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CONTROL OF A DYNAMICAL SYSTEM

GENERAL DYNAMICAL SYSTEM
) Y =F(t,y,v),
¥(0) = yo,
t — y(¢) is the state (possibly infinite dimensional), # — v(¢) is the control.

TYPICAL CONTROLLABILITY QUESTION

For a given initial data yy, can we find a control v such that the corresponding solution
of (S) has a prescribed behavior ?

IN THIS TALK : Let 7 > 0 and yr a fixed target.

o Exact controllability : Can I find a control v such that y(T) = yr ?

e Approximate controllability : Can I find a control v such that ||y(T) — yr|| is as
small as desired ?

@ Only linear problems.
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THE FINITE DIMENSION CASE

(5) () +a()=Bo0),
where A € M, (R), B € M, n(R), y(t) € R" and v(¢) € R™.
THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.
(1) Problem (S) is exactly controllable at time T.

(2) Problem (S) is approximately controllable at time T.
(3) The matrices A and B satisfy

rank(K) = n, with K = (B|AB\ . |A"_IB) € My (R).

REMARKS
@ Approximate and exact controllability are equivalent.
@ The controllability of the system is independent of 7.
@ There exists a generalization of this criterion for time dependent linear ODEs.
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THE FINITE DIMENSION CASE

(5) () +a()=Bo0),
where A € M, (R), B € M, n(R), y(t) € R" and v(¢) € R™.
THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.
(1) Problem (S) is exactly controllable at time T.

(2) Problem (S) is approximately controllable at time T.
(3) The matrices A and B satisfy

rank(K) = n, with K = (B|AB\ . |A"_IB) € My (R).

SKETCH OF PROOF
The set of reachable states at time 7" from an initial data yy is affine

RT(yO) = {y\',yo(T)7 S L2(07 T; Rm)}

(1) © Rr(yo) = R" & Ry(yo) is dense in R" < (2).
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THE FINITE DIMENSION CASE

(5) () +a()=Bo0),
where A € M, (R), B € M, n(R), y(t) € R" and v(¢) € R™.
THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.
(1) Problem (S) is exactly controllable at time T.

(2) Problem (S) is approximately controllable at time T.
(3) The matrices A and B satisfy

rank(K) = n, with K = (B|AB\ . |A"_IB) € My (R).

SKETCH OF PROOF
(1) = (3) : Assume that rank(K) < n, there exists ¢ € R" \ {0} such that ‘9K = 0.

= ("¢P(A)B=0, VP € R[X]) = (Vs € R, "¢pe"'B = 0).
Thus, for any control v, we have
& (wey(a)) = peBr(n) = 0.

It follows that 1) L (e Rr(yo) — yo).
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THE FINITE DIMENSION CASE

(5) () +a()=Bo0),
where A € M, (R), B € M, n(R), y(t) € R" and v(¢) € R™.
THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.
(1) Problem (S) is exactly controllable at time T.

(2) Problem (S) is approximately controllable at time T.
(3) The matrices A and B satisfy

rank(K) = n, with K = (B|AB\ . |A"_IB) € My (R).

SKETCH OF PROOF
(3) = (1) : Assume that (S) is not controllable at time 7.
Thus, there exists ¢ # 0 such that ¢ L (Rr(yo) — e ™yo). By the Duhamel formula,

T
0= "9 / e T=D2By(t)dt, Wv:[0,T] - R"™.
0

T
We take v(1) = B*e~ """ 4) to obtain 0 = / H ’wef(Tﬂ)ABHi dt.
0
It follows that ‘ipe** B = 0, Vs € R, and then ‘tp)K = 0 which gives rank(K) < n. .
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THE FINITE DIMENSION CASE

(5) () +a()=Bo0),
where A € M, (R), B € M, n(R), y(t) € R" and v(¢) € R™.
THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.
(1) Problem (S) is exactly controllable at time T.

(2) Problem (S) is approximately controllable at time T.
(3) The matrices A and B satisfy

rank(K) = n, with K = (B|AB\ . |A"_IB) € My (R).

ALTERNATIVE (CONSTRUCTIVE) PROOF IN THE CASEm = 1 AND y7 =0
Cascade structure : Use the change of variable y = Kz (K is invertible !)

0 - - 0 a |
1 0 aj 0
: Choose a suitable z,, (flat at T')
(¢ N=|: t "
20+ 0 1 az () V() then compute z,_1, ..., z; and finally v

F. Boyer Controllability of parabolic PDEs



OUTLINE

© GENERALITIES
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< REAL-LIFE » MODEL

(Jackson-Byrne, 2000)
CANCER THERAPY MODEL
Od — div(Dy(x)Vd) + N\d = b(x)v(t,x), drugs
op —div(D,(x)Vp) —F,(p) =-C,(d,p), sensitive cells
Oq — div(Dy(x)Vq) = Fy(q)

—C,(d,q), unsensitive cells

MAIN FEATURES :
@ Reaction-diffusion system
@ Possibly different diffusions
@ Only one control acting on the drug concentration !
@ Importance of coupling / interaction terms. No direct coupling between p and q.
@ A reasonable control should be non-negative and bounded.
THIS PROBLEM IS MUCH TOO COMPLEX UP TO NOW
@ Linearisation ?
o Same diffusions ?
@ 1D case ?

@ Relax constraints on the control ?
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ABSTRACT LINEAR PARABOLIC CONTROL PROBLEM

e Two Hilbert spaces : the state space (E, (., .)) and the control space (U, [.,.]).
e A:D(A) C E s E is some elliptic operator.

@ B: U+~ D(A*) the control operator, B* its adjoint.

@ COMPATIBILITY ASSUMPTION : we assume that

(r s B*e*’““*w) € I*(0,T; U), and [[B*e*'““*w]] <C|¢l, Vo €E.

12(0,T;U)

Oy+ Ay=Bv in]0,T],
y(o) = Yo,
Here, yo € E is the initial data, v € L*(]0, T, U) is the control we are looking for.

Our controlled parabolic problem is (S) {

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any yo € E and v € L*(0,T; U), there exists a unique y = y.,, € C°([0, T], E)
such that

00 9) = (e 0) = [ [0, B4y s, wie 0,7, € E.
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MAIN ACADEMIC EXAMPLES

DISTRIBUTED CONTROL FOR SCALAR EQUATION B* =1,

Oy — Ay =1,v, inQ
y=20, on0f.

with w C 2 strict subset (the case w = 2 is straightforward).
DIRICHLET BOUNDARY CONTROL FOR SCALAR EQUATION B* =1r,0,

8ty—Ay:0, in
y =1r,v, on 0.
where Iy C OS2 is a subset of the boundary.
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MAIN ACADEMIC EXAMPLES

DISTRIBUTED CONTROL FOR SCALAR EQUATION B* =1,

Oy — Ay =1,v, inQ
y=20, on0f.
with w C 2 strict subset (the case w = 2 is straightforward).
DIRICHLET BOUNDARY CONTROL FOR SCALAR EQUATION B* =1r,0,

8ty—Ay:0, in

y =1r,v, on 0.
where Iy C OS2 is a subset of the boundary.
COUPLED PARABOLIC SYSTEM WITH FEW DISTRIBUTED CONTROLS B* = le*
y(t,x) € R", A(t,x) € My(R), B € M,y n(R), withm < n

Oy — Ay +A(t,x)y = 1,Bv, inQ
y=0, on0f.
COUPLED PARABOLIC SYSTEM WITH FEW BOUNDARY CONTROLS B* = 1p,B*0,
y(t,x) € R", A(t,x) € My(R), B € Myu(R), withm < n
Oy — Ay+A(t,x)y =0, inQ
y = 1r,Bv, on0fQ.
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CONTROLLABILITY QUESTIONS

Oy+ Ay =Bv in]0,T],
¥(0) = yo.

FUNDAMENTAL REMARK FOR PARABOLIC PDES

Due to regularisation effects, not all targets can be reached !

APPROXIMATE (NULL-)CONTROL PROBLEM AT TIME 7 FROM Y

For any & > 0, is there a vs € L*(]0, T[, U) such that ||y, s, (T)|| < & ?

NULL-CONTROL PROBLEM AT TIME 7 FROM Yy

Is there a v € L*(]0, T[, U) such that y,,(T) = 0 ?

This is equivalent to the control to the trajectories.

(Fattorini-Russell, *71) (Lebeau-Robbiano, *95)
(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, ’08)

(Ammar-Khodja, Benabdallah, Gonzilez-Burgos, de Teresa, *11)

F. Boyer > rabolic PDEs



CONTROLABILITY VS. UNIQUE CONTINUATION VS. OBSERVABILITY

¥(0) = yo. q(T) = gqr.

THEOREM (APPROXIMATE CONTROLLABILITY AND UNIQUE CONTINUATION)
Let T > 0 given.

(s) {&y +Ay=Bv in]0,T], (s%) {—8;61 +A*¢q=0 in]0,TJ,

Any solution q of (S™)
(S) is AC from any initial data <= < such that B*q(t) = 0,Vt € [0, T]
satisfies g = 0.

REMARK : This property is, in general, independent of 7.
SKETCH OF PROOF : Let P:v € L*(0,T;U) = y,(T) € E

Im(P)is dense <= ker P* = {0}.

F. Boyer Controllability of parabolic PDEs



CONTROLABILITY VS. UNIQUE CONTINUATION VS. OBSERVABILITY

dy+ Ay=Bv in]0,T], o | —0gq+ A*q=0 in]0,TJ,
¥ {y(O) = Yo. &) {q(T) = qr-

THEOREM (NULL CONTROLLABILITY AND OBSERVABILITY)

Any solution q of (S™)

(S) is NC from any initial data <> ) .
satisfes |a(O)|F < G [ I1B"a(0) a.
0

The control v with minimal L* norm for a data yo satisfies IVllz20,7,07 < Crllyol|-

REMARK : This property may depend of 7.
SKETCH OF PROOF : Let P: v € L*(0,T;U) — y,(T) € Eand Q = ¢~

Im(P) C Im(Q) < ||Q0*x|| < C||P*x||, Vx.
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OUTLINE

© CONTROL OF PARABOLIC SCALAR EQUATIONS - HEAT EQUATION
@ The 1D case
@ Multi-D case
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OUTLINE

© CONTROL OF PARABOLIC SCALAR EQUATIONS - HEAT EQUATION
@ The 1D case
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THE MOMENTS METHOD IN 1D

MAIN PRINCIPLE ILLUSTRATED ON A SCALAR PARABOLIC EQUATION

(Ak, ¢x) : eigenelements of A = A* = —0,(v(x)dye) with Dirichlet BC.

PROPOSITION

A function v € L*(0, T; U) is a null-control for the problem
9y + Ay = Bv, y(0) = yo,
if and only if

= <yo,e**”¢k> = /OT [v(z),e”k”*ﬂs*gbk] dt, Vk>1.

This is a moment problem.

STRATEGY : If we are able to build a family of functions gz € L*(0, T; U) such that

T
/ [@(1)7 e*W*”Bwk} dt = &y, Yk, 1> 1,
0
then the control problem can be formally solved by

v(0) == (o.M o) q0).

>1
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THE MOMENTS METHOD IN 1D

MAIN PRINCIPLE ILLUSTRATED ON A SCALAR PARABOLIC EQUATION

(Fattorini-Russell, *71-°74)

THEOREM (BIORTHOGONAL FAMILIES OF EXPONENTIAL FUNCTIONS)

Let (ok)x be an increasing sequence of distinct positive numbers.
We assume that, for some p > 0 and some N : (0, +00) — (0, +00), we have

1
Z — <, Ve >0, and ox41 —ox > p, Yk > 1.
kZ./\/’(s)o—

Then, for any T > 0, there exists a sequence of functions (qi)x C L*(0,T) such that

T
/ qi(s)e” "% ds = 8y, Vk, 1, and ||qillp 0.1y < Kern,pe™*, Ve > 0,k > 1,
0

where K¢ 1 n,p only depends on T, €, p, N but not on the sequence (o%)k-
REMARKS

Good news : Those conditions are satisfied in 1D for heat-like equations.

The estimates are somehow uniform with respect to the sequence of eigenvalues.

°
o Bad news : There are not satisfied in higher dimension.
°
[ 7(T7s)<71.

Extension possible to more general sets of functions s — s'e
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THE MOMENTS METHOD IN 1D

MAIN PRINCIPLE ILLUSTRATED ON A SCALAR PARABOLIC EQUATION

WHAT WE WANT

T
/ [@(l):e_Ak(T_l)B*(ﬁk] dt = 6w, Yk, 1>1,
0

andset v = — Z <yo7 eiA1T¢>1> qi-

>1
CONSTRUCTION
We define

B*
P e
[B*¢x]
so that [[%]]LZ(UA,T;U) = ”quLZ(O,T) HB*¢kﬂ_l :
o Distributed control : U=1*Q), B¢ = logr.
It can be proved that, for some C,, we have
[B" 4] = ll¢ell 2wy = Cwy Yk > 1.

o Boundary controlat x =1 : U=R, B¢ =~(1)g(1).
It can be proved that

(1) = qx(1)

[B* ] = [v(D)er(1)] > €/

CONCLUSION : We have [[<y0,e‘k’r¢,>@ﬂ < Coe MM taking
L2(0,T;0)
€ = T/2 shows that the series that defines v converges !
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THE MOMENTS METHOD AT THE DISCRETE LEVEL

EXPECTED RESULTS
@ Null(?)-controllability results for semi-discrete parabolic equations

aryh + -Ahyh = Bhvh
yh(o) — yO,h c Eh7

where A, is the finite difference discretisation operator

1 i+1 — Vi i — Yi—
(A = = (Vi) M= = () M2
and the discrete control operator is given by
0
By = 0 , or By = 1..
IN+1/2
Inhy 172

THEOREM

For any p > 0 there exists C > 0, hy > 0 such that for any h < ho, any y*", there
exists a v, € L? (0, T, Uy) such that

i, and |y (T)[ln < Clly™"||ah.

0,h
H"h“LZ(o,T;Uh) < Clly
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THE MOMENTS METHOD AT THE DISCRETE LEVEL

EXPECTED RESULTS

@ Null(?)-controllability results for semi-discrete parabolic equations

aryh + -Ahyh = Bhvh
V'(0) =y™" € B,

TOOLS : BIOTHO. FAMILIES + DISCRETE SPECTRAL PROPERTIES FOR A},

(Allonsius-B.-Morancey, *16)

@ Uniform growth rate for eigenvalues /\Z > Ck27 Vk,Vh.
C

X .

@ Uniform spectral gap /\f+1 -\ > p, Vh, Vk <

@ Uniform lower bounds for discrete eigenfunctions

C
H(;SZHLz(w) > C, Vh,Vk < M for distributed control,
1
C
|8,¢f| > C, VhVk < M for boundary control.
h

REMARKS
@ Those properties are straightforward for the Laplace operator on uniform grids.

@ Our results are uniform for a constant portion of the spectrum.
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DISCRETE SPECTRAL PROPERTIES

LAPLACE SPECTRUM VS DISCRETE LAPLACE SPECTRUM

-10*
I
I )\k
)\h
8| k i
Av — M = CN?
6 | - |
4 |- i
2 M~ M -
0 | | | | |
0 20 40 60 80 100

TYPICAL ERROR ESTIMATE (USELESS FOR LARGE k) : |Af — M| = Ch* AL
HOWEVER UNIFORM DISCRETE GAP HOLDS : ir<1f |/\Z+1 — )\’k’\ ~C
k<N
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DISCRETE SPECTRAL PROPERTIES

EXAMPLE 1

Diffusion coefficient v(x) = 2 + cos(mx)*

O L ‘ ‘ L
0 0.2 0.4 0.6 0.8 1

TWO OBSERVATION DOMAINS : w' = (0,0.3), w” = (0.7, 1).
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DISCRETE SPECTRAL PROPERTIES

EXAMPLE 1

Rescaled discrete spectrum

A
25| Y min
2 1
V’i 77777777777777777777777 T
4 |
1 5 ian\w2 5 :
Ymin |
P R Lo
| |
| l
0.5+ | }
| |
| l
+ + + { k
100 200 300 400
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DISCRETE SPECTRAL PROPERTIES

EXAMPLE 1

Normal derivatives of ¢/’

— left
——right
600 +
400
200
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DISCRETE SPECTRAL PROPERTIES

EXAMPLE 1

k= H¢§<l||i2(wi)/‘wi‘
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DISCRETE SPECTRAL PROPERTIES

EXAMPLE 1

" k= [N — M|
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DISCRETE SPECTRAL PROPERTIES

EXAMPLE 1

The last discrete eigenfunction

6 T T T T n

h
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NUMERICAL EXAMPLES

Oy — 0.18fy = lj0.3,0.8[Vs
T = 1,yo(x) = sin(mx)".

Time t=0




NUMERICAL EXAMPLES

THE 1D HEAT EQUATION WITH UNS

Oy — 0-18.3}’ — 1.5y = 1]0.3,0.8[\/,
T =1, yo(x) = sin(mx)"°.

Time t=0

Controllabili



OUTLINE

© CONTROL OF PARABOLIC SCALAR EQUATIONS - HEAT EQUATION

@ Multi-D case

F. Boyer } ability of parabolic PDEs



MULTI-D SCALAR CONTROL PROBLEMS

PRELIMINARY REMARKS

DISTRIBUTED CONTROLLABILITY = BOUNDARY CONTROLLABILITY
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MULTI-D SCALAR CONTROL PROBLEMS

PRELIMINARY REMARKS

DISTRIBUTED CONTROLLABILITY = BOUNDARY CONTROLLABILITY

BOUNDARY CONTROLLABILITY = DISTRIBUTED CONTROLLABILITY
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy —Ay=1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy —Ay=1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)
16l gy < CeVH bl VY € E
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy —Ay=1,v, inQ
y=0, on 0,
¥(0,.) = o,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)
¥z < CeV [Plli20y, YO € Ep
(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY

C\/1v T

e s
/ le= A4 oy ds, ¥a© € Ep.
0

—T7A _F|2
lle q HLZ(Q) <C
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy —Ay=1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)
16l gy < CeVH bl VY € E
(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY
N
e

—T7A F 12 T —sA F2 F
le™™ 4" |22y < C / le™ A" |, ds, Va" € E,.
0

(3) PARTIAL (LOW-FREQUENCIES) CONTROLLABILITY : forany yo € E,,, 7 > 0
there exists v € L? (0, 7[Xw) such that the solution of
0y — Ay =Pg, (1,v), inQ
57(07 ) = Yo € Ellr

satisfies $(7) = 0 and moreover ||v||;2(j0 r[xw) < Cr’leﬁHyoHLzm).
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy —Ay=1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)
16l gy < CeVH bl VY € E
(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY
N
e

—T7A F 12 T —sA F2 F
le™™ 4" |22y < C / le™ A" |, ds, Va" € E,.
0

(3) PARTIAL (LOW-FREQUENCIES) CONTROLLABILITY : for any yo € E, 7 > 0
there exists v € L*(]0, 7[xw) such that the solution of
Oy — Ay =1,v, inQ
¥(0,.) =y €E

satisfies Pg, y(7) = 0 and moreover [|v||;2(j0,7[xw) < Cr’leﬁHyOHLz(m.
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy — Ay =1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(4) CONSTRUCTION OF THE CONTROL : Time slicing procedure.
Iy ll2 0y 4

2 [
”yOHL () Control low
frequencies
< L
0 el " T
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy — Ay =1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(4) CONSTRUCTION OF THE CONTROL : Time slicing procedure.
Iy ll2 0y 4

Do nothing
2 [
”yOHL () Control low
frequencies
< L
0 el o e T
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy — Ay =1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(4) CONSTRUCTION OF THE CONTROL : Time slicing procedure.
Iy ll2 0y 4

Do nothing C(l)g‘t:)l
2 4 freq.
”yOHL () Control low < i
frequencies |
< L
0 T1 o T1 h 3 . T
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 1/2

Oy — Ay =1,v, inQ
y=0, on 0,
¥(0,.) = yo,
Let (¢, M)« the eigenelements of A = —A. Let E,, = Span{¢, A\ < u}.
(4) CONSTRUCTION OF THE CONTROL : Time slicing procedure.
Iy ll2 0y 4

trol
Do nothing C(l)(r)l‘;o
S Do
5 freq. s
[lyo HL-(Q) [ Control Iow z ;12 nothing and so on ...
frequencies |
< L
0 I o T RN T

At the end, the control v is shown to satisfy

HVHLZ(]O,T[XL/J) < CH)’OHLﬁ(szy

CONSEQUENCE ’

By duality, we obtain the uniform observability inequality for the adjoint system.
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 2/2

THEOREM (LEBEAU-ROBBIANO SPECTRAL INEQUALITY)
There exists C > 0 such that

2
[| 2 aaf <ceovr [
Q w

A< p
AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN |0, T*[x
For a suitable weight function (¢, x) — ©(#,x) (s.t. in particular V,o(T*) = 0)

, Y(ar € R".

2
Z axPr

A <p

K s (0,.
sl ulfaa,. + slle Vuliq,. ) + sl 80, )l q

+ 57T NAu(T", iy + 57 u(r”, ) s

¢ (He““’(ff + Al )5 [Vu(T7 )72y +5ll€ PO Daa(0, )2

for any s > so, and all smooth u, with #(0,.) = 0, and # = 0 on OX2.

STANDARD NOTATION

Qr :]O, T[XQ,

wr =]0, T[Xw.
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 2/2

THEOREM (LEBEAU-ROBBIANO SPECTRAL INEQUALITY)
There exists C > 0 such that

/Q Z ar Pk ’ < Cec\/ﬁ/

M <p w
AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN |0, T*[x
For all u such that #(0,.) = 0, u = 0 on 99 and (87 + A)u = 0, we have

2
, Y(ar € R".

Z axPr

A <p

3 2s * * 2 2 * * 2 K y. 2
s (T, )y < € ( I a(T", ) 72y +slle™ ) Du(0, .)||Lz<w)) :
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 2/2

THEOREM (LEBEAU-ROBBIANO SPECTRAL INEQUALITY)
There exists C > 0 such that

2
[| 2 aaf <ceovr [
Q w

A< p
AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN |0, T*[x
For all u such that #(0,.) = 0, u = 0 on 99 and (87 + A)u = 0, we have

3 2s * * 2 2 * * 2 K y. 2
s (T, )y < € ( I a(T", ) 72y +slle™ ) Du(0, .)||Lz<w)) :

APPLY THIS ESTIMATE TO THE FOLLOWING FUNCTION

Z sinh( /\kt ¢k ).

, Y(ar € R".

2
Z axPr

A <p

A <p
V(T 72y = Y, laul*| sinh(v/NT™)[?
M<p
= Take s ~
2s1nh\/ T) . N2 ake s ~ /1
<p Z |ax %n < pllu(T™, )2 q)-
A <p
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MULTI-D SCALAR CONTROL PROBLEMS

THE LEBEAU-ROBBIANO METHOD 2/2

THEOREM (LEBEAU-ROBBIANO SPECTRAL INEQUALITY)
There exists C > 0 such that

2
/ Z akqbk S Cec\/ﬁ/
Q w

Ae<p
AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN |0, 7" [xQ

, Y(a)k € RY.

2
Z axPr

Ae<p

lr0) = 3 @O 4
A <p s

Carleman estimate =—> uez\/ﬁ“’(T*>|u(T*,.)|iz(Q) < CeZ\/ﬁmaX“’(O")\a,u(O,.)|iz(w),

STRAIGHTFORWARD COMPUTATIONS

sinh(v/ 2 T*)
le(T* oy = D Nl
- BT

2
10w, )y = [ | 3 wen

“ <

2

> wd

Me<p

)

>cZ\a\2 /g

A<y
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A DISCRETE LEBEAU-ROBBIANO INEQUALITY

Let A, be a multi-D finite difference discretization of A and (¢}, \)1<i<w, be the
eigenelements of Aj.
For any > 0, we set EJ, = Span(¢}, \i < p).
QUESTION
Is it true that
H’(/}h”LZ(Q) < Cec\/ﬁHi/fh”LZ(w)’ vy € E},, ()

for some C independent of i ?

@ Answer 1 : No ... for linear algebra reasons.
@ Answer 2 : for the 5-point discrete Laplace on a uniform grid (Kavian-Zuazua)

1

—1

1 There exists a non trivial ¢} such that 1,¢! = 0.
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A DISCRETE LEBEAU-ROBBIANO INEQUALITY

Let A, be a multi-D finite difference discretization of A and (¢}, \)1<i<w, be the
eigenelements of Aj.
For any > 0, we set EJ, = Span(¢}, \i < p).
QUESTION
Is it true that
HT//'”LZ(Q) < Cec\/ﬁH%bhHLz(w)» vy € E},, ()

for some C independent of i ?

v

(B.-Hubert-Le Rousseau, *09-11)
THEOREM

Under some standard assumptions, there exist hop > 0, C, C > 0 such that (%) holds for
any h < hy and any ~
p< C/h.

THEOREM ((SAME AS BEFORE BUT MULTI-D))

For any p > 0 there exists C > 0, hy > 0 such that for any h < ho, any y*", there
exists a v, € L* (0, T, Uy) such that

ln, and |y (T)ln < Clly™"||ak.

0,h
HVhHLZ(o,T;U,,) < Clly

F. Boyer Controllability of parabolic PDEs



MULTI-D SCALAR CONTROL PROBLEMS

A PARABOLIC CARLEMAN ESTIMATE

(Fursikov-Imanuvilov, *96)

There is a smooth x — B(x) so that, with (2, x) = ~(£)*B(x)

Let v(t) =
¥(1) T 5
THEOREM (PARABOLIC CARLEMAN ESTIMATE)

For any d € R, there exists C > 0 such that for any s large enough, and any smooth
function g, such that g = 0 on 052, we have

d\| s _d 1—4 ) s d—4 2 d—4, s d—4 2
1y allz @y + 5 e 0l ) + 5l Adllagay)
< € (Nl alla gy + 5Nl T (~0g + Adg)

2
|20

COROLLARY (OBSERVABILITY)
For any solution of the adjoint problem —0,;q + Aq = 0, ¢ = 0 on 92 we have

2 3T/4 2 T 2
/
ey < € [ a0l dr < / [ 1apa
T w

by using the parabolic dissipation property and the Carleman estimate.

DISCRETE VERSIONS ...
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OUTLINE

0 CONTROL OF PARABOLIC SYSTEMS
@ Preliminaries
@ Constant coefficients
@ Variable coefficients
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OUTLINE

0 CONTROL OF PARABOLIC SYSTEMS
@ Preliminaries
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CONTROL OF PARABOLIC SYSTEMS

PRELIMINARY REMARKS

y(t,x) € R",A(t,x) € M,(R),B € M,,,u(R)

DISTRIBUTED CONTROL BOUNDARY CONTROL
Oy — Ay + A(t,x)y = 1,Bv, in Q2 Oy —Ay+A(t,x)y=0, inQ
(Sp) (Ss)
y =0, ondf. y = 1r,Bv, on 0RQ.
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CONTROL OF PARABOLIC SYSTEMS

PRELIMINARY REMARKS

y(t,x) € R",A(t,x) € M,(R),B € M,,,u(R)

DISTRIBUTED CONTROL BOUNDARY CONTROL
Oy — Ay + A(t,x)y = 1,Bv, in Q2 Oy —Ay+A(t,x)y=0, inQ
(Sp) (Ss)
y =0, ondf. y = 1r,Bv, on 0RQ.

Q In the case rank(B) = n (in particular m > n) :
o Distributed and boundary controllability are equivalent.
o Controllability proofs works almost the same as in the scalar case
(Fursikov-Imanuvilov strategy for instance).
@ In the case rank(B) < n (important in applications !) :
o Distributed and boundary controllability are not equivalent.
o Controllability proofs have to be adapted.
e Many results in 1D. The multi-D case is much more difficult in particular for (Sg).
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CONTROL OF PARABOLIC SYSTEMS

PRELIMINARY REMARKS

y(t,x) € R",A(t,x) € M,(R),B € M,,,u(R)

DISTRIBUTED CONTROL BOUNDARY CONTROL
Oy — Ay + A(t,x)y = 1,Bv, in Q2 Oy —Ay+A(t,x)y=0, inQ
(Sp) (Ss)
y =0, ondf. y = 1r,Bv, on 0RQ.

Q In the case rank(B) = n (in particular m > n) :
o Distributed and boundary controllability are equivalent.
o Controllability proofs works almost the same as in the scalar case
(Fursikov-Imanuvilov strategy for instance).
@ In the case rank(B) < n (important in applications !) :
o Distributed and boundary controllability are not equivalent.
o Controllability proofs have to be adapted.
e Many results in 1D. The multi-D case is much more difficult in particular for (Sg).

SOME SURPRISING FEATURES [ WILL DISCUSS

@ The “geometry” of the control domain w has an influence on the controllability of
the system.
o It may exist a minimal time 7o for the null-controllability

o For T > T : the system is null-controllable.
o For T < T : the system is not null-controllable.
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OUTLINE

o CONTROL OF PARABOLIC SYSTEMS

@ Constant coefficients
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CONTROL OF PARABOLIC SYSTEMS

CONSTANT COEFFICIENTS - DISTRIBUTED CO

(Ammar-Khodja, Benabdallah, Dupaix, Gonzalez-Burgos, *09) (Gonzilez-Burgos, de Teresa ’10)
Oy — Ay + Ay = 1,Bv, in 2

S
(S») y=0, on 9.

THEOREM
System (Sp) is null-controllable at time T if and only if rank(B|AB| - - - |A""'B) = n.
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CONTROL OF PARABOLIC SYSTEMS

CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, Gonzalez-Burgos, *09) (Gonzilez-Burgos, de Teresa ’10)
(Sp) Oy — Ay+ Ay =1,Bv, inQ
D
y=0, on 9.

THEOREM
System (Sp) is null-controllable at time T if and only if rank(B|AB| - - - |A""'B) = n. l

SKETCH OF PROOF :inthecasen =2, m = 1.

e Kalman rank condition = canonical (cascade) form A = ((1) 8) ,B = ((1)) .

—-0qi —Aqi+q =0

Adjoint system
—8,6]2 — AC]z = O

o Carleman estimate for ¢;, i = 1,2,d; > 4

d:

S" sp _di—

\¢ (/
'qi

<C (A“

') +S ”es(p d; 7481%

2
Aqi llz2 (Qr)

\4/ K di— 2
Y iy + 5N (0 + Aa) gy )

2
2200 + 557 |e* Py
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CONTROL OF PARABOLIC SYSTEMS

CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, Gonzalez-Burgos, *09) (Gonzilez-Burgos, de Teresa ’10)
(Sp) Oy — Ay+ Ay =1,Bv, inQ
D
y=0, on 9.

THEOREM
System (Sp) is null-controllable at time T if and only if rank(B|AB| - - - |A""'B) = n. l

SKETCH OF PROOF :inthecasen =2, m = 1.

e Kalman rank condition = canonical (cascade) form A = ((1) 8) ,B = ((1)) .

—-oqi —Aqi+q =0

Adjoint system
—8,6]2 — AC]z = O

o Carleman estimate for ¢;, i = 1,2,d; > 4

59(,1H(’f’\;ﬁrdlqlHil(sz,)"‘sdz e (h(PHL (xz,)‘Hdz Hle ey I&quHqul)Iliz(n,)

< C( \\,/ (/| s _dy—

q1

d 2
el + 5" N el )
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CONTROL OF PARABOLIC SYSTEMS

CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, Gonzalez-Burgos, *09) (Gonzilez-Burgos, de Teresa ’10)
(Sp) Oy — Ay+ Ay =1,Bv, inQ
D
y=0, on 9.

THEOREM
System (Sp) is null-controllable at time T if and only if rank(B|AB| - - - |A""'B) = n. l

SKETCH OF PROOF :inthecasen =2, m = 1.

e Kalman rank condition = canonical (cascade) form A = ((1) 8) ,B = ((1)) .

—-oqi —Aqi+q =0
—8,6]2 — AC]z = O

@ Carleman estimate for ¢;, i = 1,2. We choose di = 7 and d, = 4

Adjoint system {

7
N

s 2
2 T €710 + 1A 20y

p.7 2
ey qi|le

(%“‘;'7/7111 27

o 4 112
Y aallf)

Eliminate the last term : / / @2 (Oq1 + Aq1) ~ / qi1(—0q2 + Aqn)
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CONTROL OF PARABOLIC SYSTEMS

CONSTANT COEFFICIENTS - BOUNDARY

(Fernandez-Cara, Gonzalez-Burgos, de Teresa, ’10) (Ammar-Khodja, Benabdallah, Gonzalez-Burgos, de Teresa, *11)
2 .
(S1) Oy —0;y+Ay=0, in]0, x|
¥(t,0) = Bv, y(t,m) =0.

MAIN ISSUE : Carleman-like methods are useless !
MOMENTS METHOD = restriction to the 1D case.

F. Boyer Controllability of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS

CONSTANT COEFFICIENTS - BOUNDARY CONTROL IN 1D

(Fernandez-Cara, Gonzalez-Burgos, de Teresa, *10) (Ammar-Khodja, Benabdallah, Gonzalez-Burgos, de Teresa, ’11)

Dy — By + Ay =0, in]0,n]
(Ss)
¥(t,0) = Bv, y(t,7) = 0.

THEOREM

System (Sg) is null-controllable at time T if and only if
rank(Bk|AkBk\ |Akn ]Bk) = kn, Vk Z 1,
with
A— NI B
A— Dol B
Ak = . ) and By =

A— NI B

e Kalman condition rank(B|AB|...|A"~'B) = n is necessary but not sufficient.
o Example for n = 2 : Let Sp(A™) = {1, 2}

Kalman condition

(%) is null-controllable <
)‘k_)‘l?éul_ﬂb Vk;ﬁl

F. Boyer Controllability of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS

FIRST UNEXPECTED PHENOMENON

DISTRIBUTED CONTROL BOUNDARY CONTROL

Ny T N L

¥(,0) = y(t,m) =0, ¥(1,0) = ((‘)) v, ¥ m) =0,
RESULTS FOR d = 1 RESULTS FOR d = 1
e (Sp) is app. controllable at T for any T > 0. e (Sp) is app. controllable at 7 for any 7' > 0.
e (Sp) is null-controllable at T for any T > 0. e (Sp) is null-controllable at T for any 7 > 0.
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CONTROL OF PARABOLIC SYSTEMS

FIRST UNEXPECTED PHENOMENON

DISTRIBUTED CONTROL BOUNDARY CONTROL

1 0\ 2 00
(1 0\ (00 (1) 8,y—< )6:_\%( ))':0, in]0, [
(5b) Oy — (O d) dyy + (I 0)y7 1. (O) v, in]0, 7| (58) 0 d 1 0
¥(,0) = y(t,m) =0, ¥(1,0) = ((‘)) v, ¥ m) =0,

RESULTS FOR d = 1 RESULTS FOR d = 1
e (Sp) is app. controllable at T for any T > 0. e (Sp) is app. controllable at 7 for any 7' > 0.
e (Sp) is null-controllable at T for any T > 0. e (Sp) is null-controllable at T for any 7 > 0.
RESULTS FOR d # 1 RESULTS FOR d # 1
e (Sp) is app. controllable at T for any 7 > 0. e (Sp) is app. controllable at 7 if and only if

o (Sp) is null-controllable at T for any 7 > 0.

Vd ¢ Q.

e (Sp) is null-controllable at 7' if and only if

S oo, if vVd € Q,
? CO(A)7 lf\/ang

A = {k?,dk*}1, co = condensation index.
Main issue :

The biorthogonal families of (e "), satisfy lgpllzz0,r) < C. rels TR
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CONTROL OF PARABOLIC SYSTEMS

SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, *14)
(S5) By—Ay+Ay=0, inQQC R’
’ y = 1r,Bv, on 09.
THEOREM
Let (A\i)k the eigenvalues of —A and (1) 1<i<n the eigenvalues of A™.
Assume that
A=A
e+ i = N+ pp = kA (©)
Wi = 1

System (Sg) is approximately controllable at time T > 0 if and only if

rank(B|AB| - - - |A""'B) = n.

REMARK 1 : If A has only one eigenvalue (in particular in the cascade form),
condition (C) holds.
REMARK 2 : In 1D : condition (C) is necessary if m = 1.
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CONTROL OF PARABOLIC SYSTEMS

SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, ’14)
(59) { dy—Ay+Ay=0, inQ CR?
y = 1r,Bv, on 09.
EXAMPLE ON A 2D RECTANGLE DOMAIN

(()A’ b) yr
VL 9] I'o YR
(0,0) - (@,0)

THEOREM (CASE I'g C &)

The 2D system (Sg) is approximately controllable if and only if so is the 1D system

Dy — 8y +Ay =0, in]0,d|
¥(t,0) =0, y(t,a) = Bv.

F. Boyer Controllability of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS

SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, *14)
(S5) By—Ay+Ay=0, inQQC R’
B
y = 1p,Bv, on 0.
EXAMPLE ON A 2D RECTANGLE DOMAIN
(0,b) T
L Q To| ®
(0,0) o (@,0)
THEOREM (CASE I'g = vz U yr)
o Ifn=2:
The 2D system (Sg) is approximately controllable if and only if
rank(B|AB) = 2.
e forn>4:
There exists a system (Sp) satisfying the Kalman condition and which is not
approximately controllable. X

F. Boyer Controllability of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS

SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Benabdallah, B., Gonzalez-Burgos, Olive, ’14)

(1) Oy — Ay+Ay =0, inQ =]0,7[x
? y = I{O}szBv, on 0f).

THEOREM

and only if

ﬁ System (Sg) is null-controllable at time T > 0 if

rank (B |AiBy| - - - |Af ' By) = nk, Vk > 1.

Q] :]O, TI'[
REMARKS

@ Same condition as for the 1D case.

o The controllability is independent of 7.
MAIN IDEAS OF THE PROOF
o Infinite dimensional variant of the Lebeau-Robbiano strategy in the variable
X2 € §2 to deal with the subdomain w.
@ FEach stage of the LR method requires to solve a 1D boundary control problem
in the variable x; € €2; whose cost Cr needs to be estimated.
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OUTLINE

o CONTROL OF PARABOLIC SYSTEMS

@ Variable coefficients
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CONTROL OF PARABOLIC SYSTEMS

@ If Supp(az1) Nw # @ then (Sp) is null-controllable at any time T > 0.

F. Boyer Controllability of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS

SOME 1D VARIABLE COEFFICIENTS SY

(50) Oy — Oy + (aﬂo(x) 8) y=1, (é) v, in]0,1[
)

@ If Supp(az1) Nw = @ and az; > 0, az; # 0 then (Sp) is null-controllable at any
time 7 > 0. (Rosier, de Teresa, *11)

ai(x) = 1jo.7,0.01(x),

w =]0.1,0.5],
o= (257).

(6]
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CONTROL OF PARABOLIC SYSTEMS

SOME 1D VARIABLE COEFFICIENTS SY

@ If Supp(a21) Nw = 0 and a; changes its sign
o There are some cases (depending on ay; and w) that are not approximately
controllable.
(B., Olive, ’13)
o It may exist a minimal time Ty > O for the null-controllability.
(Ammar-Khodja, Benabdallah, Gonzilez-Burgos, de Teresa, *14)

F. Boyer } ; of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS

e Take ar; = (x — )10, (B.-Olive, ’13)
e Casel : il
@)
Jo X7 dx
[(SD) is approximately controllable < o & {o }k,j with g = m
2
e Case? : e o
@)

{(SD) is approximately controllable <
O,

(x— a)gzﬁquk #£0, Vk,s.t. ax = a]

Here qgk is the other solution of (—83 - /\k):,z;k =0.
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CONTROL OF PARABOLIC SYSTEMS

SOME 1D VARIABLE COEFFICIENTS SY

o Take ar; = 1o, — 1(’); (B.-Olive, ’13)

02 =Ja —d,al, 05 =)o, a +dl,

@ Casel : el
@) O;
[(SD) is approximately controllable < d ¢ Q and o & Q}
e Case? : & &
(@) 0}

—o— i
—-)2

a (x) :1]1/2—|/2ﬂ,1/2[(x)
- 1]1/2,1/2+1/2\/§[(X)a
w =]0.8, 1.0],

wio = ().
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CONTROL OF PARABOLIC SYSTEMS

o Take ax; = 1o,,a31 = 1o, (B., Olive, *13)
Os
o Casel : —_— w
——
O,

[(SD) is not approximately controllable]

O
o Case?2 : W —
—

0,

[(SD) is approximately controllable]

O; Oy =|1/2—6,,1/2+6

) w w 2—]/ 25 / + 2[

e Case3 : —T_ > O3 =Jaz — 03,03 + 83
>

[(SD) is approximately controllable < a3 ¢ QQ and 03 & Q}
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CONTROL OF PARABOLIC SYSTEMS

o Take w =]1/2,1]

@ Casel :ax =1lj,1opand az =1

[(SD) is approximately controllable]

o Case2 :axn = ljpppandas; =x—1/2

[(SD) is not approximately controllable]
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)
-2 -6 -2 0 V2
dy—oy+|-4 0o 2 ]y=( 0 | yr0)=| 0
-2 3/2 =2 1, (x) 0

yox) = (sin(mx’), —sin(r(1 — 2)°),0.5 sin(m))’, w =03,0.7],

T
05

O‘Z 0‘3 0‘4 0‘6 ﬂ‘7 ﬂ‘B
()b
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)

V2

G y(60)=1| 0

0

2 6 2 0
oy—y+ -4 0o 2|y=[ o
—2 3/2 -2 L, (x)
wox) = (sin(m), — sin(r(1 - 2)°),0.5 sin(m))', w =]0.3,0.7],
T L T L

10°

107

slope —4

Cost of the control —¢—
Size of the target —l—
Optimal energy —A—

App. Cont. %
Null Cont. %

F. Boyer
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)
-2 -6 -2 0
By — & 4 0 2 = 0 0) = x
y — Oy + | — y= vi, y#0)=1 0
-2 3/2 =2 1, (x) 0

yo(x) = (sin(7rx3), —sin(n(1 —x)°),0.5 sin(wx))z, w =]0.3,0.7],

Time 1=0
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

-2 -6

8,y—8fy+ -4 0

10°
107
10°

10°

2 3)2

-2
2
-2

y=

(Olive, '14)
0 X
0 vi, y(t,0) = 0
1, (x) 0

slope —4

Cost of the control —¢—
Size of the target —l—
Optimal energy —A—

App. Cont. %
Null Cont. %

F. Boyer
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)
-2 -6 -2 0 V2
Oy—0dy+|—4 0 2 |y={ 0 |wv,y0)=[0
-2 3/2 =2 1, (x) 0

yox) = (sin(mx’), —sin(r(1 — 2)°),0.5 sin(m))’, w =03,0.7],

T
05

0‘2 0‘3 0‘4 0‘6 ﬂ‘7 ﬂ‘B
()b
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, *14)
-2 -6 2 0 V2
Oy —dy+ (-4 0 2 )y=( 0 | w,yr0)=]|0
-2 3/2 =2 1., (x) 0
t
ﬂxx)::(mn(wxﬁ,-gn(w(1-xf),ossnmnx)), w =]0.3,0.7],
103 T T T L] T T T 1 17
B e G Cost of the control —¢—
[0 | Size of the target —m—
10 Optimal energy —A—
107 - :
1073 | slope 2 B
sl | App. Cont. ¢
10 Null Cont. ¢/
[ L1l

1073 1072 107!
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CONCLUSIONS

IS THERE ANY CONCLU

VARIOUS AVAILABLE METHODS WITH DIFFERENT STRENGTHS AND WEAKNESS

@ Moment methods (need precise spectral estimates)
@ Carleman methods

e Parabolic Carleman => direct proof of observability
o Elliptic Carleman = Lebeau-Robbiano strategy

@ Transmutation methods
@ Multiplier methods
° ..

VARIOUS RESULTS

@ Boundary and Distributed control problems may not be equivalent.
@ Unconditional approximate or null controllability.

@ Minimal null-control time (even Ty = +o0 !) could appear.

[No general controllability criterion available even for linear systemsj

F. Boyer Controllability of parabolic PDEs



CONCLUSIONS

IS THERE ANY CONCLUSION ?

NUMEROUS OPEN PROBLEMS

@ Boundary control of parabolic systems in multi-D
@ Time-space dependent coupling coefficients (even in 1D)
e Different diffusion coefficients
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¥(t,0) = y(t,m) = 0,
o Higher-order coupling terms. Cross diffusions.
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OTHER KIND OF PARABOLIC MODELS

o Nonlinear systems

o Navier-Stokes

@ Degenerate parabolic equations
OTHER KIND OF QUESTIONS

@ More detailed numerical analysis and adapted algorithms.

@ Optimal control / Constrained control.

o Stabilization.
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