa^*}(\xi^{\mathfrak{D}}) v_{\kappa^*} = -2 \sum_{\mathcal{D} \in \mathfrak{D}} |\mathcal{D}| \left(\xi^{\mathcal{D}}, \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}}\right).$$

Equivalent formulation of DDFV

Find $u^{\tau} \in \mathbb{R}^{\mathcal{T}}$ such that, for any test function $v^{\tau} \in \mathbb{R}^{\mathcal{T}}$, we have

$$2\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}}\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}},\nabla_{\mathcal{D}}^{\mathcal{T}}v^{\mathcal{T}}\right)=\sum_{\kappa\in\mathfrak{M}}|\kappa|f_{\kappa}v_{\kappa}+\sum_{\kappa^{*}\in\mathfrak{M}^{*}}|\kappa^{*}|f_{\kappa^{*}}v_{\kappa^{*}}|$$

4 The DDFV method

- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

Analysis of DDFV

 \bullet Use the discrete integration by parts formula with $v^{\mathcal{T}}=u^{\mathcal{T}}$

$$2\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}}\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}},\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}\right)=\sum_{\kappa\in\mathfrak{M}}|\kappa|f_{\kappa}u_{\kappa}+\sum_{\kappa^{*}\in\mathfrak{M}^{*}}|\kappa^{*}|f_{\kappa^{*}}u_{\kappa^{*}}.$$

• It follows

$$\alpha \|u^{\mathcal{T}}\|_{1,\mathcal{T}}^2 \le \|f\|_{L^2} (\|u^{\mathfrak{M}}\|_{L^2} + \|u^{\mathfrak{M}^*}\|_{L^2}).$$

THEOREM (DISCRETE POINCARÉ INEQUALITY Proof)

There exists a C > 0 depending only on Ω and $\operatorname{reg}(\mathcal{T})$ such that

$$\|u^{\mathfrak{m}}\|_{L^{2}} + \|u^{\mathfrak{m}^{*}}\|_{L^{2}} \le C \|u^{\mathcal{T}}\|_{1,\mathcal{T}}, \quad \forall u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}.$$

CONCLUSION : The approximate solution satisfies $||u^{\mathcal{T}}||_{1,\mathcal{T}} \leq C ||f||_{L^2}$.

Theorem

Let $(\mathcal{T}_n)_n$ be a family of DDFV meshes, such that $\operatorname{size}(\mathcal{T}_n) \xrightarrow[n \to \infty]{} 0$ and $(\operatorname{reg}(\mathcal{T}_n))_n$ is bounded. Then, the sequence of approximate solutions $u^{\mathcal{T}_n}$ converges towards the exact solution in the following sense

$$\begin{split} u^{\mathfrak{M}_n} & \xrightarrow[n \to \infty]{} u \text{ in } L^2(\Omega), \\ u^{\mathfrak{M}_n^*} & \xrightarrow[n \to \infty]{} u \text{ in } L^2(\Omega), \\ \overset{\cdot \tau_n}{} u^{\tau_n} & \xrightarrow[n \to \infty]{} \nabla u \text{ in } (L^2(\Omega))^2 \end{split}$$

REMARK : We have **strong** convergence of the gradients.

 ∇

Assume that A is smooth with respect to x

- Laplace equation
 - First order convergence for $u^{\mathcal{T}}$ and $\nabla^{\mathcal{T}} u^{\mathcal{T}}$

(Domelevo - Omnès, 05)

• Some super-convergence results of $u^{\mathcal{T}}$ in L^2

- (Omnes, 10)
- General case (even for nonlinear Leray-Lions operator)

(Andreianov - B. - Hubert, '07)

Theorem

Assume that $u \in H^2(\Omega)$ and $x \mapsto A(x)$ is Lipschitz continuous, then there exists $C(\operatorname{reg}(\mathcal{T})) > 0$ such that

$$\|u - u^{\mathfrak{M}}\|_{L^{2}} + \|u - u^{\mathfrak{M}^{*}}\|_{L^{2}} + \|\nabla u - \nabla^{\mathcal{T}} u^{\mathcal{T}}\|_{L^{2}} \le C \operatorname{size}(\mathcal{T}).$$

STOKES PROBLEM

The DDFV method applied to the Stokes problem is (almost) **inf-sup stable** and first-order convergent (in L^2 for the pressure, in H^1 for the velocity).

(Delcourte, '07) (Krell,'10) (Krell-Manzini, '12) (B.-Krell-Nabet, '13)

4 The DDFV method

- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

• The matrix is built **through a loop over primal edges** (that is diamond cells). For each such edge/diamond, we compute 4×4 terms.

• Stencil :

- does not depend on the permeability tensor.
- The row corresponding to the unknown $u_{\mathcal{K}}$ has at most 2N + 1 non zero entries, where N is the number of edges of \mathcal{K} .
- The matrix is symmetric positive definite.
- In the case of an orthogonal admissible mesh,

 $DDFV \iff TPFA$ on the primal mesh + TPFA on the dual mesh.

• In the nonlinear case $-\operatorname{div}(\varphi(x, \nabla u)) = f$, we can adapt the decomposition-coordination method of Glowinski to obtain a suitable nonlinear solver that can be proved to be convergent.

(B.-Hubert '08)

4 The DDFV method

- Derivation of the scheme
- Analysis of the DDFV scheme
- Implementation
- The m-DDFV scheme

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

(B. - Hubert, '08)

Goals

- To take into account possible permeability discontinuities in the problem without loss of accuracy.
- We allow (full tensor) permeability jumps across
 - Primal edges.
 - Dual edges.
 - Both primal and dual edges.
- Same stencil as for the standard DDFV method.

(B. - Hubert, '08)

Goals

- To take into account possible permeability discontinuities in the problem without loss of accuracy.
- We allow (full tensor) permeability jumps across
 - Primal edges.
 - Dual edges.
 - Both primal and dual edges.
- Same stencil as for the standard DDFV method.

GENERAL PRINCIPLE

- We want to mimick the harmonic mean-value formula that we obtained for TPFA.
 - We need to introduce artificial edges unknowns.
 - We impose local conservativity of some well-chosen numerical fluxes.
 - We eliminate those additional unknowns so that we finally get suitable numerical fluxes formulas
- The coupling between primal and dual unknowns and equations needs a particular care.

STRATEGY

- We add a value $\delta^{\mathcal{D}}_{\bullet}$ to the value of $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ at the points \diamondsuit .
- With these new values at hand, we build affine functions on each quarter diamond.
- The gradients of these new functions are used as new discrete gradients in DDFV.
- We eventually eliminate the values $\delta^{\mathcal{P}} = {}^{t}(\delta^{\mathcal{P}}_{\mathcal{K}}, \delta^{\mathcal{P}}_{\mathcal{L}}, \delta^{\mathcal{P}}_{\mathcal{K}^{*}}, \delta^{\mathcal{P}}_{\mathcal{L}^{*}}) \in \mathbb{R}^{4}$ by imposing suitable conservativity conditions.

$$A_{\mathcal{Q}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} A(x) \, dx$$

NEW GRADIENTS ON EACH QUARTER DIAMOND

$$\nabla^{\mathcal{N}}_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \nabla^{\mathcal{T}}_{\mathcal{D}} u^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \delta^{\mathcal{D}},$$

with

$$B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}|} \left(|\sigma_{\mathcal{K}}|\boldsymbol{\nu}^*, 0, |\sigma_{\mathcal{K}^*}|\boldsymbol{\nu}, 0 \right).$$

WRITE LOCAL CONSERVATIVITY BETWEEN QUARTER DIAMONDS

$$\left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^*\right)=\left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^*\right)$$

WRITE LOCAL CONSERVATIVITY BETWEEN QUARTER DIAMONDS

$$\begin{split} & \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \delta^{\mathcal{D}}), \boldsymbol{\nu}^* \right) = \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} \delta^{\mathcal{D}}), \boldsymbol{\nu}^* \right) \\ & \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} \delta^{\mathcal{D}}), \boldsymbol{\nu} \right) = \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}} \delta^{\mathcal{D}}), \boldsymbol{\nu} \right) \end{split}$$

1/3

WRITE LOCAL CONSERVATIVITY BETWEEN QUARTER DIAMONDS

$$\begin{split} \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) &= \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right)\\ \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) &= \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right)\\ \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) &= \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) \end{split}$$

WRITE LOCAL CONSERVATIVITY BETWEEN QUARTER DIAMONDS

$$\begin{split} \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^*\right) &= \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^*\right) \\ \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) &= \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \\ \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^*\right) &= \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^*\right) \\ \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) &= \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau} + B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \end{split}$$

77/ 137

WRITE LOCAL CONSERVATIVITY BETWEEN QUARTER DIAMONDS

$$\begin{split} \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) &= \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right)\\ \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) &= \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right)\\ \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right) &= \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}^{*}\right)\\ \left(A_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) &= \left(A_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}(\nabla_{\mathcal{D}}^{\tau}u^{\tau}+B_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^{*}}}\delta^{\mathcal{D}}),\boldsymbol{\nu}\right) \end{split}$$

$$\iff \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\varrho|^{t} B_{\mathcal{Q}} . A_{\mathcal{Q}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}} \delta^{\mathcal{D}}) = 0.$$

F. Boyer FV for elliptic problems

1/3

PROPOSITION

For any $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, and any diamond \mathcal{D} , there exists a **unique** $\delta^{\mathcal{D}} \in \mathbb{R}^4$ satisfying the local flux conservativity property

$$\sum_{\mathcal{Q}\in\mathfrak{Q}_{\mathcal{D}}}|_{\mathcal{Q}}|^{t}B_{\mathcal{Q}}.A_{\mathcal{Q}}(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}+B_{\mathcal{Q}}\boldsymbol{\delta}^{\mathcal{D}})=0,$$

and the map $\nabla^{\mathcal{T}}_{\mathcal{D}} u^{\mathcal{T}} \mapsto \delta^{\mathcal{D}} (\nabla^{\mathcal{T}}_{\mathcal{D}} u^{\mathcal{T}})$ is linear.

Remark : This strategy applies to the non-linear case where the permeability-map $\xi \mapsto A_Q.\xi$ is now a monotone map

$$\xi \in \mathbb{R}^2 \mapsto \varphi_{\mathcal{Q}}(\xi) \in \mathbb{R}^2$$

The M-DDFV Scheme

We replace in the DDFV scheme the approximate permeability $A_{\mathcal{D}}$ with the following new map

$$A_{\mathcal{D}}^{\mathcal{N}}.\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| A_{\mathcal{Q}} \underbrace{(\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}} + B_{\mathcal{Q}} \delta^{\mathcal{D}} (\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}})}_{= \nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}} \right),$$

The M-DDFV Scheme

We replace in the DDFV scheme the approximate permeability $A_{\mathcal{D}}$ with the following new map

$$A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| A_{\mathcal{Q}} (\underbrace{\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}} \delta^{\mathcal{D}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}})}_{= \nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}}),$$

DISCRETE DUALITY FORMULATION ON DIAMOND CELLS

$$2\sum_{\mathcal{D}\in\mathfrak{D}} |\mathcal{D}| \left(A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}, \nabla_{\mathcal{D}}^{\mathcal{T}} v^{\mathcal{T}} \right) = \int_{\Omega} f v^{\mathfrak{M}} dx + \int_{\Omega} f v^{\mathfrak{M}^*} dx, \quad \forall v^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}.$$

The M-DDFV Scheme

We replace in the DDFV scheme the approximate permeability $A_{\mathcal{D}}$ with the following new map

$$A_{\mathcal{D}}^{\mathcal{N}} \cdot \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{D}|} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} |\varrho| A_{\mathcal{Q}} \underbrace{(\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} + B_{\mathcal{Q}} \delta^{\mathcal{D}} (\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}}))}_{= \nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}} \right),$$

DISCRETE DUALITY FORMULATION ON DIAMOND CELLS

$$2\sum_{\mathcal{D}\in\mathfrak{D}}|\mathcal{D}|\left(A_{\mathcal{D}}^{\mathcal{N}},\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}},\nabla_{\mathcal{D}}^{\mathcal{T}}v^{\mathcal{T}}\right)=\int_{\Omega}fv^{\mathfrak{M}}dx+\int_{\Omega}fv^{\mathfrak{M}^{*}}dx, \quad \forall v^{\mathcal{T}}\in\mathbb{R}^{\mathcal{T}}.$$

DISCRETE DUALITY FORMULATION ON QUARTER DIAMONDS

$$2\sum_{\mathcal{Q}\in\mathfrak{Q}}|\varrho|\left(A_{\mathcal{Q}},\nabla^{\mathcal{N}}_{\mathcal{Q}}u^{\mathcal{T}},\nabla^{\mathcal{N}}_{\mathcal{Q}}v^{\mathcal{T}}\right)=\int_{\Omega}fv^{\mathfrak{M}}dx+\int_{\Omega}fv^{\mathfrak{M}^{*}}dx, \ \forall v^{\mathcal{T}}\in\mathbb{R}^{\mathcal{T}}.$$

Remarks :

- Same stencil as DDFV.
- All the maps $\xi \mapsto \delta^{\mathcal{D}}(\xi)$ can be pre-computed offline, in a parallel fashion \Rightarrow almost no additional computational cost.

Assume that $x \mapsto A(x)$ is constant on each primal control volume, we recover the schemes already introduced in Hermeline (03). Explicit formulas for $A_{\mathcal{D}}^{\mathcal{N}}$ are available

$$(A_{\mathcal{D}}^{\mathcal{N}}\boldsymbol{\nu},\boldsymbol{\nu}) = \frac{(|\sigma_{\mathcal{K}}| + |\sigma_{\mathcal{L}}|)(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu})(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})}{|\sigma_{\mathcal{L}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})},$$

$$(A_{\mathcal{D}}^{\mathcal{N}}\boldsymbol{\nu}^{*},\boldsymbol{\nu}^{*}) = \frac{|\sigma_{\mathcal{L}}|(A_{\mathcal{L}}\boldsymbol{\nu}^{*},\boldsymbol{\nu}^{*}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{K}}\boldsymbol{\nu}^{*},\boldsymbol{\nu}^{*})}{|\sigma_{\mathcal{K}}| + |\sigma_{\mathcal{L}}|} - \frac{|\sigma_{\mathcal{K}}||\sigma_{\mathcal{L}}|}{|\sigma_{\mathcal{K}}| + |\sigma_{\mathcal{L}}|} \frac{((A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}^{*}) - (A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu}^{*}))^{2}}{|\sigma_{\mathcal{L}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})},$$
$$(A_{\mathcal{D}}^{\mathcal{N}}\boldsymbol{\nu},\boldsymbol{\nu}^{*}) = \frac{|\sigma_{\mathcal{L}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu}^{*})(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})}{|\sigma_{\mathcal{L}}|(A_{\mathcal{K}}\boldsymbol{\nu},\boldsymbol{\nu}) + |\sigma_{\mathcal{K}}|(A_{\mathcal{L}}\boldsymbol{\nu},\boldsymbol{\nu})}.$$

Theorem

The m-DDFV scheme has a **unique** solution $u^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ which depends continuously on the data.

Theorem

Assume that $x \mapsto A(x)$ is smooth on each quarter diamond, and that u belongs to H^2 on each quarter diamond Q, then we have

$$\|u - u^{\mathfrak{m}}\|_{L^{2}} + \|u - u^{\mathfrak{m}^{*}}\|_{L^{2}} + \|\nabla u - \nabla^{\mathcal{N}} u^{\mathcal{T}}\|_{L^{2}} \le C h.$$

 $\overline{\Omega} = \overline{\Omega_1} \cup \overline{\Omega_2}$ with $\Omega_1 =]0, 0.5[\times]0, 1[$ and $\Omega_2 =]0.5, 1[\times]0, 1[$

A LINEAR EXAMPLE :

$$-\operatorname{div}(A(x)\nabla u) = f, \text{ with } A(x) = \operatorname{Id in} \Omega_1, \ A(x) = \begin{pmatrix} 15 & 20\\ 20 & 40 \end{pmatrix} \text{ in } \Omega_2.$$

- DDFV : order $\frac{1}{2}$ in the H^1 norm
- m-DDFV : order 1 in the H^1 norm

DDFV vs m-DDFV

DDFV $H^1 \longrightarrow$ m-DDFV $L^\infty \longrightarrow$ m-DDFV $L^\infty \longrightarrow$ DDFV $L^2 \longrightarrow$ m-DDFV $L^2 \longrightarrow$

OUTLINE

5 A REVIEW OF SOME OTHER MODERN METHODS

• General presentation

- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

LINEAR PROBLEMS

$$-\operatorname{div}(A(x)\nabla u) = f$$

- Fully cell-centered schemes
 - MPFA
 - Diamond schemes

Aavatsmark et al. '98
$$\rightarrow$$
 '08)

- (Edwards et al. '06,'08) (Coudière-Vila-Villedieu '99, '00)
 - $(\text{Manzini et al} \dots `04 \rightarrow `07)$

• SUSHI (barycentric version) = SUCCES

(Eymard-Gallouët-Herbin '08)

- Nonlinear monotone finite volume
 - Nonlinear diamond schemes (Bertolazzo-Manzini '07)
 NMFV (Le Potier '05) (Lipnikov et al '07)
- Schemes on primal/dual meshes
 - DDFV
 - m-DDFV
- Hybrid and mixed schemes
 - Mimetic schemes
 - Mixed finite volumes
 - SUSHI (hybrid version)

RECENT REVIEW PAPER :

(Hermeline '00) (Domelevo-Omnes '05) (Pierre '06) (Andreianov-B.-Hubert '07) (Hermeline '03) (B.-Hubert '08)

> (Brezzi, Lipnikov et al '05 → '08) (Manzini et al '07-'08) (Droniou-Eymard '06) (Eymard-Gallouet-Herbin '08)

> > (Droniou, '13)

5 A REVIEW OF SOME OTHER MODERN METHODS

• General presentation

• MPFA schemes

- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

MPFA SCHEMES

O SCHEME

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns : \tilde{u}_{ij}
- We compute a gradient on each red triangle T_i

$$\nabla_i u^{\mathcal{T}} = \frac{\tilde{u}_{i,i+1} - u_i}{2|T_i|} (\tilde{x}_{i-1,i} - x_i)^{\perp} + \frac{\tilde{u}_{i-1,i} - u_i}{2|T_i|} (\tilde{x}_{i,i+1} - x_i)^{\perp}.$$

MPFA SCHEMES

O SCHEME

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns : \tilde{u}_{ij}
- We compute a gradient on each red triangle T_i

$$\nabla_i u^{\mathcal{T}} = \frac{\tilde{u}_{i,i+1} - u_i}{2|T_i|} (\tilde{x}_{i-1,i} - x_i)^{\perp} + \frac{\tilde{u}_{i-1,i} - u_i}{2|T_i|} (\tilde{x}_{i,i+1} - x_i)^{\perp}.$$

• We write flux continuity at mid-edges

$$F_{i,i+1} \stackrel{\text{def}}{=} (A_i \nabla_i u^{\mathcal{T}}) \cdot \boldsymbol{\nu}_{i,i+1} = (A_{i+1} \nabla_{i+1} u^{\mathcal{T}}) \cdot \boldsymbol{\nu}_{i,i+1}, \quad \forall i.$$

• Given the $(u_i)_i$, we deduce the $(\tilde{u}_{i,i+1})_i$ then the **semi-fluxes** $(F_{i,i+1})_i$.
MPFA SCHEMES

U SCHEME : Let us compute F_{12}

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns : \tilde{u}_{ij}
- We compute a gradient on each red triangle T_i

$$\nabla_{i} u^{\mathcal{T}} = \frac{\tilde{u}_{i,i+1} - u_{i}}{2|T_{i}|} (\tilde{x}_{i-1,i} - x_{i})^{\perp} + \frac{\tilde{u}_{i-1,i} - u_{i}}{2|T_{i}|} (\tilde{x}_{i,i+1} - x_{i})^{\perp}.$$

→ This gives birth to an affine function on each control volume.

MPFA SCHEMES

U SCHEME : Let us compute F_{12}

(Aavatsmark et al. '98 \rightarrow '08)

- Intermediate unknowns : \tilde{u}_{ij}
- We compute a gradient on each red triangle T_i

$$\nabla_{i} u^{\mathcal{T}} = \frac{\tilde{u}_{i,i+1} - u_{i}}{2|T_{i}|} (\tilde{x}_{i-1,i} - x_{i})^{\perp} + \frac{\tilde{u}_{i-1,i} - u_{i}}{2|T_{i}|} (\tilde{x}_{i,i+1} - x_{i})^{\perp}.$$

- → This gives birth to an affine function on each control volume.
- We write fluxes continuity for F_{12} , F_{23} and F_{61}

$$F_{i,i+1} \stackrel{\text{def}}{=} (A_i \nabla_i u^{\mathcal{T}}) \cdot \boldsymbol{\nu}_{i,i+1} = (A_{i+1} \nabla_{i+1} u^{\mathcal{T}}) \cdot \boldsymbol{\nu}_{i,i+1}, \quad i \in \{1, 2, 6\}.$$

• We need two additional equations. We write :

$$U_2(x_0) = U_3(x_0)$$
, and $U_1(x_0) = U_6(x_0)$.

- Given the $(u_i)_i$, we compute the $(\tilde{u}_{i,i+1})_i$ then the semi-fluxes F_{12} .
- We do the same for the other fluxes.

MPFA SCHEMES

PROPERTIES

- In general
 - the final linear system is not symmetric.
 - No coercivity/stability for high anisotropies/heterogeneies/mesh distorsion.
- There exists a stabilized/symmetric version on quadrangles

(Le Potier, '05).

- Stencil :
 - The O scheme has a much too large stencil.
 - For the U scheme on conforming triangles : one flux depends on 6 unknowns.
 - In general, the equation on a control volume κ depends on κ , its neighbors and the neighbors of its neighbors.
 - Other variants : G scheme, L scheme, ...
- No complete gradient reconstruction.
- No discrete maximum principle for basic methods. Some improvements possible to achieve this goal.
- Convergence in the general case provided that a geometric condition for coercivity holds true

(Agelas-Masson, '08), (Agelas-DiPietro-Droniou, '10)

(Klausen-Stephansen, '12) (Stephansen, '12) 89/ 137

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes

• Diamond schemes

- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

• Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^*}, \tilde{u}_{\mathcal{L}^*}$.

 \bullet Discrete gradient on the diamond cell $\mathcal D$:

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \frac{\tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}}{d_{\mathcal{K}^*\mathcal{L}^*} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^*\mathcal{L}^*}.$$
$$\Leftrightarrow \left\{ \begin{array}{c} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}} - x_{\mathcal{K}}) = u_{\mathcal{L}} - u_{\mathcal{K}}, \\ \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}^*} - x_{\mathcal{K}^*}) = \tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}. \end{array} \right.$$

• Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^*}, \tilde{u}_{\mathcal{L}^*}$.

 \tilde{u}_{κ^*}

 $\overline{ ilde{u}}_{{\scriptscriptstyle\mathcal{L}}^*}$

 $u_{\mathcal{L}}$

 u_{κ}

 \bullet Discrete gradient on the diamond cell $\mathcal D$:

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \frac{\tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}}{d_{\mathcal{K}^*\mathcal{L}^*} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^*\mathcal{L}^*}.$$
$$\Leftrightarrow \left\{ \begin{array}{c} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}} - x_{\mathcal{K}}) = u_{\mathcal{L}} - u_{\mathcal{K}}, \\ \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}^*} - x_{\mathcal{K}^*}) = \tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}. \end{array} \right.$$

• Here, $\tilde{u}_{\mathcal{K}^*}$ and $\tilde{u}_{\mathcal{L}^*}$ are directly expressed with

$$\tilde{u}_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M},\mathcal{K}^*}}_{\geq 0} u_{\mathcal{M}}, \quad \tilde{u}_{\mathcal{L}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M},\mathcal{L}^*}}_{\geq 0} u_{\mathcal{M}},$$

with $\sum_{\mathcal{M}} \gamma_{\mathcal{M},\mathcal{K}^*} = 1, \sum_{\mathcal{M}} \gamma_{\mathcal{M},\mathcal{K}^*} x_{\mathcal{M}} = x_{\mathcal{K}^*}.$

• Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^*}, \tilde{u}_{\mathcal{L}^*}$.

 $ilde{u}_{\kappa^*}$

 $u_{\mathcal{L}}$

 u_{κ}

 \tilde{u}_{c}

 \bullet Discrete gradient on the diamond cell $\mathcal D$:

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \frac{\tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}}{d_{\mathcal{K}^*\mathcal{L}^*} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^*\mathcal{L}^*}.$$
$$\Leftrightarrow \left\{ \begin{array}{c} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}} - x_{\mathcal{K}}) = u_{\mathcal{L}} - u_{\mathcal{K}}, \\ \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}^*} - x_{\mathcal{K}^*}) = \tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}. \end{array} \right.$$

• Here, $\tilde{u}_{\mathcal{K}^*}$ and $\tilde{u}_{\mathcal{L}^*}$ are directly expressed with

$$\tilde{u}_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M},\mathcal{K}^*}}_{\geq 0} u_{\mathcal{M}}, \quad \tilde{u}_{\mathcal{L}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M},\mathcal{L}^*}}_{\geq 0} u_{\mathcal{M}},$$

with $\sum_{\mathcal{M}} \gamma_{\mathcal{M},\mathcal{K}^*} = 1, \sum_{\mathcal{M}} \gamma_{\mathcal{M},\mathcal{K}^*} x_{\mathcal{M}} = x_{\mathcal{K}^*}.$

• Intermediate unknowns at vertices $\tilde{u}_{\mathcal{K}^*}, \tilde{u}_{\mathcal{L}^*}$.

 $ilde{u}_{\kappa^*}$

 $u_{\mathcal{L}}$

 u_{κ}

 $\overline{ ilde{u}}_{\mathcal{L}^*}$

 \bullet Discrete gradient on the diamond cell $\mathcal D$:

$$\nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} = \frac{u_{\mathcal{L}} - u_{\mathcal{K}}}{d_{\mathcal{K}\mathcal{L}} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \frac{\tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}}{d_{\mathcal{K}^*\mathcal{L}^*} \sin \alpha_{\mathcal{D}}} \boldsymbol{\nu}_{\mathcal{K}^*\mathcal{L}^*}.$$
$$\Leftrightarrow \left\{ \begin{array}{c} \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}} - x_{\mathcal{K}}) = u_{\mathcal{L}} - u_{\mathcal{K}}, \\ \nabla_{\mathcal{D}}^{\mathcal{T}} u^{\mathcal{T}} \cdot (x_{\mathcal{L}^*} - x_{\mathcal{K}^*}) = \tilde{u}_{\mathcal{L}^*} - \tilde{u}_{\mathcal{K}^*}. \end{array} \right.$$

• Here, $\tilde{u}_{\mathcal{K}^*}$ and $\tilde{u}_{\mathcal{L}^*}$ are directly expressed with

$$\tilde{u}_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M},\mathcal{K}^*}}_{\geq 0} u_{\mathcal{M}}, \quad \tilde{u}_{\mathcal{L}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M},\mathcal{L}^*}}_{\geq 0} u_{\mathcal{M}},$$

with
$$\sum_{\mathcal{M}} \gamma_{\mathcal{M},\mathcal{K}^*} = 1, \sum_{\mathcal{M}} \gamma_{\mathcal{M},\mathcal{K}^*} x_{\mathcal{M}} = x_{\mathcal{K}^*}.$$

• The numerical flux then reads (formally the same as for DDFV)

$$\left(F_{\mathcal{K}\mathcal{L}} = -|\sigma|\nabla_{\mathcal{D}}^{\mathcal{T}}u^{\mathcal{T}}\cdot\boldsymbol{\nu}_{\mathcal{K}\mathcal{L}}\right)$$

Properties

- The weights $\gamma_{\mathcal{M},\mathcal{K}^*}$ are computed through a least-square procedure.
- Finite volume consistance is proved.
- Coercivity/stability is not ensured excepted for meshes not too far from Cartesian rectangle meshes.
- In the case where coercivity holds, we deduce the standard first order error estimates for u and ∇u .
- The scheme can be written on general meshes but is not supported by convergence analysis.
- In general, the linear system to be solved is not symmetric.

 With this assumption, the authors provide an algorithm to compute weights γ_{M,K^{*}}, such that

 $\gamma_{\mathcal{M},\mathcal{K}^*} \geq C_0 > 0, \quad \forall_{\mathcal{M}} \text{ containing } x_{\mathcal{K}^*}.$

 u_{κ^*}

(Manzini et al ... '04 \rightarrow '07)

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K}\sigma}$ and $\mathcal{D}_{\mathcal{L}\sigma}$ from the three values at our disposal:

 $\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K}\sigma}$ and $\mathcal{D}_{\mathcal{L}\sigma}$ from the three values at our disposal:

$$\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$$

• We compute the corresponding fluxes

$$-|\sigma|\nabla_{\mathcal{D}_{\mathcal{K}\sigma}}u^{\mathcal{T}}\cdot\boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \underbrace{\alpha_{\mathcal{K}}^{\mathcal{K}}}_{>0}(u_{\mathcal{K}}-u_{\mathcal{L}}) + \sum_{\mathcal{M}\neq\mathcal{L}}\underbrace{\alpha_{\mathcal{M}}^{\mathcal{K}}}_{\geq 0}(u_{\mathcal{K}}-u_{\mathcal{M}}),$$
$$-|\sigma|\nabla_{\mathcal{D}_{\mathcal{L}\sigma}}u^{\mathcal{T}}\cdot\boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \underbrace{\alpha_{\mathcal{L}}^{\mathcal{L}}}_{>0}(u_{\mathcal{K}}-u_{\mathcal{L}}) + \sum_{\mathcal{M}\neq\mathcal{K}}\underbrace{\alpha_{\mathcal{M}}^{\mathcal{L}}}_{\geq 0}(u_{\mathcal{M}}-u_{\mathcal{L}}).$$

We set $\alpha = \min(\alpha_{\mathcal{K}}^{\mathcal{K}}, \alpha_{\mathcal{L}}^{\mathcal{L}}) > 0.$

•

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K}\sigma}$ and $\mathcal{D}_{\mathcal{L}\sigma}$ from the three values at our disposal:

$$\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$$

• We compute the corresponding fluxes

•

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K}\sigma}$ and $\mathcal{D}_{\mathcal{L}\sigma}$ from the three values at our disposal:

 $\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$

$$-|\sigma|\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \boldsymbol{\alpha}(u_{\mathcal{K}} - u_{\mathcal{L}}) + g_{\mathcal{K}}(u^{\mathcal{T}}), -|\sigma|\nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \boldsymbol{\alpha}(u_{\mathcal{K}} - u_{\mathcal{L}}) + g_{\mathcal{L}}(u^{\mathcal{T}}).$$

• We set $\omega_{\mathcal{D}}(u^{\mathcal{T}}) = \frac{|g_{\mathcal{L}}(u^{\mathcal{T}})|}{|g_{\mathcal{K}}(u^{\mathcal{T}})| + |g_{\mathcal{L}}(u^{\mathcal{T}})|}$ and we consider now the following gradient on the diamond cell

$$\nabla_{\mathcal{D}} u^{\mathcal{T}} = \omega_{\mathcal{D}}(u^{\mathcal{T}}) \nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}} + (1 - \omega_{\mathcal{D}}(u^{\mathcal{T}})) \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$$

$$\Rightarrow F_{\mathcal{K}\mathcal{L}}(u^{\mathcal{T}}) \stackrel{\text{def}}{=} -|\sigma| \nabla_{\mathcal{D}} u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \alpha(u_{\mathcal{K}} - u_{\mathcal{L}}) + \underbrace{\frac{g_{\mathcal{K}}(u^{\mathcal{T}})|g_{\mathcal{L}}(u^{\mathcal{T}})| + g_{\mathcal{L}}(u^{\mathcal{T}})|g_{\mathcal{K}}(u^{\mathcal{T}})|}{|g_{\mathcal{K}}(u^{\mathcal{T}})| + |g_{\mathcal{L}}(u^{\mathcal{T}})|}}_{=\mathbf{T}}.$$

 $({\rm Manzini\ et\ al\ ...\ '04} \rightarrow '07)$

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K}\sigma}$ and $\mathcal{D}_{\mathcal{L}\sigma}$ from the three values at our disposal:

 $\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$

$$F_{\mathcal{K}\mathcal{L}} = -|\sigma|\nabla_{\mathcal{D}}u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \alpha(u_{\mathcal{K}} - u_{\mathcal{L}}) + \underbrace{\frac{g_{\mathcal{K}}(u^{\mathcal{T}})|g_{\mathcal{L}}(u^{\mathcal{T}})| + g_{\mathcal{L}}(u^{\mathcal{T}})|g_{\mathcal{K}}(u^{\mathcal{T}})|}{|g_{\mathcal{K}}(u^{\mathcal{T}})| + |g_{\mathcal{L}}(u^{\mathcal{T}})|}}_{=\mathbf{T}}$$

- If
$$g_{\mathcal{K}}(u^{\mathcal{T}})g_{\mathcal{L}}(u^{\mathcal{T}}) < 0$$
:

$$T = 0.$$

- If $g_{\mathcal{K}}(u^{\tau})g_{\mathcal{L}}(u^{\tau}) > 0$: $T = \frac{2g_{\mathcal{K}}(u^{\tau})g_{\mathcal{L}}(u^{\tau})}{g_{\mathcal{K}}(u^{\tau}) + g_{\mathcal{L}}(u^{\tau})} \Rightarrow \begin{cases} T \text{ is a$ **nonnegative** $multiple of } g_{\mathcal{K}}(u^{\tau}) \\ T \text{ is a$ **nonnegative** $multiple of } g_{\mathcal{L}}(u^{\tau}) \end{cases}$

Define a discrete gradient on both halfdiamond cells $\mathcal{D}_{\mathcal{K}\sigma}$ and $\mathcal{D}_{\mathcal{L}\sigma}$ from the three values at our disposal:

 $\nabla_{\mathcal{D}_{\mathcal{K}\sigma}} u^{\mathcal{T}}, \quad \nabla_{\mathcal{D}_{\mathcal{L}\sigma}} u^{\mathcal{T}}.$

$$F_{\mathcal{K}\mathcal{L}} = -|\sigma|\nabla_{\mathcal{D}}u^{\mathcal{T}} \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} = \alpha(u_{\mathcal{K}} - u_{\mathcal{L}}) + \underbrace{\frac{g_{\mathcal{K}}(u^{\mathcal{T}})|g_{\mathcal{L}}(u^{\mathcal{T}})| + g_{\mathcal{L}}(u^{\mathcal{T}})|g_{\mathcal{K}}(u^{\mathcal{T}})|}{|g_{\mathcal{K}}(u^{\mathcal{T}})| + |g_{\mathcal{L}}(u^{\mathcal{T}})|}}_{=\mathbf{T}}$$

$$F_{\mathcal{K},\mathcal{L}} = \alpha(u_{\mathcal{K}} - u_{\mathcal{L}}) + \underbrace{C_{\mathcal{K}}}_{\geq 0} \sum_{\mathcal{M}} (\alpha_{\mathcal{M}}^{\mathcal{K}} - \alpha \delta_{\mathcal{M}\mathcal{L}})(u_{\mathcal{K}} - u_{\mathcal{M}}),$$

$$F_{\mathcal{K},\mathcal{L}} = \alpha(u_{\mathcal{K}} - u_{\mathcal{L}}) + \underbrace{C_{\mathcal{L}}}_{\geq 0} \sum_{\mathcal{M}} (\alpha_{\mathcal{M}}^{\mathcal{K}} - \alpha \delta_{\mathcal{M}\mathcal{K}})(u_{\mathcal{M}} - u_{\mathcal{L}}).$$

Properties

- Consistency OK.
- There exists at least one solution of the scheme.
- Quasi-uniqueness : all solutions belong to a ball of radius $O(\operatorname{size}(\mathcal{T})^2)$.
- Solving the scheme can be done by using an iterative solver which necessitates the solution of a (unique) definite positive system.
- The converged solution satisfies the discrete maximum principle.
- Each solver iterate does not satisfy the discrete maximum principle.
- No convergence analysis available.
- In practice, we observe standard second order for u in the L^2 norm.

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes

• Nonlinear monotone FV schemes

- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^*}$ and $u_{\mathcal{L}^*}$ are given by

$$u_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}\mathcal{K}^*}}_{0 \leq \cdot \leq 1} u_{\mathcal{M}}.$$

• Basic geometry properties :

$$\begin{split} \mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{K}^*} + \mathbf{n}_{\mathcal{K}^*,\mathcal{L}^*} &= 0, \\ \mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*} - \mathbf{n}_{\mathcal{K}^*,\mathcal{L}^*} &= 0, \\ \mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{K},\mathcal{L}} &= 0, \\ \mathbf{n}_{\mathcal{L},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*} - \mathbf{n}_{\mathcal{K},\mathcal{L}} &= 0, \end{split}$$

TO SIMPLIFY A LITTLE : A(x) = A (Le Potier '05-..) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^*}$ and $u_{\mathcal{L}^*}$ are given by

$$u_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}\mathcal{K}^*}}_{0 < \cdot < 1} u_{\mathcal{M}}.$$

• We define one discrete gradient for each half-diamond

$$\begin{aligned} \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}} &= C_{\mathcal{K}^*} \big(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{K}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{K}^*} + u_{\mathcal{K}^*} (\mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{K}^*}) \big), \\ \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}} &= C_{\mathcal{L}^*} \big(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{L}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{L}^*} + u_{\mathcal{L}^*} (\mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*}) \big). \end{aligned}$$

To simplify a little : A(x) = A (le Potier '05-..) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^*}$ and $u_{\mathcal{L}^*}$ are given by

$$u_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}\mathcal{K}^*}}_{0 < \cdot < 1} u_{\mathcal{M}}.$$

• We define one discrete gradient for each half-diamond

$$\begin{aligned} \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}} &= C_{\mathcal{K}^*} \left(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{K}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{K}^*} + u_{\mathcal{K}^*} (\mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{K}^*}) \right), \\ \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}} &= C_{\mathcal{L}^*} \left(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{L}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{L}^*} + u_{\mathcal{L}^*} (\mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*}) \right). \end{aligned}$$

• We look for a (nonlinear) combination

$$F_{\mathcal{K},\mathcal{L}} \stackrel{\text{def}}{=} -\mu |\sigma| (A \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} - (1-\mu) |\sigma| (A \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}}$$

so that $F_{\mathcal{KL}}$ looks like a Two-Point flux depending only on $u_{\mathcal{K}}$ and $u_{\mathcal{L}}$ $\mu C_{\mathcal{K}^*} u_{\mathcal{K}^*} A(\mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{K}^*}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} + (1-\mu)C_{\mathcal{L}^*} u_{\mathcal{L}^*} A(\mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} = 0.$ To simplify a little : A(x) = A (le Potier '05-..) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^*}$ and $u_{\mathcal{L}^*}$ are given by

$$u_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}\mathcal{K}^*}}_{0 < \cdot < 1} u_{\mathcal{M}}.$$

• We define one discrete gradient for each half-diamond

$$\begin{aligned} \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}} &= C_{\mathcal{K}^*} \left(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{K}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{K}^*} + u_{\mathcal{K}^*} (\mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{K}^*}) \right), \\ \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}} &= C_{\mathcal{L}^*} \left(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{L}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{L}^*} + u_{\mathcal{L}^*} (\mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*}) \right). \end{aligned}$$

• We look for a (nonlinear) combination

$$F_{\mathcal{K},\mathcal{L}} \stackrel{\text{def}}{=} -\mu |\sigma| (A \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} - (1-\mu) |\sigma| (A \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}}$$

so that $F_{\mathcal{KL}}$ looks like a Two-Point flux depending only on $u_{\mathcal{K}}$ and $u_{\mathcal{L}}$

$$\mu C_{\mathcal{K}^*} u_{\mathcal{K}^*} - (1-\mu) C_{\mathcal{L}^*} u_{\mathcal{L}^*} = 0.$$

To simplify a little : A(x) = A (le Potier '05-..) (Lipnikov et al '07-...)

- Triangle mesh.
- The centres $x_{\mathcal{K}}$ and $x_{\mathcal{L}}$ shall be determined in the sequel.
- The vertex values $u_{\mathcal{K}^*}$ and $u_{\mathcal{L}^*}$ are given by

$$u_{\mathcal{K}^*} = \sum_{\mathcal{M}} \underbrace{\gamma_{\mathcal{M}\mathcal{K}^*}}_{0 < \cdot < 1} u_{\mathcal{M}}.$$

• We define one discrete gradient for each half-diamond

$$\begin{aligned} \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}} &= C_{\mathcal{K}^*} \left(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{K}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{K}^*} + u_{\mathcal{K}^*} (\mathbf{n}_{\mathcal{K},\mathcal{K}^*} + \mathbf{n}_{\mathcal{L},\mathcal{K}^*}) \right), \\ \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}} &= C_{\mathcal{L}^*} \left(- u_{\mathcal{L}} \mathbf{n}_{\mathcal{K},\mathcal{L}^*} - u_{\mathcal{K}} \mathbf{n}_{\mathcal{L},\mathcal{L}^*} + u_{\mathcal{L}^*} (\mathbf{n}_{\mathcal{K},\mathcal{L}^*} + \mathbf{n}_{\mathcal{L},\mathcal{L}^*}) \right). \end{aligned}$$

• We look for a (nonlinear) combination

$$F_{\mathcal{K},\mathcal{L}} \stackrel{\text{def}}{=} -\mu |\sigma| (A \nabla_{\mathcal{D}_{\mathcal{K}^*}} u^{\mathcal{T}}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} - (1-\mu) |\sigma| (A \nabla_{\mathcal{D}_{\mathcal{L}^*}} u^{\mathcal{T}}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}}$$

so that $F_{\mathcal{KL}}$ looks like a Two-Point flux depending only on $u_{\mathcal{K}}$ and $u_{\mathcal{L}}$

$$\mu(u^{\mathcal{T}}) = \frac{C_{\mathcal{L}^*} u_{\mathcal{L}^*}}{C_{\mathcal{K}^*} u_{\mathcal{K}^*} + C_{\mathcal{L}^*} u_{\mathcal{L}^*}}.$$

96/ 137

(Le Potier '05) (Lipnikov et al '07)

• The numerical flux is written as a nonlinear two point flux

$$F_{\mathcal{K},\mathcal{L}} = \tau_{\mathcal{K},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{K}} - \tau_{\mathcal{L},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{L}},$$

with

$$\tau_{\mathcal{K},\sigma}(\boldsymbol{u}^{\mathcal{T}}) = \mu(\boldsymbol{u}^{\mathcal{T}})C_{\mathcal{K}^*}(A\mathbf{n}_{\mathcal{L},\mathcal{K}^*}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} + (1 - \mu(\boldsymbol{u}^{\mathcal{T}}))C_{\mathcal{L}^*}(A\mathbf{n}_{\mathcal{L},\mathcal{L}^*}) \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}},$$

$$\tau_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = -\mu(u^{\mathcal{T}})C_{\mathcal{K}^*}A\mathbf{n}_{\mathcal{K},\mathcal{K}^*}\cdot\mathbf{n}_{\mathcal{K},\mathcal{L}} - (1-\mu(u^{\mathcal{T}}))C_{\mathcal{L}^*}A\mathbf{n}_{\mathcal{L},\mathcal{L}^*}\cdot\mathbf{n}_{\mathcal{K},\mathcal{L}},$$

(Le Potier '05) (Lipnikov et al '07)

• The numerical flux is written as a nonlinear two point flux

$$F_{\mathcal{K},\mathcal{L}} = \tau_{\mathcal{K},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{K}} - \tau_{\mathcal{L},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{L}},$$

with

$$\tau_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = C_{\mathcal{K}^*} C_{\mathcal{L}^*} \frac{u_{\mathcal{L}^*} \left(A\mathbf{n}_{\mathcal{L},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right) + u_{\mathcal{K}^*} \left(A\mathbf{n}_{\mathcal{L},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right)}{u_{\mathcal{K}^*} C_{\mathcal{K}^*} + u_{\mathcal{L}^*} C_{\mathcal{L}^*}}.$$

$$\tau_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = -C_{\mathcal{K}^*} C_{\mathcal{L}^*} \frac{u_{\mathcal{L}^*} \left(A\mathbf{n}_{\mathcal{K},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right) + u_{\mathcal{K}^*} \left(A\mathbf{n}_{\mathcal{K},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right)}{u_{\mathcal{K}^*} C_{\mathcal{K}^*} + u_{\mathcal{L}^*} C_{\mathcal{L}^*}}.$$

(Le Potier '05) (Lipnikov et al '07)

• The numerical flux is written as a nonlinear two point flux

$$F_{\mathcal{K},\mathcal{L}} = \tau_{\mathcal{K},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{K}} - \tau_{\mathcal{L},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{L}},$$

with

$$\tau_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = C_{\mathcal{K}^*} C_{\mathcal{L}^*} \frac{u_{\mathcal{L}^*} \left(A\mathbf{n}_{\mathcal{L},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right) + u_{\mathcal{K}^*} \left(A\mathbf{n}_{\mathcal{L},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right)}{u_{\mathcal{K}^*} C_{\mathcal{K}^*} + u_{\mathcal{L}^*} C_{\mathcal{L}^*}} .$$

$$\tau_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = -C_{\mathcal{K}^*} C_{\mathcal{L}^*} \frac{u_{\mathcal{L}^*} \left(A\mathbf{n}_{\mathcal{K},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right) + u_{\mathcal{K}^*} \left(A\mathbf{n}_{\mathcal{K},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right)}{u_{\mathcal{K}^*} C_{\mathcal{K}^*} + u_{\mathcal{L}^*} C_{\mathcal{L}^*}} .$$

• We need now to show that, with suitable assumptions, we have

$$u^{\mathcal{T}} \ge 0 \Longrightarrow \tau_{\mathcal{K},\sigma}(u^{\mathcal{T}}) \ge 0 \text{ and } \tau_{\mathcal{L},\sigma}(u^{\mathcal{T}}) \ge 0.$$

(Le Potier '05) (Lipnikov et al '07)

• The numerical flux is written as a nonlinear two point flux

$$F_{\mathcal{K},\mathcal{L}} = \tau_{\mathcal{K},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{K}} - \tau_{\mathcal{L},\sigma}(u^{\mathcal{T}})|\sigma| \, \boldsymbol{u}_{\mathcal{L}},$$

with

$$\tau_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = C_{\mathcal{K}^*} C_{\mathcal{L}^*} \frac{u_{\mathcal{L}^*} \left(A\mathbf{n}_{\mathcal{L},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right) + u_{\mathcal{K}^*} \left(A\mathbf{n}_{\mathcal{L},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right)}{u_{\mathcal{K}^*} C_{\mathcal{K}^*} + u_{\mathcal{L}^*} C_{\mathcal{L}^*}},$$

$$\tau_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = -C_{\mathcal{K}^*} C_{\mathcal{L}^*} \frac{u_{\mathcal{L}^*} \left(A\mathbf{n}_{\mathcal{K},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right) + u_{\mathcal{K}^*} \left(A\mathbf{n}_{\mathcal{K},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} \right)}{u_{\mathcal{K}^*} C_{\mathcal{K}^*} + u_{\mathcal{L}^*} C_{\mathcal{L}^*}},$$

• We need now to show that, with suitable assumptions, we have

$$\begin{aligned} A\mathbf{n}_{\mathcal{L},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} &\geq 0, \quad A\mathbf{n}_{\mathcal{L},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} &\geq 0, \\ A\mathbf{n}_{\mathcal{K},\mathcal{K}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} &\leq 0, \quad A\mathbf{n}_{\mathcal{K},\mathcal{L}^*} \cdot \mathbf{n}_{\mathcal{K},\mathcal{L}} &\leq 0. \end{aligned}$$

To this end, we show that a suitable choice of the centers $x_{\mathcal{K}}$ exists, depending only on A.

NONLINEAR MONOTONE SCHEMES

NONLINEAR MONOTONE SCHEMES

PROPERTIES

- Existence of a solution of the nonlinear problem is not known.
- No convergence result because of a lack of coercitivty.
- In practice, there exists a nonlinear iterative solver that preserves positivity of the approximations all along iterations.
- The linearized system to be solved changes at each iteration and is not symmetric.
- With many efforts, the principle of the scheme can be generalised to more general polygonal meshes in the case where
 - A(x) is isotropic.
 - The mesh is regular and the control volumes are star-shaped.
- Extension to 3D for tetrahedral meshes.

SLIGHTLY DIFFERENT APPROACHES

• Nonlinear corrections of general linear schemes

(Burman-Ern,'04) (Le Potier, '10)

(Droniou-Le Potier, '11), (Cancès-Cathala-Le Potier, 13)

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes

• Mimetic schemes

- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

(Lipnikov et al '05 \rightarrow '08) (Manzini '08)

- A scalar unknown u_{κ} for each control volume $\kappa \in \mathcal{T}$.
- Two scalar fluxes unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ for each edge $\sigma \in \mathcal{E}$.
- They are related through conservativity relations

 $F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$

• Let $\mathbb{R}^{\mathcal{T}}$ (resp. $\mathbb{R}^{\mathcal{E}}$) be the set of cell-centered (resp. edge-centered) unknowns.

MIMETIC SCHEMES FOR $-\operatorname{div}(A(x)\nabla \cdot)$

BASIC IDEA : Try to mimick properties of the continuous problem through the Green formula

$$\int_{\mathcal{K}} A_{\kappa}^{-1}(A_{\kappa}\nabla u) \cdot \xi \, dx + \int_{\mathcal{K}} u(\operatorname{div}\xi) \, dx = \int_{\partial \kappa} u(\xi \cdot \boldsymbol{\nu}) \, ds.$$

• For any $F \in \mathbb{R}^{\mathcal{E}}$, we define a discrete divergence operator

We suppose given a "scalar product"

 (·, ·)_{A⁻¹,κ} on the set of edge unknowns ◆
 supposed to approximate ∫_κ A_κ⁻¹F · G dx.

MIMETIC SCHEMES FOR $-\operatorname{div}(A(x)\nabla \cdot)$

BASIC IDEA : Try to mimick properties of the continuous problem through the Green formula

$$\int_{\mathcal{K}} A_{\kappa}^{-1}(A_{\kappa}\nabla u) \cdot \xi \, dx + \int_{\kappa} u(\operatorname{div}\xi) \, dx = \int_{\partial \kappa} u(\xi \cdot \boldsymbol{\nu}) \, ds.$$

• For any $F \in \mathbb{R}^{\mathcal{E}}$, we define a discrete divergence operator

We suppose given a "scalar product"

 (·, ·)_{A⁻¹,K} on the set of edge unknowns ◆
 supposed to approximate ∫_K A_K⁻¹F · G dx.

02/137

Assumptions

 u_{κ}

$$\begin{aligned} \mathbf{Coercivity} &: \underline{C}|\kappa| \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |F_{\mathcal{K},\sigma}|^2 \leq (F,F)_{A^{-1},\mathcal{K}} \leq \overline{C}|\kappa| \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |F_{\mathcal{K},\sigma}|^2, \quad \forall \kappa, \\ \mathbf{Consistency} &: \left((A_{\mathcal{K}} \nabla \varphi), G \right)_{A^{-1},\mathcal{K}} + \int_{\mathcal{K}} \varphi \operatorname{div}^{\mathcal{K}} G \, dx \\ &= \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} G_{\mathcal{K},\sigma} \left(\int_{\sigma} \varphi \right), \forall \kappa, \forall G \in \mathbb{R}^{\mathcal{E}}, \forall \varphi \text{ affine.} \end{aligned}$$

GLOBAL SCALAR PRODUCTS

$$(F,G)_{A^{-1}} = \sum_{\kappa} (F,G)_{A^{-1},\kappa},$$

 $(u,v) = \sum_{\kappa} |\kappa| u_{\kappa} v_{\kappa},$

APPROXIMATE FLUX OPERATOR : $\Phi : u \in \mathbb{R}^{\mathcal{T}} \mapsto \Phi u \in \mathbb{R}^{\mathcal{E}} \approx (A \nabla u) \cdot \boldsymbol{\nu}$ defined by duality

$$(G, \Phi u)_{A^{-1}} = -(u, \operatorname{div}^{\mathcal{K}} G), \quad \forall u \in \mathbb{R}_0^{\mathcal{T}}, \forall G \in \mathbb{R}^{\mathcal{E}}.$$

MFD SCHEME

Find $u \in \mathbb{R}^{\mathcal{T}}$ such that

$$-\operatorname{div}^{\mathcal{K}}\left(\Phi u\right)=f_{\mathcal{K}},\quad\forall\kappa.$$

SUMMARY

The main point remains to find suitable scalar products $(\cdot, \cdot)_{A^{-1},\kappa}$ satisfying consistency and coercivity properties.

MIMETIC SCHEMES FOR $-\operatorname{div}(A(x)\nabla \cdot)$

$$(F,G)_{A^{-1},\kappa} \stackrel{\text{def }t}{=} {}^t \left(F_{\kappa,\sigma} \right)_{\sigma} \mathcal{M}_{\kappa} \left(G_{\kappa,\sigma} \right)_{\sigma},$$

with M_{κ} is a $m \times m$ positive definite matrix.

DEFINITIONS

$$R_{\mathcal{K}} = \begin{pmatrix} |\sigma_1|^t (x_{\sigma_1} - x_{\mathcal{K}}) \\ \vdots \\ |\sigma_m|^t (x_{\sigma_m} - x_{\mathcal{K}}) \end{pmatrix}, \quad N_{\mathcal{K}} = \begin{pmatrix} {}^t \boldsymbol{\nu}_{\sigma_1} \\ \vdots \\ {}^t \boldsymbol{\nu}_{\sigma_m} \end{pmatrix} A_{\mathcal{K}}, \text{ of size } m \times 2,$$

PROPOSITION

Consistency condition is equivalent to

$$M_{\mathcal{K}}N_{\mathcal{K}} = R_{\mathcal{K}} \iff M_{\mathcal{K}} = \frac{1}{|\kappa|}R_{\mathcal{K}}A_{\mathcal{K}}^{-1t}R_{\mathcal{K}} + C_{\mathcal{K}}U_{\mathcal{K}}^{t}C_{\mathcal{K}},$$

where C_{κ} is a $m \times (m-2)$ matrix such that ${}^{t}C_{\kappa} N_{\kappa} = 0$ and U_{κ} is any $(m-2) \times (m-2)$ positive definite matrix.
Properties

- Control volumes needs to be star-shaped with respect to their mass center.
- Total number of unknowns is the sum of the number of control volumes and the number of edges.
- The linear system to be solved is of saddle-point kind.
- Those schemes can be seen as a generalisations of mixed finite elements with suitable quadrature formulas.
- With reasonnable regularity assumptions on mesh families and on $x \mapsto A(x)$, one can show second order convergence in the L^2 norm and first order convergence in the H^1 norm.
- When $x \mapsto A(x)$ is discontinuous : no complete analysis up to now.

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes

• Mixed finite volume methods

• SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown u_{κ} on each control volume $\kappa \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown u_{κ} on each control volume $\kappa \in \mathcal{T}$.
- One vectorial unknown \mathbf{v}_{κ} on each control volume $\kappa \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

 $F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$

• Continuity of the approximation at the middle of each edge x_{σ}

 $u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\sigma} - x_{\mathcal{K}}) - \frac{\nu_{\mathcal{K}} |\mathcal{K}| F_{\mathcal{K},\sigma}}{|\mathcal{K}|} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\sigma} - x_{\mathcal{L}}) - \frac{\nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}}{|\mathcal{L}|}.$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown u_{κ} on each control volume $\kappa \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

$$F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$$

• Continuity of the approximation at the middle of each edge x_σ

$$u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\sigma} - x_{\mathcal{K}}) - \frac{\nu_{\mathcal{K}} |\mathcal{K}| F_{\mathcal{K},\sigma}}{|\mathcal{K}|} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\sigma} - x_{\mathcal{L}}) - \frac{\nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}}{|\mathcal{L}|}.$$

• A simple formula

$$|\kappa|\xi = \int_{\kappa} \underbrace{\operatorname{div}\left((x - x_{\kappa}) \otimes \xi\right)}_{=\xi} dx = \int_{\partial \kappa} (\xi \cdot \boldsymbol{\nu})(x - x_{\kappa}) dx, \quad \forall \xi \in \mathbb{R}^{2}.$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown u_{κ} on each control volume $\kappa \in \mathcal{T}$.
- One vectorial unknown \mathbf{v}_{κ} on each control volume $\kappa \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

 $F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$

• Continuity of the approximation at the middle of each edge x_{σ}

$$u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\sigma} - x_{\mathcal{K}}) - \nu_{\mathcal{K}} |\mathcal{K}| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\sigma} - x_{\mathcal{L}}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• A simple formula

$$|\kappa|\xi = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| (\xi \cdot \boldsymbol{\nu}_{\mathcal{K},\sigma}) (x_{\sigma} - x_{\mathcal{K}}), \quad \forall \xi \in \mathbb{R}^{2}.$$

Idea : Apply this to $\xi = A \nabla u \, \dots \,$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown u_{κ} on each control volume $\kappa \in \mathcal{T}$.
- One vectorial unknown \mathbf{v}_{κ} on each control volume $\kappa \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

 $F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$

• Continuity of the approximation at the middle of each edge x_{σ}

 $u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\sigma} - x_{\mathcal{K}}) - \nu_{\mathcal{K}} |\mathcal{K}| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\sigma} - x_{\mathcal{L}}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$

• A simple formula

$$|\kappa| A_{\mathcal{K}} \mathbf{v}_{\mathcal{K}} = -\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} (x_{\sigma} - x_{\mathcal{K}}).$$

(Droniou-Eymard '06) (Droniou '07)

- One scalar unknown u_{κ} on each control volume $\kappa \in \mathcal{T}$.
- One vectorial unknown $\mathbf{v}_{\mathcal{K}}$ on each control volume $\mathcal{K} \in \mathcal{T}$.
- Two scalar flux unknowns $F_{\mathcal{K},\sigma}$ and $F_{\mathcal{L},\sigma}$ on each edge $\sigma \in \mathcal{E}$.
- The flux unknowns are related through the local conservativity property

 $F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0.$

• Continuity of the approximation at the middle of each edge x_{σ}

 $u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\sigma} - x_{\mathcal{K}}) - \nu_{\mathcal{K}} |\mathcal{K}| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\sigma} - x_{\mathcal{L}}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$

• A simple formula

$$|\kappa| A_{\kappa} \mathbf{v}_{\kappa} = -\sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(x_{\sigma} - x_{\kappa}).$$

• Flux balance equation $\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} = |\kappa| f_{\mathcal{K}}.$

PROPERTIES

- We have 3 scalar unknowns by control volume and two (in fact one ...) by edge.
- For a conforming mesh made of triangles, no need of penalisation term. In the other cases, this term is need to ensure well-posedness of the scheme.
- No particular difficulties to deal with non-linear equations $-\text{div}(\varphi(x, \nabla u)) = f.$
- Convergence result for the solution $u^{\tau} = (u_{\kappa})_{\kappa}$ and its gradient $\mathbf{v}^{\tau} = (\mathbf{v}_{\kappa})_{\kappa}$, for any mesh and any data.
 - Poincare inequality.
 - A priori estimate.
 - Compactness.
 - Convergence.
- For smooth solutions
 - On general meshes : Theoretical error estimates in $O(\sqrt{\text{size}(\mathcal{T})})$.
 - On conforming triangle meshes : Error estimates in $O(\operatorname{size}(\mathcal{T}))$.

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1}(x_{\sigma} - x_{\mathcal{K}}).$$

• Thus $(u_{\sigma} - u_{\kappa})_{\sigma \in \mathcal{E}_{\kappa}} = B_{\kappa}(F_{\kappa,\sigma})_{\sigma \in \mathcal{E}_{\kappa}},$

where B_{κ} is positive definite and depends only on the geometry of κ and ν_{κ} .

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

HYBRIDISATION

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

• Thus

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1}(x_{\sigma} - x_{\mathcal{K}}).$$
$$(F_{\mathcal{K},\sigma})_{\sigma \in \mathcal{E}_{\mathcal{K}}} = B_{\mathcal{K}}^{-1}(u_{\sigma} - u_{\mathcal{K}})_{\sigma \in \mathcal{E}_{\mathcal{K}}}.$$

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1}(x_{\sigma} - x_{\mathcal{K}}).$$

• Thus

 $(F_{\mathcal{K},\sigma})_{\sigma\in\mathcal{E}_{\mathcal{K}}} = B_{\mathcal{K}}^{-1}(u_{\sigma} - u_{\mathcal{K}})_{\sigma\in\mathcal{E}_{\mathcal{K}}}.$

• Elimination of $u_{\mathcal{K}}$

$$\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} = |\kappa| f_{\mathcal{K}}$$

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1}(x_{\sigma} - x_{\mathcal{K}}).$$

• Thus

 $(F_{\mathcal{K},\sigma})_{\sigma\in\mathcal{E}_{\mathcal{K}}}=B_{\mathcal{K}}^{-1}(u_{\sigma}-u_{\mathcal{K}})_{\sigma\in\mathcal{E}_{\mathcal{K}}}.$

• Elimination of $u_{\mathcal{K}}$

$$\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} c_{\mathcal{K},\sigma} (u_{\sigma} - u_{\mathcal{K}}) = |\mathcal{K}| f_{\mathcal{K}}$$

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

HYBRIDISATION

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1}(x_{\sigma} - x_{\mathcal{K}}).$$

• Thus $(F_{\kappa,\sigma})_{\sigma\in\mathcal{E}_{\kappa}} = B_{\kappa}^{-1}(u_{\sigma} - u_{\kappa})_{\sigma\in\mathcal{E}_{\kappa}}.$

• Elimination of $u_{\mathcal{K}} \Rightarrow u_{\mathcal{K}} = b_{\mathcal{K}} + \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \tilde{c}_{\mathcal{K},\sigma} u_{\sigma}.$

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1}(x_{\sigma} - x_{\mathcal{K}}).$$

• Thus $(F_{\kappa,\sigma})_{\sigma\in\mathcal{E}_{\mathcal{K}}} = B_{\kappa}^{-1}(u_{\sigma} - u_{\kappa})_{\sigma\in\mathcal{E}_{\mathcal{K}}}.$

• Elimination of $u_{\mathcal{K}} \Rightarrow u_{\mathcal{K}} = b_{\mathcal{K}} + \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \tilde{c}_{\mathcal{K},\sigma} u_{\sigma}.$

$$\Rightarrow (F_{\mathcal{K},\sigma})_{\sigma\in\mathcal{E}_{\mathcal{K}}} = C_{\mathcal{K}}(u_{\sigma} - u_{\sigma'})_{\sigma,\sigma'\in\mathcal{E}_{\mathcal{K}}} + (G_{\mathcal{K},\sigma})_{\sigma\in\mathcal{E}_{\mathcal{K}}}.$$

- The number of unknowns is very large.
- The linear system to be solved has no simple structure (in particular it is not positive definite).

Hybridisation

Elimination of cell-centered unknowns $(u_{\kappa})_{\kappa}$ and $(v_{\kappa})_{\kappa}$ in order to transform the system into a smaller and definite positive system.

• We define a new scalar unknown for each edge by

$$u_{\sigma} \stackrel{\text{def}}{=} u_{\mathcal{K}} + \mathbf{v}_{\mathcal{K}} \cdot (x_{\mathcal{K}} - x_{\sigma}) - \nu_{\mathcal{K}} |\kappa| F_{\mathcal{K},\sigma} = u_{\mathcal{L}} + \mathbf{v}_{\mathcal{L}} \cdot (x_{\mathcal{L}} - x_{\sigma}) - \nu_{\mathcal{L}} |\mathcal{L}| F_{\mathcal{L},\sigma}.$$

• We use

$$\mathbf{v}_{\mathcal{K}} = -\frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\sigma} A_{\mathcal{K}}^{-1} (x_{\sigma} - x_{\mathcal{K}}).$$

• Thus $(F_{\mathcal{K},\sigma})_{\sigma\in\mathcal{E}_{\mathcal{K}}} = B_{\mathcal{K}}^{-1}(u_{\sigma} - u_{\mathcal{K}})_{\sigma\in\mathcal{E}_{\mathcal{K}}}.$

• Elimination of $u_{\mathcal{K}} \Rightarrow u_{\mathcal{K}} = b_{\mathcal{K}} + \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \tilde{c}_{\mathcal{K},\sigma} u_{\sigma}.$

$$\Rightarrow (F_{\mathcal{K},\sigma})_{\sigma \in \mathcal{E}_{\mathcal{K}}} = C_{\mathcal{K}}(u_{\sigma} - u_{\sigma'})_{\sigma,\sigma' \in \mathcal{E}_{\mathcal{K}}} + (G_{\mathcal{K},\sigma})_{\sigma \in \mathcal{E}_{\mathcal{K}}}$$

• $F_{\mathcal{K},\sigma} + F_{\mathcal{L},\sigma} = 0 \Rightarrow$ One equation for each edge satisfied by $(u_{\sigma})_{\sigma}$.

5 A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1: Moderate Anisotropy
- Test #3: Oblique flow
- Test #4: Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

SCHEME USING STABILIZATION AND HYBRID INTERFACES

(Eymard-Gallouët-Herbin '08-..)

- Unknowns : cell-centered u_{κ} and edge-centered u_{σ} .
- The set of edges is separated into two parts

$$\mathcal{E} = \mathcal{E}_B \cup \mathcal{E}_H.$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_B$ are eliminated by a barycentric formula $u_{\sigma} = \sum \gamma_{\kappa}^{\sigma} u_{\kappa}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_H$ are free.
- A "geometric" formula \implies definition of a discrete gradient

$$\begin{aligned} |\kappa|\xi &= \int_{\mathcal{K}} \nabla \bigg(\xi \cdot (x - x_{\mathcal{K}}) \bigg) \, dx = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \int_{\sigma} \bigg(\xi \cdot (x - x_{\mathcal{K}}) \bigg) \boldsymbol{\nu}_{\mathcal{K},\sigma} \, dx \\ &= \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| \bigg(\xi \cdot (x_{\sigma} - x_{\mathcal{K}}) \bigg) \boldsymbol{\nu}_{\mathcal{K},\sigma}. \end{aligned}$$

SCHEME USING STABILIZATION AND HYBRID INTERFACES

(Eymard-Gallouët-Herbin '08-..)

- Unknowns : cell-centered u_{κ} and edge-centered u_{σ} .
- The set of edges is separated into two parts

$$\mathcal{E} = \mathcal{E}_B \cup \mathcal{E}_H.$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_B$ are eliminated by a barycentric formula $u_{\sigma} = \sum \gamma_{\kappa}^{\sigma} u_{\kappa}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_H$ are free.
- A "geometric" formula \implies definition of a discrete gradient

$$|\kappa| \nabla u \approx \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| (u(x_{\sigma}) - u(x_{\kappa})) \boldsymbol{\nu}_{\kappa,\sigma}.$$

SCHEME USING STABILIZATION AND HYBRID INTERFACES

(Eymard-Gallouët-Herbin '08-..)

- Unknowns : cell-centered u_{κ} and edge-centered u_{σ} .
- The set of edges is separated into two parts

$$\mathcal{E}=\mathcal{E}_B\cup\mathcal{E}_H.$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_B$ are eliminated by a barycentric formula $u_{\sigma} = \sum \gamma_{\kappa}^{\sigma} u_{\kappa}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_H$ are free.
- A "geometric" formula \implies definition of a discrete gradient

$$\nabla_{\mathcal{K}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{|\kappa|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| (u_{\sigma} - u_{\mathcal{K}}) \boldsymbol{\nu}_{\mathcal{K},\sigma}.$$

SCHEME USING STABILIZATION AND HYBRID INTERFACES

(Eymard-Gallouët-Herbin '08-..)

- Unknowns : cell-centered u_{κ} and edge-centered u_{σ} .
- The set of edges is separated into two parts

$$\mathcal{E} = \mathcal{E}_B \cup \mathcal{E}_H.$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_B$ are eliminated by a barycentric formula $u_{\sigma} = \sum \gamma_{\kappa}^{\sigma} u_{\kappa}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_H$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$\nabla_{\mathcal{K}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{K}|} \sum_{\substack{\sigma \in \mathcal{E}_{\mathcal{K}} \\ \alpha}} |\sigma| (u_{\sigma} - u_{\mathcal{K}}) \boldsymbol{\nu}_{\mathcal{K},\sigma}.$$

• Consistency error $R_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = \frac{\alpha}{d_{\mathcal{K},\sigma}} \Big(u_{\sigma} - u_{\mathcal{K}} - \nabla_{\mathcal{K}} u^{\mathcal{T}} \cdot (x_{\sigma} - x_{\mathcal{K}}) \Big).$

SCHEME USING STABILIZATION AND HYBRID INTERFACES

(Eymard-Gallouët-Herbin '08-..)

- Unknowns : cell-centered $u_{\mathcal{K}}$ and edge-centered u_{σ} .
- The set of edges is separated into two parts

$$\mathcal{E} = \mathcal{E}_B \cup \mathcal{E}_H.$$

- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_B$ are eliminated by a barycentric formula $u_{\sigma} = \sum \gamma_{\kappa}^{\sigma} u_{\kappa}$.
- The unknowns u_{σ} corresponding to $\sigma \in \mathcal{E}_H$ are free.
- A "geometric" formula \Longrightarrow definition of a discrete gradient

$$\nabla_{\mathcal{K}} u^{\mathcal{T}} \stackrel{\text{def}}{=} \frac{1}{|\mathcal{K}|} \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} |\sigma| (u_{\sigma} - u_{\mathcal{K}}) \boldsymbol{\nu}_{\mathcal{K},\sigma}.$$

- Consistency error $R_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = \frac{\alpha^{\mathcal{T}}}{d_{\mathcal{K},\sigma}} \left(u_{\sigma} u_{\mathcal{K}} \nabla_{\mathcal{K}} u^{\mathcal{T}} \cdot (x_{\sigma} x_{\mathcal{K}}) \right).$
- On each triangle (=half-diamond) $\mathcal{D}_{\mathcal{K},\sigma}$ we define a **stabilised** discrete gradient

$$\nabla_{\mathcal{K},\sigma} u^{\mathcal{T}} = \nabla_{\mathcal{K}} u^{\mathcal{T}} + \underline{R}_{\mathcal{K},\sigma}(u^{\mathcal{T}}) \boldsymbol{\nu}_{\mathcal{K},\sigma}.$$

111/ 137

• The scheme is then written under *variationnal* form

$$\int_{\Omega} (A(x)\nabla^{\tau} u^{\tau}) \cdot \nabla^{\tau} v^{\tau} \, dx = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\tau} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}).$$

• The scheme is then written under *variationnal* form

$$\int_{\Omega} (A(x)\nabla^{\tau} u^{\tau}) \cdot \nabla^{\tau} v^{\tau} \, dx = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\tau} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}).$$

• However, we can write it under a more standard FV form

$$\sum_{\kappa} \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(u^{\mathcal{T}})(v_{\kappa} - v_{\sigma}) = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\mathcal{T}} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}),$$

with $F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = \sum_{\sigma' \in \mathcal{E}_{\mathcal{K}}} \alpha_{\mathcal{K}}^{\sigma,\sigma'}(u_{\mathcal{K}} - u_{\sigma'})$, and $\alpha_{\mathcal{K}}^{\sigma,\sigma'}$ depends on the data.

• The scheme is then written under *variationnal* form

$$\int_{\Omega} (A(x)\nabla^{\tau} u^{\tau}) \cdot \nabla^{\tau} v^{\tau} \, dx = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\tau} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}).$$

• However, we can write it under a more standard FV form

$$\sum_{\kappa} \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(u^{\mathcal{T}})(v_{\kappa} - v_{\sigma}) = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\mathcal{T}} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}),$$

with $F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = \sum_{\sigma' \in \mathcal{E}_{\mathcal{K}}} \alpha_{\mathcal{K}}^{\sigma,\sigma'}(u_{\mathcal{K}} - u_{\sigma'})$, and $\alpha_{\mathcal{K}}^{\sigma,\sigma'}$ depends on the data.

• For edges $\sigma \in \mathcal{E}_H$, the unknown v_{σ} is a degree of freedom, thus

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) + F_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = 0.$$

• For edges $\sigma \in \mathcal{E}_B$, this local consistency property does not hold anymore.

• The scheme is then written under *variationnal* form

$$\int_{\Omega} (A(x)\nabla^{\tau} u^{\tau}) \cdot \nabla^{\tau} v^{\tau} \, dx = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\tau} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}).$$

• However, we can write it under a more standard FV form

$$\sum_{\kappa} \sum_{\sigma \in \mathcal{E}_{\kappa}} F_{\kappa,\sigma}(u^{\tau})(v_{\kappa} - v_{\sigma}) = \sum_{\kappa} |\kappa| v_{\kappa} f_{\kappa}, \quad \forall v^{\tau} = ((v_{\kappa})_{\kappa}, (v_{\sigma})_{\sigma}),$$

with $F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) = \sum_{\sigma' \in \mathcal{E}_{\mathcal{K}}} \alpha_{\mathcal{K}}^{\sigma,\sigma'}(u_{\mathcal{K}} - u_{\sigma'})$, and $\alpha_{\mathcal{K}}^{\sigma,\sigma'}$ depends on the data.

• For edges $\sigma \in \mathcal{E}_H$, the unknown v_{σ} is a degree of freedom, thus

$$F_{\mathcal{K},\sigma}(u^{\mathcal{T}}) + F_{\mathcal{L},\sigma}(u^{\mathcal{T}}) = 0.$$

• For edges $\sigma \in \mathcal{E}_B$, this local consistency property does not hold anymore.

Possible strategy to choose barycentric/hybrid edges

- We decide that $\sigma \in \mathcal{E}_B$, if the permeability tensor A is smooth near σ .
- We decide that $\sigma \in \mathcal{E}_H$, if A is discontinuous across σ in order to ensure a good accuracy and local conservativity.

PROPERTIES

(Eymard-Gallouët-Herbin '08)

- Barycentric/hybrid scheme adapted to the properties of the permeability tensor which is intermediate between standard FV and mixed FE methods.
- Local conservativity is only ensured on hybrid edges.
 - Fully barycentric scheme :

Few unknowns / Large stencil / No local conservativity

• Fully hybrid scheme :

Many unknowns / Large stencil / Local conservativity

- In the barycentric case, the notion of *local flux* across edges is not really clear.
- The linear system to be solved is symmetric.
- Existence and uniqueness of the solution holds true without any assumption.
- Convergence theorem in the general case.
- Error estimate in $O(\text{size}(\mathcal{T}))$ for u and ∇u in the case of a smooth isotropic permeability.

(Droniou-Eymard-Gallouët-Herbin '09)

THEOREM (SIMPLIFIED STATEMENT)

The three approaches

- Mimetic
- $Mixed \ FV$
- SUCCES

are **algebraically** equivalent (for a suitable choice of the numerical parameters).

b A review of some other modern methods

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

• Presentation

- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

(Herbin-Hubert, '08)

http://www.latp.univ-mrs.fr/fvca5 Proceedings edited by Wiley Ed. : Robert Eymard and Jean-Marc Hérard

- 19 contributions.
- 9 test cases.
- 10 different mesh families.
- Some properties/quantities to be compared :
 - Number of unknowns / of non-zero entries of the matrix.
 - Local conservativity or not.
 - L^{∞}/L^2 error for u and ∇u .
 - Approximation error for fluxes at interfaces.
 - Monotony / Discrete maximum principle.
 - Total energy balance.

b A review of some other modern methods

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

Test #1: Moderate anisotropy

L^2 ERROR ON u (SECOND ORDER)

F. Boyer FV for elliptic problems

Test #1: Moderate anisotropy

Mesh4_1

Mesh4_2

M	INIMUM	AND	MAXIMUM	VALUES	OF THE	APPROXIMATE	SOLUTION
---	--------	-----	---------	--------	--------	-------------	----------

	mes	h 4_1	mesh 4_2		
	umin	umax	umin	umax	
CMPFA	9.95E-03	1.00E + 00	2.73E-03	9.99E-01	
CVFE	0.00E + 00	8.43E-01	0.00E+00	9.14E-01	
DDFV	1.33E-02	9.96E-01	3.63E-03	9.99E-01	
FEQ1	0.00E + 00	8.61E-01	0.00E+00	9.37E-01	
FVHYB	2.14E-03	9.84E-01	7.16E-04	9.93E-01	
FVSYM	7.34E-03	9.59E-01	2.33E-03	9.89E-01	
MFD	6.64E-03	9.71E-01	1.50E-03	9.93E-01	
MFV	1.08E-02	9.42E-01	3.34E-03	9.82E-01	
NMFV	1.30E-02	1.11E + 00	3.61E-03	1.04E + 00	
SUSHI	7.64E-03	8.88E-01	2.33E-03	9.61E-01	

Test #1: Moderate anisotropy

L^2 ERROR ON THE SOLUTION u (SECOND ORDER)

b A review of some other modern methods

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

$$-\text{div}(A\nabla u) = 0 \text{ in } \Omega$$

with $A = R_{\theta} \begin{pmatrix} 1 & 0 \\ 0 & 10^{-3} \end{pmatrix} R_{\theta}^{-1}, \theta = 40^{\circ}$

The boundary data \bar{u} is continuous and piecewise affine on $\partial\Omega$:

$$\bar{u}(x,y) = \begin{cases} 1 & \text{on } (0,2) \times \{0.\} \cup \{0.\} \times (0,2) \\ 0 & \text{on } (.8,1.) \times \{1.\} \cup \{1.\} \times (.8,1.) \\ \frac{1}{2} & \text{on } ((.3,1.) \times \{0\} \cup \{0\} \times (.3,1.) \\ \frac{1}{2} & \text{on } (0,.7) \times \{1.\} \cup \{1.\} \times (0,0.7) \end{cases}$$

Test #3: Oblique flow

MINIMUM AND MAXIMUM VALUES OF THE APPROXIMATE SOLUTION

	umin_i	umax_i	i
CMPFA	6.90E-02	9.31E-01	1
	9.83E-04	9.99E-01	7
CVFE	0.00E+00	1.00E + 00	1
	0.00E+00	1.00E + 00	7
DDFV	-4.72E-03	1.00E + 00	1
	-5.31E-04	1.00E + 00	7
FEQ1	0.00E+00	1.00E+00	1
	0.00E+00	1.00E + 00	7
FVHYB	-1.75E-01	1.17E + 00	1
	-1.00E-03	1.00E + 00	6
FVSYM	6.85E-02	9.32E-01	1
	4.92E-04	9.99E-01	8
MFD	7.56E-02	9.24E-01	1
	8.01E-04	9.99E-01	8
MFE	3.12E-02	9.69E-01	1
	5.08E-04	9.99E-01	8
MFV	1.22E-02	8.78E-01	1
	7.92E-04	9.99E-01	7
NMFV	1.11e-01	8.88e-01	1
	1.28E-03	9.99E-01	7
SUSHI	6.03E-02	9.40E-01	1
	8.52E-04	9.99E-01	7

The energies

	ener1	eren	i
CMPFA	N/A	N/A	
	N/A	N/A	
CVFE	2.24E-01	8.42E-02	1
	2.42E-01	3.33E-03	7
DDFV	2.14E-01	9.60E-02	1
	2.42E-01	7.11E-06	7
feq1	2.21E-01	3.67E-01	1
	2.44E-01	3.17E-02	7
FVHYB	2.13E-01	2.55E-01	1
	2.42E-01	8.19E-03	6
FVSYM	2.20E-01	0.00E+00	1
	2.42E-01	0.00E+00	8
MFD	1.91E-01	1.87E-14	1
	2.42E-01	3.70E-14	8
MFE	1.25E-01	2.46E-02	1
	2.41E-01	2.91E-03	8
MFV	4.85E-01	8.23E-07	1
	2.42E-01	9.74E-06	7
NMFV	2.33e-01	1.45e-01	1
	2.45E-01	1.94E-02	7
SUSHI	2.25E-01	3.01E-01	1
	2.43E-01	1.28E-02	7

Volume energy

ener1
$$\approx \int_{\Omega} A \nabla u \cdot \nabla u \, dx$$
,

Boundary energy

ener
$$2 \approx \int_{\partial \Omega} A \nabla u \cdot \boldsymbol{\nu} \, dx.$$

For the continuous solution we have

 $\operatorname{eren1} = \operatorname{eren2}.$

We compute, at the discrete level, the error

eren = ener1 - ener2.

b A review of some other modern methods

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

and
$$\bar{u}(x,y) = 1 - x$$
.

mesh5

MAXIMUM PRINCIPLE

• Satisfied by all the methods presented here.

VALUES OF THE ENERGIES

	ener1	eren	ener1	eren
	mesh5	mesh5	mesh5_ref	mesh5_ref
CVFE	45.9	1.04E-02	43.3	6.25E-04
DDFV	42.1	3.65E-02	43.2	1.27E-03
FVHYB	41.4	6.12E-02	/	/
MFD-BLS	33.9	7.93E-14	43.2	2.84E-12
MFD	31.4	1.16E-12	43.2	4.71E-14
MFV	49.9	4.21E-05	43.2	1.88E-05
NMFV	/	/	43.2	5.92E-04
SUSHI	39.1	6.67E-02	43.1	8.88E-04

BOUNDARY FLUXES APPROXIMATION

Flux across
$$\{x = 0\}$$
: $\int_{\partial \Omega \cap \{x=0\}} A \nabla u \cdot \boldsymbol{\nu}$,

	flux0	flux0	flux1	flux1	fluy0	fluy0	fluy1
	mesh5	mesh5_ref	mesh5	mesh5_ref	mesh5	mesh5_ref	mesh5
CMPFA	-45.2	-42.1	46.1	44.4	-0.95	-2.33	4.84E-04
CVFE	-46.6	-42.2	48.5	44.5	0.87	-2.25	8.02E-04
DDFV	-40.0	-42.1	41.8	44.4	-1.81	-2.33	9.08E-04
feq1	/	-42.2	/	44.5	/	-2.16	/
FVHYB	-44.3	/	46.3	/	0.49	/	1.55E-04
MFD	-29.7	-42.1	34.1	44.4	-4.37	-2.33	1.01E-03
MFV	-44.0	-42.1	50.3	44.4	-8.03	-2.33	1.72E + 00
NMFV	-43.2	-42.1	44.5	44.4	-1.23	-2.33	2.32E-04
SUSHI	-40.9	-42.1	43.1	44.4	-2.21	-2.33	6.94E-04

b A review of some other modern methods

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

 $-\operatorname{div}(A\nabla u) = f \text{ in } \Omega$

with

$$A = \frac{1}{(x^2 + y^2)} \begin{pmatrix} 10^{-3}x^2 + y^2 & (10^{-3} - 1)xy \\ (10^{-3} - 1)xy & x^2 + 10^{-3}y^2 \end{pmatrix}$$

and $u(x, y) = \sin \pi x \sin \pi y$.

L^2 ERROR ON u (SECOND ORDER)

Some schemes do not satisfy the discrete maximum principle

	umin	umax
CMPFA	-1.06E-01	1.09E + 00
FEQ1	0.00E+00	1.05E+00
FVHYB	-1.92E+01	5.38E + 00
FVSYM	-8.67E-01	2.57E + 00
MFE	-1.62E+00	1.90E + 01

b A REVIEW OF SOME OTHER MODERN METHODS

- General presentation
- MPFA schemes
- Diamond schemes
- Nonlinear monotone FV schemes
- Mimetic schemes
- Mixed finite volume methods
- SUCCES / SUSHI schemes

6 Comparisons : Benchmark from the FVCA 5 conference

- Presentation
- Test #1 : Moderate Anisotropy
- Test #3 : Oblique flow
- Test #4 : Vertical fault
- Test #5: Heterogeneous rotating anisotropy
- Conclusion

How to choose a scheme?

- Do I really need to use a general mesh (non conforming, distorded, ...)?
- Do I need to ensure monotony/nonnegativity?
- Do I need an accurate approximation of the gradient of u, of the fluxes ?
- Do I need an accurate approximation of the energies?

- Is there any other equation that is coupled with the elliptic system under study ?
- In this case, what are the constraints related to this coupling ? to an existing code ?

• Do I really need theorems?

THE END

Advertisement

The International Symposium of Finite Volumes for Complex Applications

FVCA VII, Berlin, Germany, June 16-20, 2014

http://www.wias-berlin.de/fvca7

PROOF OF THE 1D DISCRETE MAXIMUM PRINCIPLE

Let
$$u^{\mathcal{T}} = (u_i)_i$$
 satisfying $Au^{\mathcal{T}} = (h_i f_i)_i$.

• We assume $(f_i)_i \ge 0$, we want to show that $(u_i)_i \ge 0$.

PROOF OF THE 1D DISCRETE MAXIMUM PRINCIPLE

Let $u^{\tau} = (u_i)_i$ satisfying $Au^{\tau} = (h_i f_i)_i$.

- We assume $(f_i)_i \ge 0$, we want to show that $(u_i)_i \ge 0$.
- Assume that $u^{\mathcal{T}} \geq 0$, then we set

 $i_0 = \min\{1 \le i \le N, \text{ s.t. } u_i = \min u^{\mathcal{T}}\}.$

By assumption, we have $u_{i_0} < 0 = u_0$ so that

 $u_{i_0} < u_{i_0-1}$, and $u_{i_0} \le u_{i_0+1}$.

PROOF OF THE 1D DISCRETE MAXIMUM PRINCIPLE

Let $u^{\tau} = (u_i)_i$ satisfying $Au^{\tau} = (h_i f_i)_i$.

- We assume $(f_i)_i \ge 0$, we want to show that $(u_i)_i \ge 0$.
- Assume that $u^{\mathcal{T}} \geq 0$, then we set

 $i_0 = \min\{1 \le i \le N, \text{ s.t. } u_i = \min u^{\mathcal{T}}\}.$

By assumption, we have $u_{i_0} < 0 = u_0$ so that

$$u_{i_0} < u_{i_0-1}$$
, and $u_{i_0} \le u_{i_0+1}$.

• We look at the equation $\#i_0$ of the system

$$\underbrace{-k_{i_0+1/2} \frac{u_{i_0+1} - u_{i_0}}{h_{i_0+1/2}}}_{\leq 0} + \underbrace{k_{i_0-1/2} \frac{u_{i_0} - u_{i_0-1}}{h_{i_0-1/2}}}_{\leq 0} = \underbrace{h_{i_0} f_{i_0}}_{\geq 0}.$$

$$\Rightarrow \text{Contradiction.}$$

Let $u^{\mathcal{T}}$ satisfying $Au^{\mathcal{T}} = (h_i f_i)_i$.

 \bullet We build "explicitely" a $v^{\mathcal{T}}$ such that

$$Av^{\mathcal{T}} = (h_i)_i.$$

Let $u^{\mathcal{T}}$ satisfying $Au^{\mathcal{T}} = (h_i f_i)_i$.

 \bullet We build "explicitely" a $v^{\mathcal{T}}$ such that

$$Av^{\mathcal{T}} = (h_i)_i.$$

• This vector satisfies $||v^{\tau}||_{\infty} \leq C$ and $v_i \approx v(x_i)$ where v is the solution of

$$-\partial_x(k(x)\partial_x v) = 1, \quad v(0) = v(1) = 0.$$

Let u^{τ} satisfying $Au^{\tau} = (h_i f_i)_i$.

 \bullet We build "explicitely" a $v^{\mathcal{T}}$ such that

$$Av^{\mathcal{T}} = (h_i)_i.$$

• This vector satisfies $||v^{\tau}||_{\infty} \leq C$ and $v_i \approx v(x_i)$ where v is the solution of

$$-\partial_x(k(x)\partial_x v) = 1, \quad v(0) = v(1) = 0.$$

• By linearity, we have

$$A(||f||_{\infty}v^{\tau} - u^{\tau}) = (h_i(||f||_{\infty} - f_i))_i \ge 0.$$

Let u^{τ} satisfying $Au^{\tau} = (h_i f_i)_i$.

• We build "explicitely" a $v^{\mathcal{T}}$ such that

$$Av^{\mathcal{T}} = (h_i)_i.$$

• This vector satisfies $||v^{\tau}||_{\infty} \leq C$ and $v_i \approx v(x_i)$ where v is the solution of

$$-\partial_x(k(x)\partial_x v) = 1, \quad v(0) = v(1) = 0.$$

• By linearity, we have

$$A(||f||_{\infty}v^{\tau} - u^{\tau}) = \left(h_i(||f||_{\infty} - f_i)\right)_i \ge 0.$$

• By using the discrete maximum principle, we get

$$u^{\mathcal{T}} \le \|f\|_{\infty} v^{\mathcal{T}},$$

and thus

$$u^{\mathcal{T}} \le C \|f\|_{\infty}$$

• The same reasonning applied to $-u^{\tau}$ let us conclude.

PROOF OF THE 2D POINCARÉ INEQUALITY

- For simplicity, we assume that Ω is convex.
- Let $\xi \in \mathbb{R}^2$ be any unitary vector. For any $x \in \Omega$ let y(x) be the *projection* of x onto $\partial \Omega$ in the direction ξ .
- For any $\sigma \in \mathcal{E}$, we set

$$\chi_{\sigma}(x,y) = \begin{cases} 1 & \text{if } [x,y] \cap \sigma \neq \emptyset \\ 0 & \text{if } [x,y] \cap \sigma = \emptyset. \end{cases}$$

PROOF OF THE 2D POINCARÉ INEQUALITY

- For simplicity, we assume that Ω is convex.
- Let $\xi \in \mathbb{R}^2$ be any unitary vector. For any $x \in \Omega$ let y(x) be the *projection* of x onto $\partial \Omega$ in the direction ξ .
- For any $\sigma \in \mathcal{E}$, we set

$$\chi_{\sigma}(x,y) = \begin{cases} 1 & \text{if } [x,y] \cap \sigma \neq \emptyset \\ 0 & \text{if } [x,y] \cap \sigma = \emptyset. \end{cases}$$

• Let us define the set

 $\tilde{\Omega} = \big\{ x \in \Omega, \ [x, y(x)] \text{ does not contain any vertex of the mesh} \\ \text{ and any edge of the mesh} \big\}.$

Observe that $\tilde{\Omega}^c$ has a zero Lebesgue measure in Ω .

- For simplicity, we assume that Ω is convex.
- Let $\xi \in \mathbb{R}^2$ be any unitary vector. For any $x \in \Omega$ let y(x) be the *projection* of x onto $\partial \Omega$ in the direction ξ .
- For any $\sigma \in \mathcal{E}$, we set

$$\chi_{\sigma}(x,y) = \begin{cases} 1 & \text{if } [x,y] \cap \sigma \neq \emptyset \\ 0 & \text{if } [x,y] \cap \sigma = \emptyset. \end{cases}$$

• Let us define the set

 $\tilde{\Omega} = \big\{ x \in \Omega, \ [x, y(x)] \text{ does not contain any vertex of the mesh} \\ \text{ and any edge of the mesh} \big\}.$

Observe that $\tilde{\Omega}^c$ has a zero Lebesgue measure in Ω .

• Let us take $\kappa \in \mathcal{T}$ and $x \in \kappa \cap \tilde{\Omega}$. By following the segment [x, y(x)] from x to y(x), we encounter a finite number of control volumes denoted by $(\kappa_i)_{1 \leq i \leq m}$ with $\kappa_1 = \kappa$ and κ_m is a boundary control volume.

• We write a telescoping sum

$$u_{\mathcal{K}} = u_{\mathcal{K}_{1}} = \sum_{i=1}^{m-1} (u_{\mathcal{K}_{i}} - u_{\mathcal{K}_{i+1}}) + u_{\mathcal{K}_{m}},$$
$$|u_{\mathcal{K}}| \le \sum_{i=1}^{m-1} |u_{\mathcal{K}_{i}} - u_{\mathcal{K}_{i+1}}| + |0 - u_{\mathcal{K}_{m}}|,$$

• Thus, we get

$$|u_{\mathcal{K}}| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma} |D_{\sigma}(u^{\mathcal{T}})| \chi_{\sigma}(x, y(x)).$$

• We write a telescoping sum

$$u_{\mathcal{K}} = u_{\mathcal{K}_1} = \sum_{i=1}^{m-1} (u_{\mathcal{K}_i} - u_{\mathcal{K}_{i+1}}) + u_{\mathcal{K}_m},$$

$$|u_{\mathcal{K}}| \leq \sum_{i=1} |u_{\mathcal{K}_i} - u_{\mathcal{K}_{i+1}}| + |0 - u_{\mathcal{K}_m}|,$$

• Thus, we get

$$|u_{\mathcal{K}}| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma} \sqrt{c_{\sigma}} \frac{1}{\sqrt{c_{\sigma}}} |D_{\sigma}(u^{\tau})| \chi_{\sigma}(x, y(x)).$$

with $c_{\sigma} = |\boldsymbol{\nu}_{\sigma} \cdot \boldsymbol{\xi}|$ (which is non zero, since $x \in \tilde{\Omega}$).

• We write a telescoping sum

$$u_{\mathcal{K}} = u_{\mathcal{K}_1} = \sum_{i=1}^{m-1} (u_{\mathcal{K}_i} - u_{\mathcal{K}_{i+1}}) + u_{\mathcal{K}_m},$$

$$|u_{\mathcal{K}}| \leq \sum_{i=1} |u_{\mathcal{K}_i} - u_{\mathcal{K}_{i+1}}| + |0 - u_{\mathcal{K}_m}|,$$

• Thus, we get

$$|u_{\mathcal{K}}| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma} \sqrt{c_{\sigma}} \frac{1}{\sqrt{c_{\sigma}}} |D_{\sigma}(u^{\tau})| \chi_{\sigma}(x, y(x)).$$

• We use Cauchy-Schwarz inequality

$$|u_{\mathcal{K}}|^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right) \left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right).$$

$$|u_{\mathcal{K}}|^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right) \left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right).$$

$$|u_{\mathcal{K}}|^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right) \left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right).$$

$$\sum_{i=1}^{\infty} (x_{\mathcal{K}_i} - x_{\mathcal{K}_{i+1}}) \cdot \xi + (x_{\mathcal{K}_m} - x_{\tilde{\sigma}}) \cdot \xi = (x_{\mathcal{K}} - x_{\tilde{\sigma}}) \cdot \xi,$$

$$|u_{\mathcal{K}}|^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right) \left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right).$$

$$-\sum_{i=1}^{m-1} \underbrace{d_{\kappa_i \kappa_{i+1}}}_{d_{\sigma}} \underbrace{\boldsymbol{\nu}_{\kappa_i \kappa_{i+1}}}_{\boldsymbol{\xi} = c_{\sigma}} - d_{\kappa_m \tilde{\sigma}} \boldsymbol{\nu}_{\kappa_m \tilde{\sigma}} \cdot \boldsymbol{\xi} = (x_{\kappa} - x_{\tilde{\sigma}}) \cdot \boldsymbol{\xi},$$

$$|u_{\mathcal{K}}|^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x))\right) \left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right).$$

$$\sum_{\sigma \in \mathcal{E}} d_{\sigma} c_{\sigma} \chi_{\sigma}(x, y(x)) = \left| (\boldsymbol{x}_{\mathcal{K}} - \boldsymbol{x}_{\bar{\sigma}}) \cdot \boldsymbol{\xi} \right| \leq \operatorname{diam}(\Omega).$$

$$|u_{\kappa}|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \kappa \in \mathcal{T}, \forall x \in \kappa \cap \tilde{\Omega}.$$

$$|u_{\kappa}|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \kappa \in \mathcal{T}, \forall x \in \kappa \cap \tilde{\Omega}.$$

We integrate this formula on $\kappa \cap \tilde{\Omega}$ with respect to x, then we sum over $\kappa \in \mathcal{T}$

$$\sum_{\kappa \in \mathcal{T}} |\kappa| |u_{\kappa}|^2 \leq \operatorname{diam}(\Omega) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^2 \left(\int_{\Omega} \chi_{\sigma}(x, y(x)) \, dx \right),$$

$$|u_{\kappa}|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \kappa \in \mathcal{T}, \forall x \in \kappa \cap \tilde{\Omega}.$$

We integrate this formula on $\kappa \cap \tilde{\Omega}$ with respect to x, then we sum over $\kappa \in \mathcal{T}$

$$\sum_{\kappa \in \mathcal{T}} |\kappa| |u_{\kappa}|^2 \leq \operatorname{diam}(\Omega) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^2 \left(\int_{\Omega} \chi_{\sigma}(x, y(x)) \, dx \right),$$

ESTIMATE OF EACH INTEGRAL

$$|u_{\kappa}|^{2} \leq \operatorname{diam}(\Omega)\left(\sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^{2} \chi_{\sigma}(x, y(x))\right), \quad \forall \kappa \in \mathcal{T}, \forall x \in \kappa \cap \tilde{\Omega}.$$

We integrate this formula on $\kappa \cap \tilde{\Omega}$ with respect to x, then we sum over $\kappa \in \mathcal{T}$

$$\sum_{\kappa \in \mathcal{T}} |\kappa| |u_{\kappa}|^2 \leq \operatorname{diam}(\Omega) \sum_{\sigma \in \mathcal{E}} \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau})|^2 \left(\int_{\Omega} \chi_{\sigma}(x, y(x)) \, dx \right),$$

ESTIMATE OF EACH INTEGRAL

$$\int_{\Omega} \chi_{\sigma}(x, y(x)) \, dx \leq \operatorname{diam}(\Omega) |\sigma| c_{\sigma}.$$

CONCLUSION

$$\|u^{\mathcal{T}}\|_{L^2}^2 = \sum_{\kappa \in \mathcal{T}} |\kappa| |u_{\kappa}|^2 \le \operatorname{diam}(\Omega)^2 \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\sigma} |D_{\sigma}(u^{\mathcal{T}})|^2 = \operatorname{diam}(\Omega)^2 \|u^{\mathcal{T}}\|_{1,\mathcal{T}}^2.$$

- Let $u^n \in L^2(\mathbb{R}^2)$ be the extension by 0 of $u^{\mathcal{T}_n} \in L^2(\Omega)$.
- In order to use the Kolmogorov theorem we need a translation estimate

$$||u^n(\cdot + \eta) - u^n||_{L^2} \xrightarrow[\eta \to 0]{} 0$$
, unif. with respect to n .

- Let $u^n \in L^2(\mathbb{R}^2)$ be the extension by 0 of $u^{\mathcal{T}_n} \in L^2(\Omega)$.
- In order to use the Kolmogorov theorem we need a translation estimate

$$||u^n(\cdot + \eta) - u^n||_{L^2} \xrightarrow[\eta \to 0]{} 0$$
, unif. with respect to n .

• Let $\eta \in \mathbb{R}^2 \setminus \{0\}$. A standard computation (telescoping sum) leads to

$$|u^{n}(x+\eta) - u^{n}(x)| \leq \sum_{\sigma \in \mathcal{E}} d_{\sigma} |D_{\sigma}(u^{\tau_{n}})| \chi_{\sigma}(x, x+\eta),$$

then by the Cauchy-Schwarz inequality

$$\begin{aligned} |u^{n}(x+\eta) - u^{n}(x)|^{2} &\leq \left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x,x+\eta) d_{\sigma} \boldsymbol{c}_{\sigma}\right) \\ &\times \left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x,x+\eta) \frac{d_{\sigma}}{\boldsymbol{c}_{\sigma}} |D_{\sigma}(u^{\tau,n})|^{2}\right), \end{aligned}$$

with $c_{\sigma} = |\boldsymbol{\nu}_{\sigma} \cdot \frac{\eta}{|\eta|}|.$

$$|u^{n}(x+\eta) - u^{n}(x)|^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x+\eta) d_{\sigma} c_{\sigma}\right) \\ \times \left(\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x+\eta) \frac{d_{\sigma}}{c_{\sigma}} |D_{\sigma}(u^{\tau, n})|^{2}\right),$$

with $c_{\sigma} = |\boldsymbol{\nu} \cdot \frac{\eta}{|\eta|}|$. ESTIMATE OF THE FIRST TERM

- Without loss of generalities we assume that $[x, x + \eta] \subset \Omega$.
- Let $\kappa, \mathcal{L} \in \mathcal{T}$ be such that $x \in \kappa$ and $x + \eta \in \mathcal{L}$. Thus, we have

$$\sum_{\sigma \in \mathcal{E}} \chi_{\sigma}(x, x + \eta) d_{\sigma} c_{\sigma} = \left| (x_{\mathcal{L}} - x_{\mathcal{K}}) \cdot \frac{\eta}{|\eta|} \right| \leq |x_{\mathcal{L}} - x_{\mathcal{K}}|$$
$$\leq |x_{\mathcal{L}} - (x + \eta)| + |(x + \eta) - x| + |x - x_{\mathcal{K}}|$$
$$\leq |\eta| + 2\text{size}(\mathcal{T}_n).$$

• We integrate with respect to $x \in \mathbb{R}^2$

$$\|u^{n}(\cdot+\eta)-u^{n}\|_{L^{2}}^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\mathcal{T},n})|^{2}\left(\int_{\mathbb{R}^{2}}\chi_{\sigma}(x,x+\eta)\,dx\right)_{144/13}$$

$$|u^{n}(x+\eta)-u^{n}(x)|^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\left(\chi_{\sigma}(x,x+\eta)\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\mathcal{T},n})|^{2}\right),$$

• We integrate with respect to $x \in \mathbb{R}^2$

$$\|u^{n}(\cdot+\eta)-u^{n}\|_{L^{2}}^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\tau,n})|^{2}\left(\int_{\mathbb{R}^{2}}\chi_{\sigma}(x,x+\eta)\,dx\right)$$

$$|u^{n}(x+\eta)-u^{n}(x)|^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\left(\chi_{\sigma}(x,x+\eta)\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\mathcal{T},n})|^{2}\right),$$

• We integrate with respect to $x \in \mathbb{R}^2$

$$\|u^{n}(\cdot+\eta)-u^{n}\|_{L^{2}}^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\tau,n})|^{2}\left(\int_{\mathbb{R}^{2}}\chi_{\sigma}(x,x+\eta)\,dx\right)$$

• Computation of the integral

$$\int_{\mathbb{R}^2} \chi_{\sigma}(x, x+\eta) \, dx = |\eta| |\sigma| c_{\sigma}.$$

$$|u^{n}(x+\eta)-u^{n}(x)|^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\left(\chi_{\sigma}(x,x+\eta)\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\mathcal{T},n})|^{2}\right),$$

• We integrate with respect to $x \in \mathbb{R}^2$

$$\|u^{n}(\cdot+\eta)-u^{n}\|_{L^{2}}^{2} \leq C(|\eta|+\operatorname{size}(\mathcal{T}_{n}))\sum_{\sigma\in\mathcal{E}}\frac{d_{\sigma}}{c_{\sigma}}|D_{\sigma}(u^{\tau,n})|^{2}\left(\int_{\mathbb{R}^{2}}\chi_{\sigma}(x,x+\eta)\,dx\right)$$

• Computation of the integral

$$\int_{\mathbb{R}^2} \chi_{\sigma}(x, x+\eta) \, dx = |\eta| |\sigma| c_{\sigma}.$$

CONCLUSION

$$\|u^{n}(\cdot+\eta)-u^{n}\|_{L^{2}}^{2} \leq C|\eta|(|\eta|+\underbrace{\operatorname{size}(\mathcal{T}_{n})}_{\leq \operatorname{diam}(\Omega)})\underbrace{\|u^{\mathcal{T}_{n}}\|_{1,\mathcal{T}_{n}}^{2}}_{\operatorname{bounded}}.$$

Kolmogoroff $\Rightarrow \exists$ a subsequence $u^{\varphi(n)} \longrightarrow u \in L^2(\mathbb{R}^2)$ with u = 0 outside Ω .

• By assumption, we have

$$\sup_{n} \|\nabla^{\tau_n} u^{\tau_n}\|_{L^2} < +\infty,$$

• There exists $G \in (L^2(\Omega))^2$ such that (up to a subsequence) we have

$$\nabla^{\mathcal{T}_{\varphi(n)}} u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} G, \text{ in } L^2(\Omega)^2.$$

We want to show that $u \in H_0^1(\Omega)$ and $\nabla u = G$.

• By assumption, we have

$$\sup_{n} \|\nabla^{\tau_n} u^{\tau_n}\|_{L^2} < +\infty,$$

• There exists $G \in (L^2(\Omega))^2$ such that (up to a subsequence) we have

$$\nabla^{\mathcal{T}_{\varphi(n)}} u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} G, \text{ in } L^2(\Omega)^2.$$

We want to show that $u \in H_0^1(\Omega)$ and $\nabla u = G$.

• Let $\Phi \in (\mathcal{C}^{\infty}(\mathbb{R}^2))^2$ (we do not assume that $\Phi = 0$ on $\partial \Omega$)

$$I_n \stackrel{\text{def}}{=} \int_{\Omega} u^{\mathcal{T}_n}(\operatorname{div}\Phi) \, dx \xrightarrow[n \to \infty]{} \int_{\Omega} u\left(\operatorname{div}\Phi\right) dx.$$

• By assumption, we have

$$\sup_{n} \|\nabla^{\tau_n} u^{\tau_n}\|_{L^2} < +\infty,$$

• There exists $G \in (L^2(\Omega))^2$ such that (up to a subsequence) we have

$$\nabla^{\mathcal{T}_{\varphi(n)}} u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} G, \text{ in } L^2(\Omega)^2.$$

We want to show that $u \in H_0^1(\Omega)$ and $\nabla u = G$.

• Let $\Phi \in (\mathcal{C}^{\infty}(\mathbb{R}^2))^2$ (we do not assume that $\Phi = 0$ on $\partial \Omega$)

$$I_n \stackrel{\text{def}}{=} \int_{\Omega} u^{\mathcal{T}_n}(\operatorname{div}\Phi) \, dx \xrightarrow[n \to \infty]{} \int_{\Omega} u\left(\operatorname{div}\Phi\right) \, dx.$$

• We also have

$$I_n = \sum_{\kappa \in \mathcal{T}_n} u_{\kappa}^n \left(\int_{\kappa} \operatorname{div} \Phi \, dx \right) = \sum_{\kappa \in \mathcal{T}_n} u_{\kappa}^n \sum_{\sigma \in \mathcal{E}_{\kappa}} \left(\int_{\sigma} \Phi \cdot \boldsymbol{\nu}_{\kappa \sigma} \, dx \right).$$

$$I_n = \sum_{\sigma \in \mathcal{E}_{int}} (u_{\mathcal{K}}^n - u_{\mathcal{L}}^n) \left(\int_{\sigma} \Phi \cdot \boldsymbol{\nu}_{\mathcal{KL}} \right) + \sum_{\sigma \in \mathcal{E}_{ext}} (u_{\mathcal{K}}^n - 0) \left(\int_{\sigma} \Phi \cdot \boldsymbol{\nu}_{\mathcal{K\sigma}} \right).$$

$$I_n = \sum_{\sigma \in \mathcal{E}_{int}} (u_{\mathcal{K}}^n - u_{\mathcal{L}}^n) \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \cdot \left(\int_{\sigma} \Phi \right) + \sum_{\sigma \in \mathcal{E}_{ext}} (u_{\mathcal{K}}^n - 0) \boldsymbol{\nu}_{\mathcal{K}\sigma} \cdot \left(\int_{\sigma} \Phi \right).$$

$$\begin{split} I_n &= \sum_{\sigma \in \mathcal{E}_{int}} \frac{|\sigma| d_{\mathcal{KL}}}{d} \left(d \frac{u_{\mathcal{K}}^n - u_{\mathcal{L}}^n}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}} \right) \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right) \\ &+ \sum_{\sigma \in \mathcal{E}_{ext}} \frac{|\sigma| d_{\mathcal{K\sigma}}}{d} \left(d \frac{u_{\mathcal{K}}^n - 0}{d_{\mathcal{K\sigma}}} \boldsymbol{\nu}_{\mathcal{K\sigma}} \right) \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right). \end{split}$$

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right).$$

• We sum over the edges in the mesh

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right).$$

• Since Φ is \mathcal{C}^{∞}

$$\forall \sigma \in \mathcal{E}, \left| \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right) - \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi \right) \right| \le C \| \nabla \Phi \|_{\infty} \operatorname{size}(\mathcal{T}_n).$$

• We sum over the edges in the mesh

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right).$$

• Since Φ is \mathcal{C}^{∞}

$$\forall \sigma \in \mathcal{E}, \left| \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right) - \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi \right) \right| \le C \| \nabla \Phi \|_{\infty} \operatorname{size}(\mathcal{T}_n).$$

• Since $(\nabla^{\mathcal{T}_n} u^{\mathcal{T}_n})_n$ is bounded in L^2 , we have

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi\right) + O_{\Phi}(\text{size}(\mathcal{T}_n)).$$

• We sum over the edges in the mesh

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right).$$

• Since Φ is \mathcal{C}^{∞}

$$\forall \sigma \in \mathcal{E}, \left| \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right) - \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi \right) \right| \le C \| \nabla \Phi \|_{\infty} \operatorname{size}(\mathcal{T}_n).$$

• Since $(\nabla^{\mathcal{T}_n} u^{\mathcal{T}_n})_n$ is bounded in L^2 , we have

$$I_n = -\sum_{\sigma \in \mathcal{E}} \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \int_{\mathcal{D}} \Phi + O_{\Phi}(\operatorname{size}(\mathcal{T}_n)).$$

• We sum over the edges in the mesh

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right).$$

• Since Φ is \mathcal{C}^{∞}

$$\forall \sigma \in \mathcal{E}, \left| \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right) - \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi \right) \right| \le C \| \nabla \Phi \|_{\infty} \operatorname{size}(\mathcal{T}_n).$$

• Since $(\nabla^{\mathcal{T}_n} u^{\mathcal{T}_n})_n$ is bounded in L^2 , we have

$$I_n = -\int_{\Omega} \nabla^{\tau_n} u^{\tau_n} \cdot \Phi \, dx + O_{\Phi}(\text{size}(\mathcal{T}_n)).$$

• We sum over the edges in the mesh

$$I_n = -\sum_{\sigma \in \mathcal{E}} |\mathcal{D}| \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi\right).$$

• Since Φ is \mathcal{C}^{∞}

$$\forall \sigma \in \mathcal{E}, \left| \left(\frac{1}{|\sigma|} \int_{\sigma} \Phi \right) - \left(\frac{1}{|\mathcal{D}|} \int_{\mathcal{D}} \Phi \right) \right| \le C \| \nabla \Phi \|_{\infty} \operatorname{size}(\mathcal{T}_n).$$

• Since $(\nabla^{\mathcal{T}_n} u^{\mathcal{T}_n})_n$ is bounded in L^2 , we have

$$I_n = -\int_{\Omega} \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \Phi \, dx + O_{\Phi}(\operatorname{size}(\mathcal{T}_n)).$$

• Conclusion, for any $\Phi \in (\mathcal{C}^{\infty}(\mathbb{R}^2))^2$, we have

$$I_n \xrightarrow[n \to \infty]{} - \int_{\Omega} G \cdot \Phi \, dx$$
, and $I_n \xrightarrow[n \to \infty]{} \int_{\Omega} u \operatorname{div} \Phi \, dx$.

Back			
· Dack	 -		

ENERGY ESTIMATE

$$\forall n \ge 0, \quad \|u^{\mathcal{T}_n}\|_{1,\mathcal{T}_n} \le \operatorname{diam}(\Omega)\|f\|_{L^2}.$$

Energy estimate

$$\forall n \ge 0, \quad \|u^{\mathcal{T}_n}\|_{1,\mathcal{T}_n} \le \operatorname{diam}(\Omega)\|f\|_{L^2}.$$

COMPACTNESS THEOREM \Rightarrow There exists $u \in H_0^1(\Omega)$ such that

$$u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} u \text{ in } L^{2}(\Omega),$$
$$\nabla^{\mathcal{T}_{\varphi(n)}} u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} \nabla u \text{ in } (L^{2}(\Omega))^{2}$$

Energy estimate

$$\forall n \ge 0, \quad \|u^{\mathcal{T}_n}\|_{1,\mathcal{T}_n} \le \operatorname{diam}(\Omega)\|f\|_{L^2}.$$

COMPACTNESS THEOREM \Rightarrow There exists $u \in H_0^1(\Omega)$ such that

$$u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} u \text{ in } L^{2}(\Omega),$$
$$\nabla^{\mathcal{T}_{\varphi(n)}} u^{\mathcal{T}_{\varphi(n)}} \xrightarrow[n \to \infty]{} \nabla u \text{ in } (L^{2}(\Omega))^{2}.$$

IT REMAINS TO CHECK THAT

$$u$$
 solves $-\Delta u = f$,

that is

$$\int_{\Omega} \nabla u \cdot \nabla \varphi \, dx = \int_{\Omega} f \varphi \, dx, \ \, \forall \varphi \in \mathcal{C}^{\infty}_{c}(\Omega).$$

 \leadsto By standard uniqueness arguments, the convergence holds for the whole sequence $(u^{\mathcal{T}_n})_n$.

$$\mathbb{P}^{\mathcal{T}}\varphi \stackrel{\text{def}}{=} (\varphi(x_{\mathcal{K}}))_{\mathcal{K}\in\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega).$$

$$\sum_{\sigma \in \mathcal{E}_{int}} d_{\sigma} |\sigma| D_{\mathcal{KL}}(u^{\mathcal{T}_n}) \cdot \left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}}\right) = \sum_{\mathcal{K} \in \mathcal{T}_n} |\kappa| f_{\mathcal{K}} \varphi(x_{\mathcal{K}}).$$

Remark : For n large enough, the boundary terms vanish.

$$\mathbb{P}^{\mathcal{T}}\varphi \stackrel{\text{def}}{=} (\varphi(x_{\mathcal{K}}))_{\mathcal{K}\in\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_c^{\infty}(\Omega).$$

$$\sum_{\sigma \in \mathcal{E}_{int}} d_{\sigma} |\sigma| D_{\mathcal{KL}}(u^{\mathcal{T}_n}) \cdot \left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}}\right) = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} \varphi(x_{\mathcal{K}}).$$

Remark : For n large enough, the boundary terms vanish. DEFINITION OF THE DISCRETE GRADIENT

$$\sum_{\sigma \in \mathcal{E}_{int}} \underbrace{\frac{d_{\sigma}|\sigma|}{d}}_{=|\mathcal{D}|} \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}}\right) = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} \varphi(x_{\kappa}).$$

$$\mathbb{P}^{\mathcal{T}}\varphi \stackrel{\text{def}}{=} (\varphi(x_{\mathcal{K}}))_{\mathcal{K}\in\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega).$$

$$\sum_{\sigma \in \mathcal{E}_{int}} d_{\sigma} |\sigma| D_{\mathcal{KL}}(u^{\mathcal{T}_n}) \cdot \left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}}\right) = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} \varphi(x_{\kappa}).$$

Remark : For n large enough, the boundary terms vanish. DEFINITION OF THE DISCRETE GRADIENT

$$\sum_{\sigma \in \mathcal{E}_{int}} \int_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}} \right) = \sum_{\mathcal{K} \in \mathcal{T}_n} \int_{\mathcal{K}} f(x) \varphi(x_{\mathcal{K}}) \, dx.$$

$$\mathbb{P}^{\mathcal{T}}\varphi \stackrel{\text{def}}{=} (\varphi(x_{\mathcal{K}}))_{\mathcal{K}\in\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega).$$

$$\sum_{\sigma \in \mathcal{E}_{int}} d_{\sigma} |\sigma| D_{\mathcal{KL}}(u^{\mathcal{T}_n}) \cdot \left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}}\right) = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} \varphi(x_{\kappa}).$$

Remark : For n large enough, the boundary terms vanish. DEFINITION OF THE DISCRETE GRADIENT

$$\sum_{\sigma \in \mathcal{E}_{int}} \int_{\mathcal{D}} \nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \left(\underbrace{\nabla \varphi(x) + \underbrace{\left(\frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{K}\mathcal{L}}} \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} - (\nabla \varphi(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}}) \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right)}_{\stackrel{\text{def}}{=} R_1^n(x)} \right) dx$$
$$= \sum_{\mathcal{K} \in \mathcal{T}} \int_{\mathcal{K}} f(x) \left(\underbrace{\varphi(x) + \underbrace{(\varphi(x_{\mathcal{K}}) - \varphi(x))}_{\stackrel{\text{def}}{=} R_2^n(x)} \right)}_{\stackrel{\text{def}}{=} R_2^n(x)} dx.$$

SUMMARY

$$\int_{\Omega} \nabla^{\tau_n} u^{\tau_n} \cdot \nabla \varphi(x) \, dx - \int_{\Omega} f(x) \, \varphi(x) \, dx$$
$$= -\int_{\Omega} \nabla^{\tau_n} u^{\tau_n} \cdot R_1^n(x) \, dx + \int_{\Omega} f(x) R_2^n(x) \, dx.$$

SUMMARY

$$\begin{split} \int_{\Omega} \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \nabla \varphi(x) \, dx &- \int_{\Omega} f(x) \, \varphi(x) \, dx \\ &= - \int_{\Omega} \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot R_1^n(x) \, dx + \int_{\Omega} f(x) R_2^n(x) \, dx. \end{split}$$

Remainders estimates

Recall that φ is smooth

$$|R_1^n(x)| = \left| \frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}} - (\nabla \varphi(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}}) \boldsymbol{\nu}_{\mathcal{KL}} \right| \le C \|D^2 \varphi\|_{\infty} \text{size}(\mathcal{T}_n).$$
$$|R_2^n(x)| = |\varphi(x_{\mathcal{K}}) - \varphi(x)| \le \|D\varphi\|_{\infty} \text{size}(\mathcal{T}_n).$$

SUMMARY

$$\int_{\Omega} \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot \nabla \varphi(x) \, dx - \int_{\Omega} f(x) \, \varphi(x) \, dx$$
$$= -\int_{\Omega} \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} \cdot R_1^n(x) \, dx + \int_{\Omega} f(x) R_2^n(x) \, dx.$$

Remainders estimates

Recall that φ is smooth

$$|R_1^n(x)| = \left| \frac{\varphi(x_{\mathcal{L}}) - \varphi(x_{\mathcal{K}})}{d_{\mathcal{KL}}} \boldsymbol{\nu}_{\mathcal{KL}} - (\nabla \varphi(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}}) \boldsymbol{\nu}_{\mathcal{KL}} \right| \le C \|D^2 \varphi\|_{\infty} \text{size}(\mathcal{T}_n).$$
$$|R_2^n(x)| = |\varphi(x_{\mathcal{K}}) - \varphi(x)| \le \|D\varphi\|_{\infty} \text{size}(\mathcal{T}_n).$$

WE CAN PASS TO THE LIMIT

$$\int_{\Omega} \nabla u \cdot \nabla \varphi \, dx = \int_{\Omega} f \varphi \, dx, \quad \forall \varphi \in \mathcal{C}_c^{\infty}(\Omega). \tag{(\star)}$$

Observe that, (\star) still holds for any $\varphi \in H_0^1(\Omega)$.

Convergence proof of TPFA

STRONG CONVERGENCE OF THE GRADIENT DOES NOT HOLD Using the discrete integration by parts, we get

$$\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| |D_{\sigma}(u^{\tau_n})|^2 = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} u_{\kappa}^n = \int_{\Omega} f(x) u^{\tau_n}(x) \, dx.$$

Since $\nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} = \frac{d}{D_{\sigma}} (u^{\mathcal{T}_n}) \boldsymbol{\nu}_{\sigma}$, we deduce

$$\frac{1}{d} \sum_{\sigma \in \mathcal{E}} \underbrace{\frac{d_{\sigma} |\sigma|}{d}}_{=|\mathcal{D}|} |\nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n}|^2 = \int_{\Omega} f(x) u^{\mathcal{T}_n}(x) \, dx.$$

CONVERGENCE PROOF OF TPFA

STRONG CONVERGENCE OF THE GRADIENT DOES NOT HOLD Using the discrete integration by parts, we get

$$\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| |D_{\sigma}(u^{\tau_n})|^2 = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} u_{\kappa}^n = \int_{\Omega} f(x) u^{\tau_n}(x) \, dx.$$

Since $\nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} = \frac{d}{D_{\sigma}} (u^{\mathcal{T}_n}) \boldsymbol{\nu}_{\sigma}$, we deduce

$$\frac{1}{d} \| \nabla^{\tau_n} u^{\tau_n} \|_{L^2}^2 = \int_{\Omega} f(x) u^{\tau_n}(x) \, dx.$$

CONVERGENCE PROOF OF TPFA

STRONG CONVERGENCE OF THE GRADIENT DOES NOT HOLD Using the discrete integration by parts, we get

$$\sum_{\sigma \in \mathcal{E}} d_{\sigma} |\sigma| |D_{\sigma}(u^{\tau_n})|^2 = \sum_{\kappa \in \mathcal{T}_n} |\kappa| f_{\kappa} u_{\kappa}^n = \int_{\Omega} f(x) u^{\tau_n}(x) \, dx.$$

Since $\nabla_{\mathcal{D}}^{\mathcal{T}_n} u^{\mathcal{T}_n} = dD_{\sigma}(u^{\mathcal{T}_n})\boldsymbol{\nu}_{\sigma}$, we deduce

$$\frac{1}{d} \| \nabla^{\mathcal{T}_n} u^{\mathcal{T}_n} \|_{L^2}^2 = \int_{\Omega} f(x) u^{\mathcal{T}_n}(x) \, dx.$$

We pass to the limit in the right-hand side term to get

$$\lim_{n \to \infty} \|\nabla^{\mathcal{T}_n} u^{\mathcal{T}_n}\|_{L^2}^2 = d \int_{\Omega} f(x) u(x) \, dx = d \|\nabla u\|_{L^2}^2.$$

 \rightsquigarrow For $u \neq 0$ and $d \geq 2$, we do not have strong convergence of the gradients.

CONSISTENCY PROOF FOR TPFA

$$R_{\sigma}(u) = \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

• Taylor formulas for $u\in \mathcal{C}^2$ and $x\in \sigma$

$$u(x_{\mathcal{L}}) = u(x) + \nabla u(x) \cdot (x_{\mathcal{L}} - x) + \int_{0}^{1} (1 - t) D^{2} u(x + t(x_{\mathcal{L}} - x)) \cdot (x_{\mathcal{L}} - x)^{2} dt,$$

$$u(x_{\mathcal{K}}) = u(x) + \nabla u(x) \cdot (x_{\mathcal{K}} - x) + \int_{0}^{1} (1 - t) D^{2} u(x + t(x_{\mathcal{K}} - x)) \cdot (x_{\mathcal{K}} - x)^{2} dt.$$

CONSISTENCY PROOF FOR TPFA

$$R_{\sigma}(u) = \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

• Taylor formulas for $u \in \mathcal{C}^2$ and $x \in \sigma$

$$u(x_{\mathcal{L}}) = u(x) + \nabla u(x) \cdot (x_{\mathcal{L}} - x) + \int_{0}^{1} (1 - t) D^{2} u(x + t(x_{\mathcal{L}} - x)) \cdot (x_{\mathcal{L}} - x)^{2} dt,$$

$$u(x_{\kappa}) = u(x) + \nabla u(x) \cdot (x_{\kappa} - x) + \int_0^1 (1 - t) D^2 u(x + t(x_{\kappa} - x)) \cdot (x_{\kappa} - x)^2 dt.$$

• By subtraction, and using that $x_{\mathcal{L}} - x_{\mathcal{K}} = d_{\mathcal{KL}} \boldsymbol{\nu}_{\mathcal{KL}}$,

$$u(x_{\mathcal{L}}) - u(x_{\mathcal{K}}) = d_{\mathcal{K}\mathcal{L}} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \int_{0}^{1} (1-t) D^{2} u(x+t(x_{\mathcal{L}}-x)) \cdot (x_{\mathcal{L}}-x)^{2} dt$$
$$- \int_{0}^{1} (1-t) D^{2} u(x+t(x_{\mathcal{K}}-x)) \cdot (x_{\mathcal{K}}-x)^{2} dt.$$

CONSISTENCY PROOF FOR TPFA

$$R_{\sigma}(u) = \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

• Taylor formulas for $u\in \mathcal{C}^2$ and $x\in \sigma$

$$u(x_{\mathcal{L}}) = u(x) + \nabla u(x) \cdot (x_{\mathcal{L}} - x) + \int_{0}^{1} (1 - t) D^{2} u(x + t(x_{\mathcal{L}} - x)) \cdot (x_{\mathcal{L}} - x)^{2} dt,$$

$$u(x_{\mathcal{K}}) = u(x) + \nabla u(x) \cdot (x_{\mathcal{K}} - x) + \int_{0}^{1} (1 - t) D^{2} u(x + t(x_{\mathcal{K}} - x)) \cdot (x_{\mathcal{K}} - x)^{2} dt.$$

• Conclusion

$$R_{\sigma}(u) = \underbrace{\frac{1}{d_{\mathcal{K}\mathcal{L}}|\sigma|} \int_{\sigma} \int_{0}^{1} (1-t)D^{2}u(x+t(x_{\mathcal{L}}-x)).(x_{\mathcal{L}}-x)^{2} dt dx}_{=T_{1}}}_{=T_{1}}$$
$$-\underbrace{\frac{1}{d_{\mathcal{K}\mathcal{L}}|\sigma|} \int_{\sigma} \int_{0}^{1} (1-t)D^{2}u(x+t(x_{\mathcal{K}}-x)).(x_{\mathcal{K}}-x)^{2} dt dx}_{=T_{2}}}_{=T_{2}}.$$

$$T_1 = \frac{1}{d_{\mathcal{K}\mathcal{L}}|\sigma|} \int_{\sigma} \int_0^1 (1-t) D^2 u(x+t(x_{\mathcal{L}}-x)) . (x_{\mathcal{L}}-x)^2 dt dx.$$
$$T_1 = \frac{1}{d_{\mathcal{K}\mathcal{L}}|\sigma|} \int_{\sigma} \int_0^1 (1-t) D^2 u(x+t(x_{\mathcal{L}}-x)) \cdot (x_{\mathcal{L}}-x)^2 dt dx.$$

JENSEN INEQUALITY

$$|T_1|^2 \le \frac{1}{d_{\mathcal{KL}}^2 |\sigma|} \int_{\sigma} \int_0^1 |1-t|^2 |D^2 u(x+t(x_{\mathcal{L}}-x))|^2 |x_{\mathcal{L}}-x|^4 dt dx.$$

$$T_1 = \frac{1}{d_{\mathcal{K}\mathcal{L}}|\sigma|} \int_{\sigma} \int_0^1 (1-t) D^2 u(x+t(x_{\mathcal{L}}-x)) \cdot (x_{\mathcal{L}}-x)^2 dt dx.$$

JENSEN INEQUALITY

$$|T_1|^2 \le \frac{1}{d_{\mathcal{KL}}^2 |\sigma|} \int_{\sigma} \int_0^1 |1-t|^2 |D^2 u(x+t(x_{\mathcal{L}}-x))|^2 |x_{\mathcal{L}}-x|^4 dt dx.$$

CHANGE OF VARIABLES

$$(t,x)\in [0,1]\times \sigma\mapsto y=x+t(x_{\mathcal{L}}-x)\in \mathcal{D}_{\mathcal{L}}.$$

The Jacobian determinant is $(1-t)(x_{\mathcal{L}}-x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} = (1-t)d_{\mathcal{L}\sigma}.$

$$|T_1|^2 \le \frac{\mathrm{d}_{\mathcal{D}}^4}{d_{\mathcal{K}\mathcal{L}}^2 d_{\mathcal{L},\sigma} |\sigma|} \int_{\mathcal{D}\mathcal{L}} |D^2 u(y)|^2 \, dy \le C(\mathrm{reg}(\mathcal{T})) \frac{\mathrm{size}(\mathcal{T})^2}{|\mathcal{D}|} \int_{\mathcal{D}} |D^2 u(y)|^2 \, dy.$$

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx.$$

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

"Continuity" of the total flux

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

Taylor formulas around $x \in \sigma$

WARNING : u is not globally smooth but $u_{|\kappa}$ and $u_{|\mathcal{L}}$ are smooth.

$$u(x_{\mathcal{K}}) = u(x) + \nabla u_{|\mathcal{K}}(x) \cdot (x_{\mathcal{K}} - x) + O(\operatorname{size}(\mathcal{T})^2),$$

$$u(x_{\mathcal{L}}) = u(x) + \nabla u_{|\mathcal{L}}(x) \cdot (x_{\mathcal{L}} - x) + O(\operatorname{size}(\mathcal{T})^2).$$

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

Taylor formulas around $x \in \sigma$

$$u(x_{\mathcal{K}}) = u(x) + \nabla u_{|\mathcal{K}}(x) \cdot (-d_{\mathcal{K}\sigma}\boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \boldsymbol{x}_{\sigma} - \boldsymbol{x}) + O(\operatorname{size}(\mathcal{T})^2),$$

$$u(x_{\mathcal{L}}) = u(x) + \nabla u_{|\mathcal{L}}(x) \cdot (d_{\mathcal{L}\sigma}\boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + \boldsymbol{x}_{\sigma} - \boldsymbol{x}) + O(\operatorname{size}(\mathcal{T})^2).$$

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx.$$

Taylor formulas around $x \in \sigma$

$$u(x_{\mathcal{L}}) - u(x_{\mathcal{K}}) = d_{\mathcal{L}\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + d_{\mathcal{K}\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} + O(\operatorname{size}(\mathcal{T})^2).$$

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

Taylor formulas around $x \in \sigma$

$$u(x_{\mathcal{L}}) - u(x_{\mathcal{K}}) = \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}} \left(k_{\mathcal{L}} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right) + \frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} \left(k_{\mathcal{K}} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right) + O(\operatorname{size}(\mathcal{T})^2).$$

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

Taylor formulas around $x \in \sigma$

$$u(x_{\mathcal{L}}) - u(x_{\mathcal{K}}) = \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}} \left(k_{\mathcal{L}} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right) + \frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} \left(k_{\mathcal{K}} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right) + O(\operatorname{size}(\mathcal{T})^2).$$

We integrate on σ

$$|\sigma|(u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})) = \left(\frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}} + \frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}}\right) \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \, dx + O(\operatorname{size}(\mathcal{T})^3).$$

153/ 137

$$R_{\sigma}(u) = \frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} + \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} - \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

$$\int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx \stackrel{\text{def}}{=} k_{\mathcal{K}} \int_{\sigma} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx = k_{\mathcal{L}} \int_{\sigma} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx.$$

Taylor formulas around $x \in \sigma$

$$u(x_{\mathcal{L}}) - u(x_{\mathcal{K}}) = \frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}} \left(k_{\mathcal{L}} \nabla u_{|\mathcal{L}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right) + \frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}} \left(k_{\mathcal{K}} \nabla u_{|\mathcal{K}}(x) \cdot \boldsymbol{\nu}_{\mathcal{K}\mathcal{L}} \right) + O(\operatorname{size}(\mathcal{T})^2).$$

We integrate on σ

$$\frac{d_{\mathcal{KL}}}{\frac{d_{\mathcal{L}\sigma}}{k_{\mathcal{L}}} + \frac{d_{\mathcal{K}\sigma}}{k_{\mathcal{K}}}} \frac{u(x_{\mathcal{L}}) - u(x_{\mathcal{K}})}{d_{\mathcal{KL}}} = \frac{1}{|\sigma|} \int_{\sigma} k(x) \nabla u(x) \cdot \boldsymbol{\nu}_{\mathcal{KL}} \, dx + O(\operatorname{size}(\mathcal{T})).$$

$$|\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}.$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and y(x) the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ .
- Telescoping sum for $|u|^2$

$$|u_{\mathcal{K}}|^{2} = |u_{\mathcal{K}_{1}}|^{2} = \sum_{i=1}^{m-1} (|u_{\mathcal{K}_{i}}|^{2} - |u_{\mathcal{K}_{i+1}}|^{2}) + |u_{\mathcal{K}_{m}}|^{2},$$

$$|\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}.$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and y(x) the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ .
- Telescoping sum for $|u|^2$

$$|u_{\mathcal{K}}|^{2} \leq \left(\sum_{i=1}^{m-1} |u_{\mathcal{K}_{i}} - u_{\mathcal{K}_{i+1}}| (|u_{\mathcal{K}_{i}}| + |u_{\mathcal{K}_{i+1}}|)\right) + |u_{\mathcal{K}_{m}}|^{2}.$$

$$|\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|, \ \forall \mathcal{D} \in \mathfrak{D}.$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and y(x) the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ .
- Telescoping sum for $|u|^2$

$$\sum_{\kappa \in \mathfrak{M}} |\kappa| |u_{\kappa}|^2 \leq \sum_{\sigma = \kappa |\mathcal{L} \in \mathcal{E}} |u_{\kappa} - u_{\mathcal{L}}| (|u_{\kappa}| + |u_{\mathcal{L}}|) \underbrace{\left(\int_{\Omega} \chi_{\sigma}(x, y(x)) \, dx\right)}_{\leq |\sigma|}.$$

$$|\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|, \ \forall \mathcal{D} \in \mathfrak{D}.$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and y(x) the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ .
- Telescoping sum for $|u|^2$

$$\sum_{\kappa \in \mathfrak{M}} |\kappa| |u_{\kappa}|^2 \leq \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\kappa \mathcal{L}} \left| \frac{u_{\kappa} - u_{\mathcal{L}}}{d_{\kappa \mathcal{L}}} \right| (|u_{\kappa}| + |u_{\mathcal{L}}|).$$

$$|\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}.$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and y(x) the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ .
- Telescoping sum for $|u|^2$

$$\|u^{\mathfrak{M}}\|_{L^{2}}^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{KL}}} \right|^{2} \right)^{\frac{1}{2}} \left(\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{KL}} (|u_{\mathcal{K}}|^{2} + |u_{\mathcal{L}}|^{2}) \right)^{\frac{1}{2}}.$$

• Regularity of the mesh

$$|\mathcal{D}| = \frac{1}{2} (\sin \alpha_{\mathcal{D}}) |\sigma| d_{\mathcal{KL}} \Rightarrow |\sigma| d_{\mathcal{KL}} \leq C(\operatorname{reg}(\mathcal{T})) |\mathcal{D}|, \quad \forall \mathcal{D} \in \mathfrak{D}.$$

- We use again the notation $\chi_{\sigma}(x, y)$, a direction ξ and y(x) the projection of $x \in \Omega$ onto $\partial \Omega$ along the direction ξ .
- Telescoping sum for $|u|^2$

$$\left\|u^{\mathfrak{M}}\right\|_{L^{2}}^{2} \leq \left(\sum_{\sigma \in \mathcal{E}} \left|\sigma\right| d_{\mathcal{KL}} \left|\frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{KL}}}\right|^{2}\right)^{\frac{1}{2}} \left(\sum_{\sigma \in \mathcal{E}} \left|\sigma\right| d_{\mathcal{KL}} \left(\left|u_{\mathcal{K}}\right|^{2} + \left|u_{\mathcal{L}}\right|^{2}\right)\right)^{\frac{1}{2}}.$$

• To conclude, we need to prove that

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} (|u_{\mathcal{K}}|^2 + |u_{\mathcal{L}}|^2) \le C ||u^{\mathfrak{M}}||_{L^2}^2 + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^2.$$

PROOF OF THE POINCARÉ INÉQUALITY IN THE DDFV FRAMEWORK / WITHOUT THE ORTHOGONALITY CONDITION

WE WANT TO SHOW

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} (|u_{\mathcal{K}}|^2 + |u_{\mathcal{L}}|^2) \le C ||u^{\mathfrak{M}}||_{L^2}^2 + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^2.$$

PROOF OF THE POINCARÉ INÉQUALITY IN THE DDFV FRAMEWORK / WITHOUT THE ORTHOGONALITY CONDITION

WE WANT TO SHOW

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}}(|u_{\mathcal{K}}|^2 + |u_{\mathcal{L}}|^2) \le C ||u^{\mathfrak{M}}||_{L^2}^2 + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^2.$$

• We first write

$$\begin{split} \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} (|u_{\mathcal{K}}|^2 + |u_{\mathcal{L}}|^2) &= \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{K}\sigma} + d_{\mathcal{L}\sigma}) (|u_{\mathcal{K}}|^2 + |u_{\mathcal{L}}|^2) \\ &= \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{K}\sigma} |u_{\mathcal{K}}|^2 + d_{\mathcal{K}\sigma} |u_{\mathcal{L}}|^2 + d_{\mathcal{L}\sigma} |u_{\mathcal{L}}|^2) \\ &\leq C \sum_{\mathcal{K} \in \mathfrak{M}} |\kappa| |u_{\mathcal{K}}|^2 + \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{L}\sigma} |u_{\mathcal{K}}|^2 + d_{\mathcal{K}\sigma} |u_{\mathcal{L}}|^2). \end{split}$$

WE WANT TO SHOW

$$\sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}}(|u_{\mathcal{K}}|^2 + |u_{\mathcal{L}}|^2) \le C ||u^{\mathfrak{M}}||_{L^2}^2 + C \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{d_{\mathcal{K}\mathcal{L}}} \right|^2.$$

• We first write

$$\begin{split} \sum_{\sigma \in \mathcal{E}} |\sigma| d_{\mathcal{K}\mathcal{L}} (|u_{\mathcal{K}}|^{2} + |u_{\mathcal{L}}|^{2}) &= \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{K}\sigma} + d_{\mathcal{L}\sigma}) (|u_{\mathcal{K}}|^{2} + |u_{\mathcal{L}}|^{2}) \\ &= \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{K}\sigma} |u_{\mathcal{K}}|^{2} + d_{\mathcal{K}\sigma} |u_{\mathcal{L}}|^{2} + d_{\mathcal{L}\sigma} |u_{\mathcal{K}}|^{2} + d_{\mathcal{L}\sigma} |u_{\mathcal{L}}|^{2}) \\ &\leq C \sum_{\mathcal{K} \in \mathfrak{M}} |\kappa| |u_{\mathcal{K}}|^{2} + \sum_{\sigma \in \mathcal{E}} |\sigma| (d_{\mathcal{L}\sigma} |u_{\mathcal{K}}|^{2} + d_{\mathcal{K}\sigma} |u_{\mathcal{L}}|^{2}). \end{split}$$

• For the blue terms, we notice now that

$$|d_{\mathcal{L}\sigma}|u_{\mathcal{K}}|^{2} \leq \begin{cases} 2^{2}d_{\mathcal{L}\sigma}|u_{\mathcal{L}}|^{2}, & \text{for } |u_{\mathcal{K}}| \leq 2|u_{\mathcal{L}}|, \\ 2^{2}d_{\mathcal{L}\sigma}|u_{\mathcal{L}}-u_{\mathcal{K}}|^{2}, & \text{for } |u_{\mathcal{K}}| > 2|u_{\mathcal{L}}|. \end{cases}$$

ENERGY ESTIMATES

$$\sup_{n} \|u^{\tau_{n}}\|_{1,\tau_{n}} = \sup_{n} \|\nabla^{\tau_{n}} u^{\tau_{n}}\|_{L^{2}} \le C(\Omega, f).$$

Compactness

THEOREM (WEAK- L^2 COMPACTNESS THEOREM)

 ∇

There exists $u \in H_0^1(\Omega)$ such that (up to a subsequence !)

 $u^{\mathfrak{M}_n} \xrightarrow[n \to \infty]{} u \text{ in } L^2(\Omega),$

$$u^{\mathfrak{M}_{n}^{*}} \xrightarrow[n \to \infty]{} u \text{ in } L^{2}(\Omega),$$
$$\tau_{n} u^{\tau_{n}} \xrightarrow{} \nabla u \text{ in } (L^{2}(\Omega))^{2}.$$

Observe that $u^{\mathfrak{M}_n}$ and $u^{\mathfrak{M}_n^*}$ converge towards the same limit. PASSING TO THE LIMIT IN THE SCHEME \checkmark STRONG CONVERGENCE OF GRADIENTS We pass to the limit in the formula

 $n \rightarrow \infty$

$$2\int_{\Omega} (A(x)\nabla^{\tau_n} u^{\tau_n}, \nabla^{\tau_n} u^{\tau_n}) \, dx = \int_{\Omega} f(x) u^{\mathfrak{M}_n} \, dx + \int_{\Omega} f(x) u^{\mathfrak{M}_n^*} \, dx.$$

▲ Back 156/ 137