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CONTROL OF A DYNAMICAL SYSTEM

GENERAL DYNAMICAL SYSTEM

(S)

{
y′ = F(t, y, v),

y(0) = y0,

t 7→ y(t) is the state (possibly infinite dimensional), t 7→ v(t) is the control.

TYPICAL CONTROLLABILITY QUESTION

For a given initial data y0, can we find a control v such that the corresponding solution
of (S) has a prescribed behavior ?

IN THIS TALK : Let T > 0 and yT a fixed target.

Exact controllability : Can I find a control v such that y(T) = yT ?

Approximate controllability : Can I find a control v such that ‖y(T)− yT‖ is as
small as desired ?

Only linear problems.
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THE FINITE DIMENSION CASE

(S) y′(t) + Ay(t) = Bv(t),
where A ∈ Mn(R), B ∈ Mn,m(R), y(t) ∈ Rn and v(t) ∈ Rm.

THEOREM (KALMAN CRITERION)

Let T > 0. The following propositions are equivalent.

(1) Problem (S) is exactly controllable at time T.

(2) Problem (S) is approximately controllable at time T.

(3) The matrices A and B satisfy

rank(K) = n, with K =
(

B|AB| . . . |An−1B
)
∈ Mn,mn(R).

REMARKS

Approximate and exact controllability are equivalent.
The controllability of the system is independent of T .
There exists a generalization of this criterion for time dependent linear ODEs.
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(

B|AB| . . . |An−1B
)
∈ Mn,mn(R).

SKETCH OF PROOF

The set of reachable states at time T from an initial data y0 is affine

RT(y0) =
{

yv,y0 (T), v ∈ L2(0, T;Rm)
}
.

(1)⇔ RT(y0) = Rn ⇔ RT(y0) is dense in Rn ⇔ (2).
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(3) The matrices A and B satisfy

rank(K) = n, with K =
(

B|AB| . . . |An−1B
)
∈ Mn,mn(R).

SKETCH OF PROOF

(1)⇒ (3) : Assume that rank(K) < n, there exists ψ ∈ Rn \ {0} such that tψK = 0.

=⇒
( tψP(A)B = 0, ∀P ∈ R[X]

)
=⇒

(
∀s ∈ R, tψesAB = 0

)
.

Thus, for any control v, we have
d
dt

( tψetAy(t)) = tψetABv(t) = 0.

It follows that ψ ⊥
(
eTART(y0)− y0

)
.
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(2) Problem (S) is approximately controllable at time T.

(3) The matrices A and B satisfy

rank(K) = n, with K =
(

B|AB| . . . |An−1B
)
∈ Mn,mn(R).

SKETCH OF PROOF

(3)⇒ (1) : Assume that (S) is not controllable at time T .
Thus, there exists ψ 6= 0 such that ψ ⊥

(
RT(y0)− e−TAy0

)
. By the Duhamel formula,

0 = tψ

∫ T

0
e−(T−t)ABv(t) dt, ∀v : [0, T]→ Rm.

We take v(t) = B∗e−(T−t)A∗ψ to obtain 0 =

∫ T

0

∥∥ tψe−(T−t)AB
∥∥2

2
dt.

It follows that tψesAB = 0, ∀s ∈ R, and then tψK = 0 which gives rank(K) < n. 5/ 42
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(2) Problem (S) is approximately controllable at time T.

(3) The matrices A and B satisfy

rank(K) = n, with K =
(

B|AB| . . . |An−1B
)
∈ Mn,mn(R).

ALTERNATIVE (CONSTRUCTIVE) PROOF IN THE CASE m = 1 AND yT = 0
Cascade structure : Use the change of variable y = Kz (K is invertible !)

z′(t)+



0 · · · · · · 0 a0

1 0 · · ·
... a1

0 1
. . .

... a2
...

. . .
. . . 0

...
0 · · · 0 1 an


z(t) =



1
0
...
...
0

 v(t) =⇒
{

Choose a suitable zn (flat at T)
then compute zn−1, ..., z1 and finally v
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� REAL-LIFE � MODEL

(Jackson-Byrne, 2000)

CANCER THERAPY MODEL
∂td − div(Dd(x)∇d) + λd = b(x)v(t, x), drugs

∂tp− div(Dp(x)∇p) − Fp(p) = −Cp(d, p), sensitive cells

∂tq− div(Dq(x)∇q) − Fq(q) = −Cq(d, q), unsensitive cells

MAIN FEATURES :
Reaction-diffusion system
Possibly different diffusions
Only one control acting on the drug concentration !
Importance of coupling / interaction terms. No direct coupling between p and q.
A reasonable control should be non-negative and bounded.

THIS PROBLEM IS MUCH TOO COMPLEX UP TO NOW

Linearisation ?
Same diffusions ?
1D case ?
Relax constraints on the control ?
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ABSTRACT LINEAR PARABOLIC CONTROL PROBLEM

Two Hilbert spaces : the state space (E, 〈., .〉) and the control space (U, [., .]).

A : D(A) ⊂ E 7→ E is some elliptic operator.

B : U 7→ D(A?)′ the control operator, B? its adjoint.

COMPATIBILITY ASSUMPTION : we assume that(
t 7→ B?e−tA?ψ

)
∈ L2(0, T; U), and

r
B?e−·A

?

ψ
z

L2(0,T;U)
≤ C ‖ψ‖ , ∀ψ ∈ E.

Our controlled parabolic problem is (S)

{
∂ty +Ay = Bv in ]0, T[,

y(0) = y0,

Here, y0 ∈ E is the initial data, v ∈ L2(]0, T[,U) is the control we are looking for.

THEOREM (WELL-POSEDNESS OF (S) IN A DUAL SENSE)

For any y0 ∈ E and v ∈ L2(0, T; U), there exists a unique y = yv,y0 ∈ C
0([0, T],E)

such that

〈y(t), ψ〉 −
〈

y0, e−tA?ψ
〉

=

∫ t

0

[
v(s),B?e−(t−s)A?ψ

]
ds, ∀t ∈ [0, T], ∀ψ ∈ E.
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MAIN ACADEMIC EXAMPLES

DISTRIBUTED CONTROL FOR SCALAR EQUATION B? = 1ω{
∂ty−∆y = 1ωv, in Ω

y = 0, on ∂Ω.

with ω ⊂ Ω strict subset (the case ω = Ω is straightforward).
DIRICHLET BOUNDARY CONTROL FOR SCALAR EQUATION B? = 1Γ0∂n{

∂ty−∆y = 0, in Ω

y = 1Γ0 v, on ∂Ω.

where Γ0 ⊂ ∂Ω is a subset of the boundary.

COUPLED PARABOLIC SYSTEM WITH FEW DISTRIBUTED CONTROLS B? = 1ωB∗

y(t, x) ∈ Rn, A(t, x) ∈ Mn(R), B ∈ Mn,m(R), with m < n{
∂ty−∆y + A(t, x)y = 1ωBv, in Ω

y = 0, on ∂Ω.

COUPLED PARABOLIC SYSTEM WITH FEW BOUNDARY CONTROLS B? = 1Γ0 B∗∂n

y(t, x) ∈ Rn, A(t, x) ∈ Mn(R), B ∈ Mn,m(R), with m < n{
∂ty−∆y + A(t, x)y = 0, in Ω

y = 1Γ0 Bv, on ∂Ω.
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CONTROLLABILITY QUESTIONS

(S)

{
∂ty +Ay = Bv in ]0, T[,

y(0) = y0.

FUNDAMENTAL REMARK FOR PARABOLIC PDES

Due to regularisation effects, not all targets can be reached !

APPROXIMATE (NULL-)CONTROL PROBLEM AT TIME T FROM y0

For any δ > 0, is there a vδ ∈ L2(]0, T[,U) such that ‖yvδ,y0 (T)‖ ≤ δ ?

NULL-CONTROL PROBLEM AT TIME T FROM y0

Is there a v ∈ L2(]0, T[,U) such that yv,y0 (T) = 0 ?

This is equivalent to the control to the trajectories.

(Fattorini-Russell, ’71) (Lebeau-Robbiano, ’95)

(Fursikov-Imanuvilov, ’96) (Alessandrini-Escauriaza, ’08)

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, ’11)
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CONTROLABILITY VS. UNIQUE CONTINUATION VS. OBSERVABILITY

(S)

{
∂ty +Ay = Bv in ]0, T[,

y(0) = y0.
(S∗)

{
−∂tq +A?q = 0 in ]0, T[,

q(T) = qF.

THEOREM (APPROXIMATE CONTROLLABILITY AND UNIQUE CONTINUATION)

Let T > 0 given.

(S) is AC from any initial data⇐⇒


Any solution q of (S∗)
such that B∗q(t) = 0, ∀t ∈ [0, T]

satisfies q ≡ 0.

REMARK : This property is, in general, independent of T .
SKETCH OF PROOF : Let P : v ∈ L2(0, T; U) 7→ yv(T) ∈ E

Im(P) is dense ⇐⇒ ker P∗ = {0}.

THEOREM (NULL CONTROLLABILITY AND OBSERVABILITY)

(S) is NC from any initial data⇐⇒

Any solution q of (S∗)

satisfies ‖q(0)‖2 ≤ C2
T

∫ T

0
‖B?q(t)‖2 dt.

The control v with minimal L2 norm for a data y0 satisfies ‖v‖L2(0,T;U) ≤ CT‖y0‖.

REMARK : This property may depend of T .
SKETCH OF PROOF : Let P : v ∈ L2(0, T; U) 7→ yv(T) ∈ E and Q = e−TA

Im(P) ⊂ Im(Q) ⇐⇒ ‖Q∗x‖ ≤ C‖P∗x‖, ∀x.
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THE MOMENTS METHOD IN 1D
MAIN PRINCIPLE ILLUSTRATED ON A SCALAR PARABOLIC EQUATION

(λk, φk) : eigenelements of A = A? = −∂x(γ(x)∂x•) with Dirichlet BC.

PROPOSITION

A function v ∈ L2(0, T; U) is a null-control for the problem

∂ty +Ay = Bv, y(0) = y0,

if and only if

−
〈

y0, e−λkTφk

〉
=

∫ T

0

[
v(t), e−λk(T−t)B?φk

]
dt, ∀k ≥ 1.

This is a moment problem.

STRATEGY : If we are able to build a family of functions qk ∈ L2(0, T; U) such that∫ T

0

[
ql(t), e−λk(T−t)B?φk

]
dt = δkl, ∀k, l ≥ 1,

then the control problem can be formally solved by

v(t) = −
∑
l≥1

〈
y0, e−λlTφl

〉
ql(t).
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THE MOMENTS METHOD IN 1D
MAIN PRINCIPLE ILLUSTRATED ON A SCALAR PARABOLIC EQUATION

(Fattorini-Russell, ’71-’74)

THEOREM (BIORTHOGONAL FAMILIES OF EXPONENTIAL FUNCTIONS)

Let (σk)k be an increasing sequence of distinct positive numbers.
We assume that, for some ρ > 0 and someN : (0,+∞)→ (0,+∞), we have∑

k≥N (ε)

1
σk
≤ ε, ∀ε > 0, and σk+1 − σk ≥ ρ, ∀k ≥ 1.

Then, for any T > 0, there exists a sequence of functions (qk)k ⊂ L2(0, T) such that∫ T

0
qk(s)e−(T−s)σl ds = δkl, ∀k, l, and ‖qk‖L2(0,T) ≤ Kε,T,N ,ρeεσk , ∀ε > 0, ∀k ≥ 1,

where Kε,T,N ,ρ only depends on T, ε, ρ,N but not on the sequence (σk)k.

REMARKS

Good news : Those conditions are satisfied in 1D for heat-like equations.
Bad news : There are not satisfied in higher dimension.
The estimates are somehow uniform with respect to the sequence of eigenvalues.
Extension possible to more general sets of functions s 7→ sje−(T−s)σl .
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THE MOMENTS METHOD IN 1D
MAIN PRINCIPLE ILLUSTRATED ON A SCALAR PARABOLIC EQUATION

WHAT WE WANT ∫ T

0

[
ql(t), e−λk(T−t)B?φk

]
dt = δkl, ∀k, l ≥ 1,

and set v = −
∑
l≥1

〈
y0, e−λlTφl

〉
ql.

CONSTRUCTION

We define
qk(t) = qk(t)

B?φk

JB?φkK2 ∈ U,

so that JqkKL2(0,T;U) = ‖qk‖L2(0,T) JB?φkK−1 .

Distributed control : U = L2(Ω), B?φk = 1ωφk.
It can be proved that, for some Cω we have

JB?φkK = ‖φk‖L2(ω) ≥ Cω, ∀k ≥ 1.

Boundary control at x = 1 : U = R, B?φk = γ(1)φ′k(1).
It can be proved that

JB?φkK = |γ(1)φ′k(1)| ≥ C
√
λk.

CONCLUSION : We have
r〈

y0, e−λlTφl

〉
ql

z

L2(0,T;U)
≤ Cεe−λlT eελl , taking

ε = T/2 shows that the series that defines v converges !
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THE MOMENTS METHOD AT THE DISCRETE LEVEL

EXPECTED RESULTS

Null( ?)-controllability results for semi-discrete parabolic equations{
∂tyh +Ahyh = Bhvh

yh(0) = y0,h ∈ Eh,

where Ah is the finite difference discretisation operator

(Ahy)i = −1
h

(
γ(xi+1/2)

yi+1 − yi

h
− γ(xi−1/2)

yi − yi−1

h

)
,

and the discrete control operator is given by

Bh =


0
...
0

γN+1/2
hN hN+1/2

 , or Bh = 1ω.

THEOREM

For any p > 0 there exists C > 0, h0 > 0 such that for any h < h0, any y0,h, there
exists a vh ∈ L2(0, T,Uh) such that

‖vh‖L2(0,T;Uh) ≤ C‖y0,h‖h, and ‖yh(T)‖h ≤ C‖y0,h‖hhp.

TOOLS : BIOTHO. FAMILIES + DISCRETE SPECTRAL PROPERTIES FOR Ah

(Allonsius-B.-Morancey, ’16)

Uniform growth rate for eigenvalues λh
k ≥ Ck2, ∀k, ∀h.

Uniform spectral gap λh
k+1 − λh

k ≥ ρ, ∀h, ∀k ≤ C
h
.

Uniform lower bounds for discrete eigenfunctions

‖φh
k‖L2(ω) ≥ C, ∀h, ∀k ≤ C

h
for distributed control,

|∂rφ
h
k | ≥ C, ∀h, ∀k ≤ C

h
for boundary control.

REMARKS

Those properties are straightforward for the Laplace operator on uniform grids.

Our results are uniform for a constant portion of the spectrum.
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DISCRETE SPECTRAL PROPERTIES
LAPLACE SPECTRUM VS DISCRETE LAPLACE SPECTRUM

0 20 40 60 80 100
0

2

4

6

8

·104

λN − λh
N = CN2

λk ≈ λh
k

λk

λh
k

TYPICAL ERROR ESTIMATE (USELESS FOR LARGE k) : |λh
k − λk| ≈ Ch2λ2

k .
HOWEVER UNIFORM DISCRETE GAP HOLDS : inf

k≤N
|λh

k+1 − λh
k | ≈ C
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DISCRETE SPECTRAL PROPERTIES
EXAMPLE 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Diffusion coefficient γ(x) = 2 + cos(πx)3

TWO OBSERVATION DOMAINS : ω1 = (0, 0.3), ω2 = (0.7, 1).
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DISCRETE SPECTRAL PROPERTIES
EXAMPLE 1

100 200 300 400

0.5

1

1.5

2

2.5

inf
Ω\ω2 γ

γmin

k

Rescaled discrete spectrum

λh
k h2

4γmin
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DISCRETE SPECTRAL PROPERTIES
EXAMPLE 1

100 200 300 400

200

400

600

k

Normal derivatives of φh
k

left
right
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DISCRETE SPECTRAL PROPERTIES
EXAMPLE 1

100 200 300 400

1

2

3

k

k 7→ ‖φh
k‖2

L2(ωi)/|ω
i|

ω1

ω2
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DISCRETE SPECTRAL PROPERTIES
EXAMPLE 1

100 200 300 400
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·104
k 7→ |λh

k+1 − λh
k |
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DISCRETE SPECTRAL PROPERTIES
EXAMPLE 1

0 0.2 0.4 0.6 0.8 1
−6

−4

−2
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6

The last discrete eigenfunction

φh
N

17/ 42
F. Boyer Controllability of parabolic PDEs



NUMERICAL EXAMPLES
THE 1D HEAT EQUATION

∂ty− 0.1∂2
x y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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NUMERICAL EXAMPLES
THE 1D HEAT EQUATION WITH UNSTABLE MODES

∂ty− 0.1∂2
x y− 1.5y = 1]0.3,0.8[v,

T = 1, y0(x) = sin(πx)10.
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MULTI-D SCALAR CONTROL PROBLEMS
PRELIMINARY REMARKS

DISTRIBUTED CONTROLLABILITY⇒ BOUNDARY CONTROLLABILITY

ωΩ Γ0

BOUNDARY CONTROLLABILITY⇒ DISTRIBUTED CONTROLLABILITY

Γ0

ω
Ω
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MULTI-D SCALAR CONTROL PROBLEMS
THE LEBEAU-ROBBIANO METHOD 1/2


∂ty−∆y = 1ωv, in Ω

y = 0, on ∂Ω,

y(0, .) = y0,

ω
Ω

Let (φk, λk)k the eigenelements of A = −∆. Let Eµ = Span{φk, λk ≤ µ}.
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y = 0, on ∂Ω,

y(0, .) = y0,

ω
Ω

Let (φk, λk)k the eigenelements of A = −∆. Let Eµ = Span{φk, λk ≤ µ}.
(1) SPECTRAL INEQUALITY (a.k.a. Lebeau-Robbiano inequality)

‖ψ‖L2(Ω) ≤ CeC
√
µ‖ψ‖L2(ω), ∀ψ ∈ Eµ.

(2) PARTIAL (LOW-FREQUENCIES) OBSERVABILITY INEQUALITY

‖e−τAqF‖2
L2(Ω) ≤ C

eC
√
µ

τ

∫ τ

0
‖e−sAqF‖2

L2(ω) ds, ∀qF ∈ Eµ.

(3) PARTIAL (LOW-FREQUENCIES) CONTROLLABILITY : for any y0 ∈ , τ > 0 there
exists v ∈ L2(]0, τ [×ω) such that the solution of
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frequencies
≤ µ1

τ1
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y(0, .) = y0,

ω
Ω
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(4) CONSTRUCTION OF THE CONTROL : Time slicing procedure.

t

‖y(t)‖L2(Ω)

0

‖y0‖L2(Ω)•

T
•

Do
nothing

τ2

and so on ...

Control
low
freq.
≤ µ2

τ2

Do nothing

τ1

Control low
frequencies
≤ µ1

τ1

At the end, the control v is shown to satisfy

‖v‖L2(]0,T[×ω) ≤ C‖y0‖L2(Ω).

CONSEQUENCE

By duality, we obtain the uniform observability inequality for the adjoint system.
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MULTI-D SCALAR CONTROL PROBLEMS
THE LEBEAU-ROBBIANO METHOD 2/2

THEOREM (LEBEAU-ROBBIANO SPECTRAL INEQUALITY)

There exists C > 0 such that∫
Ω

∣∣∣∣ ∑
λk≤µ

akφk

∣∣∣∣2 ≤ CeC
√
µ

∫
ω

∣∣∣∣ ∑
λk≤µ

akφk

∣∣∣∣2, ∀(ak)k ∈ RN.

AN ELLIPTIC GLOBAL CARLEMAN ESTIMATE IN ]0, T∗[×Ω
For a suitable weight function (t, x) 7→ ϕ(t, x) (s.t. in particular∇xϕ(T∗) = 0)

s3‖esϕu‖2
L2(ΩT∗ ) + s‖esϕ∇u‖2

L2(ΩT∗ ) + s‖esϕ(0,.)∂tu(0, .)‖2
L2(Ω)

+ se2sϕ(T∗)‖∂tu(T∗, .)‖2
L2(Ω) + s3e2sϕ(T∗)‖u(T∗, .)‖2

L2(Ω)

≤ C
(
‖esϕ(∂2

t + ∆)u‖2
L2(ΩT∗ )+se2sϕ(T∗)‖∇xu(T∗, .)‖2

L2(Ω)+s‖esϕ(0,.)∂tu(0, .)‖2
L2(ω)

)
,

for any s ≥ s0, and all smooth u, with u(0, .) = 0, and u = 0 on ∂Ω.

STANDARD NOTATION

ΩT =]0, T[×Ω,

ωT =]0, T[×ω.

u(t, x) =
∑
λk≤µ

ak
sinh(

√
λkt)√

λk
φk(x).

Carleman estimate =⇒ µe2
√
µϕ(T∗)|u(T∗, .)|2L2(Ω) ≤ Ce2

√
µmaxϕ(0,.)|∂tu(0, .)|2L2(ω).

STRAIGHTFORWARD COMPUTATIONS

‖u(T∗, .)‖2
L2(Ω)

=
∑
λk≤µ

|ak|2
∣∣∣∣ sinh(

√
λkT∗)

√
λk

∣∣∣∣2 ≥ C
∑
λk≤µ

|ak|2 = C
∫

Ω

∣∣∣∣ ∑
λk≤µ

akφk

∣∣∣∣2,
‖∂tu(0, .)‖2

L2(ω)
=

∫
ω

∣∣∣∣ ∑
λk≤µ

akφk

∣∣∣∣2.
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√
λkt)√

λk
φk(x).

‖∇xu(T∗, .)‖2
L2(Ω) =

∑
λk≤µ

|ak|2| sinh(
√
λkT∗)|2

≤ µ
∑
λk≤µ

|ak|2
∣∣∣∣ sinh(

√
λkT∗)√
λk

∣∣∣∣2 ≤ µ‖u(T∗, .)‖2
L2(Ω).
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A DISCRETE LEBEAU-ROBBIANO INEQUALITY

Let Ah be a multi-D finite difference discretization of A and (φh
k , λ

h
k)1≤k≤Nh be the

eigenelements of Ah.
For any µ > 0, we set Eh

µ = Span(φh
k , λ

h
k ≤ µ).

QUESTION

Is it true that
‖ψh‖L2(Ω) ≤ CeC

√
µ‖ψh‖L2(ω), ∀ψ

h ∈ Eh
µ, (?)

for some C independent of h ?

Answer 1 : No ... for linear algebra reasons.
Answer 2 : for the 5-point discrete Laplace on a uniform grid (Kavian-Zuazua)

1

−1

1

−1

1

ω

There exists a non trivial φh
k such that 1ωφh

k = 0.

(B.-Hubert-Le Rousseau, ’09-’11)

THEOREM

Under some standard assumptions, there exist h0 > 0, C, C̃ > 0 such that (?) holds for
any h < h0 and any

µ < C̃/h2.

THEOREM ((SAME AS BEFORE BUT MULTI-D))

For any p > 0 there exists C > 0, h0 > 0 such that for any h < h0, any y0,h, there
exists a vh ∈ L2(0, T,Uh) such that

‖vh‖L2(0,T;Uh) ≤ C‖y0,h‖h, and ‖yh(T)‖h ≤ C‖y0,h‖hhp.
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MULTI-D SCALAR CONTROL PROBLEMS
A PARABOLIC CARLEMAN ESTIMATE

(Fursikov-Imanuvilov, ’96)

Let γ(t) = 1√
t(T−t)

. There is a smooth x 7→ β(x) so that, with ϕ(t, x) = γ(t)2β(x)

THEOREM (PARABOLIC CARLEMAN ESTIMATE)

For any d ∈ R, there exists C > 0 such that for any s large enough, and any smooth
function q, such that q = 0 on ∂Ω, we have

sd‖esϕγdq‖2
L2(ΩT ) + sd−4‖esϕγd−4∂tq‖2

L2(ΩT ) + sd−4‖esϕγd−4∆q‖2
L2(ΩT )

≤ C
(

sd‖esϕγdq‖2
L2(ωT ) + sd−3‖esϕγd−3(−∂tq + ∆q)‖2

L2(ΩT )

)
COROLLARY (OBSERVABILITY)

For any solution of the adjoint problem −∂tq + ∆q = 0, q = 0 on ∂Ω we have

‖q(0)‖2
L2(Ω) ≤ C

∫ 3T/4

T/4
‖q(t)‖2

L2(Ω) dt ≤ C′
∫ T

0

∫
ω

|q|2 dt,

by using the parabolic dissipation property and the Carleman estimate.

DISCRETE VERSIONS ...
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CONTROL OF PARABOLIC SYSTEMS
PRELIMINARY REMARKS

y(t, x) ∈ Rn,A(t, x) ∈ Mn(R),B ∈ Mn,m(R)

DISTRIBUTED CONTROL

(SD)

{
∂ty−∆y + A(t, x)y = 1ωBv, in Ω

y = 0, on ∂Ω.

BOUNDARY CONTROL

(SB)

{
∂ty−∆y + A(t, x)y = 0, in Ω

y = 1Γ0 Bv, on ∂Ω.

1 In the case rank(B) = n (in particular m ≥ n) :
Distributed and boundary controllability are equivalent.
Controllability proofs works almost the same as in the scalar case
(Fursikov-Imanuvilov strategy for instance).

2 In the case rank(B) < n (important in applications !) :
Distributed and boundary controllability are not equivalent.
Controllability proofs have to be adapted.
Many results in 1D. The multi-D case is much more difficult in particular for (SB).

SOME SURPRISING FEATURES I WILL DISCUSS

The “geometry” of the control domain ω has an influence on the controllability of
the system.
It may exist a minimal time T0 for the null-controllability

For T > T0 : the system is null-controllable.
For T < T0 : the system is not null-controllable.
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∂ty−∆y + A(t, x)y = 0, in Ω

y = 1Γ0 Bv, on ∂Ω.

1 In the case rank(B) = n (in particular m ≥ n) :
Distributed and boundary controllability are equivalent.
Controllability proofs works almost the same as in the scalar case
(Fursikov-Imanuvilov strategy for instance).

2 In the case rank(B) < n (important in applications !) :
Distributed and boundary controllability are not equivalent.
Controllability proofs have to be adapted.
Many results in 1D. The multi-D case is much more difficult in particular for (SB).

SOME SURPRISING FEATURES I WILL DISCUSS

The “geometry” of the control domain ω has an influence on the controllability of
the system.
It may exist a minimal time T0 for the null-controllability

For T > T0 : the system is null-controllable.
For T < T0 : the system is not null-controllable.
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CONTROL OF PARABOLIC SYSTEMS
CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, ’09) (González-Burgos, de Teresa ’10)

(SD)

{
∂ty−∆y + Ay = 1ωBv, in Ω

y = 0, on ∂Ω.

THEOREM

System (SD) is null-controllable at time T if and only if rank(B|AB| · · · |An−1B) = n.

SKETCH OF PROOF : in the case n = 2, m = 1.

Kalman rank condition⇒ canonical (cascade) form A =

(
0 0
1 0

)
, B =

(
1
0

)
.

Adjoint system

{
−∂tq1 −∆q1 + q2 = 0

−∂tq2 −∆q2 = 0
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CONTROL OF PARABOLIC SYSTEMS
CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, ’09) (González-Burgos, de Teresa ’10)

(SD)

{
∂ty−∆y + Ay = 1ωBv, in Ω

y = 0, on ∂Ω.

THEOREM

System (SD) is null-controllable at time T if and only if rank(B|AB| · · · |An−1B) = n.

SKETCH OF PROOF : in the case n = 2, m = 1.

Kalman rank condition⇒ canonical (cascade) form A =

(
0 0
1 0

)
, B =

(
1
0

)
.

Adjoint system

{
−∂tq1 −∆q1 + q2 = 0

−∂tq2 −∆q2 = 0

Carleman estimate for qi, i = 1, 2, di ≥ 4

sdi‖esϕγdi qi‖2
L2(ΩT ) + sdi−4‖esϕγdi−4∂tqi‖2

L2(ΩT ) + sdi−4‖esϕγdi−4∆qi‖2
L2(ΩT )

≤ C
(

sdi‖esϕγdi qi‖2
L2(ωT ) + sdi−3‖esϕγdi−3(−∂tqi + ∆qi)‖2

L2(ΩT )

)
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CONTROL OF PARABOLIC SYSTEMS
CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, ’09) (González-Burgos, de Teresa ’10)

(SD)

{
∂ty−∆y + Ay = 1ωBv, in Ω

y = 0, on ∂Ω.

THEOREM

System (SD) is null-controllable at time T if and only if rank(B|AB| · · · |An−1B) = n.

SKETCH OF PROOF : in the case n = 2, m = 1.

Kalman rank condition⇒ canonical (cascade) form A =

(
0 0
1 0

)
, B =

(
1
0

)
.

Adjoint system

{
−∂tq1 −∆q1 + q2 = 0

−∂tq2 −∆q2 = 0

Carleman estimate for qi, i = 1, 2, di ≥ 4

εsd1‖esϕγd1 q1‖2
L2(ΩT )+sd2‖esϕγd2 q2‖2

L2(ΩT )+sd2−4‖esϕγd2−4(|∂tq2|+|∆q2|)‖2
L2(ΩT )

≤ C
(
εsd1‖esϕγd1 q1‖2

L2(ωT ) + sd2‖esϕγd2 q2‖2
L2(ωT ) + εsd1−3‖esϕγd1−3q2‖2

L2(ΩT )

)
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CONTROL OF PARABOLIC SYSTEMS
CONSTANT COEFFICIENTS - DISTRIBUTED CONTROL

(Ammar-Khodja, Benabdallah, Dupaix, González-Burgos, ’09) (González-Burgos, de Teresa ’10)

(SD)

{
∂ty−∆y + Ay = 1ωBv, in Ω

y = 0, on ∂Ω.

THEOREM

System (SD) is null-controllable at time T if and only if rank(B|AB| · · · |An−1B) = n.

SKETCH OF PROOF : in the case n = 2, m = 1.

Kalman rank condition⇒ canonical (cascade) form A =

(
0 0
1 0

)
, B =

(
1
0

)
.

Adjoint system

{
−∂tq1 −∆q1 + q2 = 0

−∂tq2 −∆q2 = 0

Carleman estimate for qi, i = 1, 2. We choose d1 = 7 and d2 = 4

s7‖esϕγ7q1‖2
L2(ΩT ) + s4‖esϕγ4q2‖2

L2(ΩT ) + ‖esϕ(|∂tq2|+ |∆q2|)‖2
L2(ΩT )

≤ C
(

s7‖esϕγ7q1‖2
L2(ωT ) + s4‖esϕγ4q2‖2

L2(ωT )

)
Eliminate the last term :

∫
ωT

q2
2 =

∫
ωT

q2(∂tq1 + ∆q1) ∼
∫
ωT

q1(−∂tq2 + ∆q2)
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CONTROL OF PARABOLIC SYSTEMS
CONSTANT COEFFICIENTS - BOUNDARY CONTROL IN 1D

(Fernández-Cara, González-Burgos, de Teresa, ’10) (Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, ’11)

(SB)

{
∂ty− ∂2

x y + Ay = 0, in ]0, π[

y(t, 0) = Bv, y(t, π) = 0.

MAIN ISSUE : Carleman-like methods are useless !
MOMENTS METHOD =⇒ restriction to the 1D case.

THEOREM

System (SB) is null-controllable at time T if and only if

rank(Bk|AkBk| · · · |Akn−1
k Bk) = kn, ∀k ≥ 1,

with

Ak =


A− λ1I

A− λ2I
. . .

A− λkI

 , and Bk =


B
B
...
B

 .
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CONTROL OF PARABOLIC SYSTEMS
CONSTANT COEFFICIENTS - BOUNDARY CONTROL IN 1D

(Fernández-Cara, González-Burgos, de Teresa, ’10) (Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, ’11)

(SB)

{
∂ty− ∂2

x y + Ay = 0, in ]0, π[

y(t, 0) = Bv, y(t, π) = 0.

THEOREM

System (SB) is null-controllable at time T if and only if

rank(Bk|AkBk| · · · |Akn−1
k Bk) = kn, ∀k ≥ 1,

with

Ak =


A− λ1I

A− λ2I
. . .

A− λkI

 , and Bk =


B
B
...
B

 .

Kalman condition rank(B|AB|...|An−1B) = n is necessary but not sufficient.
Example for n = 2 : Let Sp(A∗) = {µ1, µ2}.

(?) is null-controllable⇔

{
Kalman condition
λk − λl 6= µ1 − µ2, ∀k 6= l.
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CONTROL OF PARABOLIC SYSTEMS
FIRST UNEXPECTED PHENOMENON

DISTRIBUTED CONTROL

(SD)

 ∂ty−
(

1 0
0 d

)
∂2

x y +

(
0 0
1 0

)
y = 1ω

(
1
0

)
v, in ]0, π[

y(t, 0) = y(t, π) = 0,

BOUNDARY CONTROL

(SB)


∂ty−

(
1 0
0 d

)
∂2

x y +

(
0 0
1 0

)
y = 0, in ]0, π[

y(t, 0) =

(
1
0

)
v, y(t, π) = 0,

RESULTS FOR d = 1
• (SD) is app. controllable at T for any T > 0.
• (SD) is null-controllable at T for any T > 0.

RESULTS FOR d = 1
• (SB) is app. controllable at T for any T > 0.
• (SB) is null-controllable at T for any T > 0.

RESULTS FOR d 6= 1
• (SD) is app. controllable at T for any T > 0.
• (SD) is null-controllable at T for any T > 0.

RESULTS FOR d 6= 1
• (SB) is app. controllable at T if and only if

√
d 6∈ Q.

• (SB) is null-controllable at T if and only if

T >
?

{
+∞, if

√
d ∈ Q,

c0(Λ), if
√

d 6∈ Q,

Λ = {k2, dk2}k , c0 = condensation index.
Main issue :
The biorthogonal families of (e−Λpt)p satisfy ‖qp‖L2(0,T) ≤ Cε,T e(ε+c0(Λ)) Re(Λp).
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CONTROL OF PARABOLIC SYSTEMS
SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, ’14)

(SB)

{
∂ty−∆y + Ay = 0, in Ω ⊂ Rd

y = 1Γ0 Bv, on ∂Ω.

THEOREM

Let (λk)k the eigenvalues of −∆ and (µi)1≤i≤n the eigenvalues of A∗.
Assume that

λk + µi = λl + µj ⇐⇒

{
λk = λl

µi = µj
. (C)

System (SB) is approximately controllable at time T > 0 if and only if

rank(B|AB| · · · |An−1B) = n.

REMARK 1 : If A has only one eigenvalue (in particular in the cascade form),
condition (C) holds.
REMARK 2 : In 1D : condition (C) is necessary if m = 1.

33/ 42
F. Boyer Controllability of parabolic PDEs



CONTROL OF PARABOLIC SYSTEMS
SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, ’14)

(SB)

{
∂ty−∆y + Ay = 0, in Ω ⊂ Rd

y = 1Γ0 Bv, on ∂Ω.

EXAMPLE ON A 2D RECTANGLE DOMAIN

ΩγL γR

γT

γB(0, 0)

(0, b)

(a, 0)

Γ0

THEOREM (CASE Γ0 ⊂ γR)

The 2D system (SB) is approximately controllable if and only if so is the 1D system{
∂ty− ∂2

x y + Ay = 0, in ]0, a[

y(t, 0) = 0, y(t, a) = Bv.
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CONTROL OF PARABOLIC SYSTEMS
SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Olive, ’14)

(SB)

{
∂ty−∆y + Ay = 0, in Ω ⊂ Rd

y = 1Γ0 Bv, on ∂Ω.

EXAMPLE ON A 2D RECTANGLE DOMAIN

ΩγL γR

γT

γB(0, 0)

(0, b)

(a, 0)

Γ0

THEOREM (CASE Γ0 = γR ∪ γT )

If n = 2 :
The 2D system (SB) is approximately controllable if and only if

rank(B|AB) = 2.

For n ≥ 4 :
There exists a system (SB) satisfying the Kalman condition and which is not
approximately controllable. 33/ 42
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CONTROL OF PARABOLIC SYSTEMS
SOME MULTI-D RESULTS FOR BOUNDARY CONTROLS

(Benabdallah, B., González-Burgos, Olive, ’14)

(SB)

{
∂ty−∆y + Ay = 0, in Ω =]0, π[×Ω2

y = 1{0}×ω2 Bv, on ∂Ω.

ω2

Ω1 =]0, π[

Ω2

THEOREM

System (SB) is null-controllable at time T > 0 if
and only if

rank(Bk|AkBk| · · · |Ank−1
k Bk) = nk, ∀k ≥ 1.

REMARKS

Same condition as for the 1D case.

The controllability is independent of T .
MAIN IDEAS OF THE PROOF

Infinite dimensional variant of the Lebeau-Robbiano strategy in the variable
x2 ∈ Ω2 to deal with the subdomain ω2.
Each stage of the LR method requires to solve a 1D boundary control problem
in the variable x1 ∈ Ω1 whose cost CT needs to be estimated.
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

(SD)

 ∂ty− ∂2
x y +

(
0 0

a21(x) 0

)
y = 1ω

(
1
0

)
v, in ]0, 1[

y(t, 0) = y(t, 1) = 0,

If Supp(a21) ∩ ω 6= ∅ then (SD) is null-controllable at any time T > 0.
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

(SD)

 ∂ty− ∂2
x y +

(
0 0

a21(x) 0

)
y = 1ω

(
1
0

)
v, in ]0, 1[

y(t, 0) = y(t, 1) = 0,

If Supp(a21) ∩ ω = ∅ and a21 ≥ 0, a21 6= 0 then (SD) is null-controllable at any
time T > 0. (Rosier, de Teresa, ’11)

a21(x) = 1]0.7,0.9[(x),

ω =]0.1, 0.5[,

y0(x) =

(
sin(3πx)
sin(πx)10

)
.
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

(SD)

 ∂ty− ∂2
x y +

(
0 0

a21(x) 0

)
y = 1ω

(
1
0

)
v, in ]0, 1[

y(t, 0) = y(t, 1) = 0,

If Supp(a21) ∩ ω = ∅ and a21 changes its sign
There are some cases (depending on a21 and ω) that are not approximately
controllable.

(B., Olive, ’13)
It may exist a minimal time T0 > 0 for the null-controllability.

(Ammar-Khodja, Benabdallah, González-Burgos, de Teresa, ’14)
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

• Take a21 = (x− α)1O2 (B.-Olive, ’13)

Case 1 : ω

O2

(SD) is approximately controllable⇔ α 6∈ {αk}k, with αk =

∫
O2

xφ2
k dx∫

O2
φ2

k dx
.

Case 2 : ω ω

O2

(SD) is approximately controllable⇔
∫
O2

(x− α)φkφ̃k 6= 0, ∀k, s.t. αk = α.

Here φ̃k is the other solution of (−∂2
x − λk)φ̃k = 0.
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

• Take a21 = 1O2 − 1O′2 (B.-Olive, ’13)

O2 =]α− d, α[,O′2 =]α, α+ d[,

Case 1 : ω

O2 O′2
(SD) is approximately controllable⇔ d 6∈ Q and α 6∈ Q

Case 2 : ωω

O2 O′2
(SD) is approximately controllable⇔ d 6∈ Q

a21(x) =1]1/2−1/2
√

3,1/2[(x)

− 1]1/2,1/2+1/2
√

3[(x),

ω =]0.8, 1.0[,

y0(x) =

(
sin(πx)10

−2 sin(2πx)10

)
.

0.2 0.4 0.6 0.8 1

−0.1

−5 · 10−2

y1
y2
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

(SD)


∂ty− ∂2

x y +

 0 0 0
a21(x) 0 0
a31(x) 0 0

 y = 1ω

1
0
0

 v, in ]0, 1[

y(t, 0) = y(t, 1) = 0,
• Take a21 = 1O2 , a31 = 1O3 (B., Olive, ’13)

Case 1 : ω

O2

O3

(SD) is not approximately controllable

Case 2 : ω

O2

O3

(SD) is approximately controllable

Case 3 : ωω

O2

O3 O2 =]1/2− δ2, 1/2 + δ2[
O3 =]α3 − δ3, α3 + δ3[

(SD) is approximately controllable⇔ α3 6∈ Q and δ3 6∈ Q
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CONTROL OF PARABOLIC SYSTEMS
SOME 1D VARIABLE COEFFICIENTS SYSTEMS

(SD)


∂ty− ∂2

x y +

 0 0 0
a21(x) 0 0

0 a32(x) 0

 y = 1ω

1
0
0

 v, in ]0, 1[

y(t, 0) = y(t, 1) = 0,

• Take ω =]1/2, 1[

Case 1 : a21 = 1]0,1/2[ and a31 = 1

(SD) is approximately controllable

Case 2 : a21 = 1]0,1/2[ and a31 = x− 1/2

(SD) is not approximately controllable
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)

∂ty− ∂2
x y +

−2 −6 −2
−4 0 2
−2 3/2 −2

 y =

 0
0

1ω(x)

 v1 , y(t, 0) =

 v2

0
0


y0(x) =

(
sin(πx3),− sin(π(1− x)5), 0.5 sin(πx)

)t
, ω =]0.3, 0.7[,
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A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)

∂ty− ∂2
x y +

−2 −6 −2
−4 0 2
−2 3/2 −2

 y =

 0
0

1ω(x)

 v1 , y(t, 0) =

 v2

0
0


y0(x) =

(
sin(πx3),− sin(π(1− x)5), 0.5 sin(πx)

)t
, ω =]0.3, 0.7[,

10−3 10−2 10−1

10−1

101

103

105

107

109

slope −4

h

Cost of the control
Size of the target

Optimal energy

App. Cont. 6

Null Cont. 6

40/ 42
F. Boyer Controllability of parabolic PDEs



A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS

(Olive, ’14)

∂ty− ∂2
x y +

−2 −6 −2
−4 0 2
−2 3/2 −2

 y =

 0
0

1ω(x)

 v1 , y(t, 0) =

 v2

0
0


y0(x) =

(
sin(πx3),− sin(π(1− x)5), 0.5 sin(πx)

)t
, ω =]0.3, 0.7[,

40/ 42
F. Boyer Controllability of parabolic PDEs



A 3 EQUATION SYSTEM WITH MIXED BOUNDARY/DISTRIBUTED CONTROLS
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CONCLUSIONS
IS THERE ANY CONCLUSION ?

VARIOUS AVAILABLE METHODS WITH DIFFERENT STRENGTHS AND WEAKNESS

Moment methods (need precise spectral estimates)
Carleman methods

Parabolic Carleman⇒ direct proof of observability
Elliptic Carleman⇒ Lebeau-Robbiano strategy

Transmutation methods

Multiplier methods

...

VARIOUS RESULTS

Boundary and Distributed control problems may not be equivalent.

Unconditional approximate or null controllability.

Minimal null-control time (even T0 = +∞ !) could appear.

No general controllability criterion available even for linear systems
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CONCLUSIONS
IS THERE ANY CONCLUSION ?

NUMEROUS OPEN PROBLEMS

Boundary control of parabolic systems in multi-D
Time-space dependent coupling coefficients (even in 1D)
Different diffusion coefficients ∂ty−

(
∂x(γ1(x)∂x·) 0

0 ∂x(γ2(x)∂x·)

)
y + Ay = 1ωBv, in ]0, π[

y(t, 0) = y(t, π) = 0,

Higher-order coupling terms. Cross diffusions. ∂ty−
(

∆ α∆
0 ∆

)
y + Ay = 1ωBv, in Ω

y = 0, on ∂Ω

OTHER KIND OF PARABOLIC MODELS

Nonlinear systems
Navier-Stokes
Degenerate parabolic equations

OTHER KIND OF QUESTIONS

More detailed numerical analysis and adapted algorithms.
Optimal control / Constrained control.
Stabilization.
Inverse problems.
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