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Introduction

• Context: Kriging in the context of numerical modelization of physical systems.

• Goal: Calibration of a numerical model from physical experiments and prediction of undone experiments.

• Here, we focus on the problem of hyper-parameters estimation for the Kriging process.

Theoretical Framework

We study the following Kriging model:

Yobs(ω, x) =

q
∑

i=1

fi(x)βi(ω) + Z(ω, x) + ǫ

where:

• Yobs(ω, x) is the result of an experiment with experimental condition x.

•
∑q

i=1 fi(x)βi is the result of the simulation of the physical system with experimental condition x ∈ X , the numerical
model being calibrated with parameters (β1, ..., βq). We do the linear approximation of the numerical model.

• β(ω) is the correct parameter of the numerical model. In the frequentist case, β is an unknown constant and in the
Bayesian case, β follows the N (βprior, Qprior) law (known by expert judgement).

•Z(ω, x) is a centered Gaussian process on the set of experimental conditions X ∈ R
d (model error).

• ǫ is an iid Gaussian centered measure error.

When the covariance function of the measure and model error process Z + ǫ is known the tasks of calibration (estima-
tion of β) and prediction (prediction of Yobs(xnew) according to a set of observations) can be solved by the analytical
Kriging equations from the DACE methodology (e.g [SWN03]).
We are interested in finding a suitable covariance function for Z + ǫ in a parametric set {Cθ, θ ∈ Θ} of covariance
functions on X . We study the methods deriving from the maximum likelihood and the cross validation principle. We
focus on the latter in the next part.

Virtual Leave One Out

For n observations, the functional model becomes,

yobs = Hβ + z + ǫ

with yobs, z and ǫ n-dimensional Gaussian vectors and H an n× q matrix. When the covariance matrix R of z + ǫ is
known we have, for any i, the expression of the prediction ŷobs,i of yobs,i and predictive variance σ̂2

i according to the
vector yobs,−i of remaining observations. These scalar expressions can be gathered in a closed form matricial expression
(see [Dub83]).
In the frequentist framework we have:
with ǫloo,i = yobs,i − ŷobs,i, σ2

loo,i = σ̂2
i and Q− = R−1 − R−1H(HtR−1H)−1HtR−1,

ǫloo,i =
1

Q−
i,i

[

Q−yobs

]

i
and σ2

loo,i =
1

Q−
i,i

.

In the Bayesian framework, the formula becomes, with Q−1 = R−1 − R−1H(HtR−1H + Q−1
prior)

−1HtR−1:

ǫloo,i =
1

(Q−1)i,i

[

Q−1(yobs − Hβprior)
]

i
and σ2

loo,i =
1

(Q−1)i,i

Notice also that the frequentist formula is the limit of the Bayesian formula when Q−1
prior tends to zero. The principle

of LOO based methods (see e.g [ZW10]) is therefore the following:

• For θ ∈ Θ a vector of hyper-parameters for the covariance function, compute the covariance matrix Rθ of z + ǫ.

• Compute the vectors of LOO errors ǫloo,θ and predictive variance σ2
loo,θ using formulas above (one n × n matrix

inversion needed).

• ”Optimize” criteria based on these vectors w.r.t θ.

Mean square error MSE ||ǫloo,θ||
2 to minimize

Weighted mean square error WMSE 1
n

∑n
i=1

(ǫloo,θ,i)
2

σ2

loo,θ,i

to set close to 1

Confidence bounds reliability CBR 1
n

∑n
i=1 ♯

{

i||ǫloo,θ,i| ≤ tασloo,θ,i

}

to set close to prob. α

Log predictive probability LPP −
∑n

i=1

(

ln σ2
loo,θ,i +

(ǫloo,θ,i)
2

σ2

loo,θ,i

)

to maximize

Name, acronyms, expression and goal behavior for some LOO criteria. Criterion LPP is presented
in [RW06].

Illustation on 1D cases

Covariance hyper-parameter real estimated
model estimation method function hyper-parameter

σ2 exp
(

−
(x−y)2

l2c

)

RML smooth σ = 1.77 lc = 0.09

σ2 exp
(

−
(x−y)2

l2c

)

RLOO (MSE + WMSE) smooth σ = 1.76 lc = 0.09

σ2 exp
(

−
(

x−y
lc

)p)

RML piecewise affine σ = 0.23 lc = 0.078 p = 2

σ2 exp
(

−
(

x−y
lc

)p)

RLOO (MSE + WMSE) piecewise affine σ = 0.13 lc = 0.065 p = 2

Hyper-parameter estimation for different real functions and covariance models using Restricted
LOO and ML. For Resticted LOO we optimized both criteria MSE and WMSE.

Result of hyper-parameters estimation for calibration and prediction. Top: smooth real function.
Bot: piecewise affine real function.

Calibration of the thermohydraulic code FLICA-4

• Physical context: Thermohydraulic studies of nuclear reactors carried out at Nuclear Energy Division of CEA

• Dimensions and number of experiments: q = 2, d = 6, n = 108.

• From a statistical point of view: design of experiments is not space filling. ( 4 of the 6 experimental conditions take
less than 5 values and 2 of these 4 are quasi-linearly correlated).

• We place ourselves in the Bayesian case w.r.t the 2-dimensional parameter β of the code.

We present here the results obained with the isotropic exponential covariance model (most interesting results because
of the irregularity of the data).

Step 1: We see the behavior of 5 different methods on the 108 observations.

Method RML ML LOO(PLP) RLOO (MSE+WMSE) LOO (MSE+CBR)

σ̂ 686 664 760 3476 390

l̂c 0.011 0.01 0.013 0.59 0.50

Hyper-parameter estimation for different LOO and ML methods. We see 2 groups
of models proposed (one with lc ≈ 0.01 and one with lc ≈ 0.5). Between the 2
last columns, the criterion CBR seems preferable to us because of 2 outliers in
the experiments (close in distance but very different for experimental results).

Step 2: We keep the RML and LOO(MSE+CBR) methods and see the results they give on a
12-fold cross validation procedure.

Plot of the observations, predictions and confidence bounds for the 2 methods.
Left: Result of the RML algorithm: MSE = 6462, 93% of 90%-confidence bounds
are valid.Right: Result of the LOO(MSE+CBR) algorithm: MSE = 2812, 83%
of 90%-confidence bounds are valid.

Conclusion

•Cross validation is not much more costly than Maximum Likelihood. Good
results on this thermohydraulic code FLICA-4 case study.

•Questions: Which criterion to use? Which covariance model to choose?
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