VIRTUAL CROSS VALIDATION FOR NUMERICAL MODELS CALIBRATION

François Bachoc^{†‡}, Josselin Garnier[‡] and Jean-Marc Martinez[†]

†CEA-Saclay, DEN, DM2S, SFME, LGLS, F-91191 Gif-sur-Yvette, France.

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques Louis Lions Université Paris VII

Introduction

• Context: Kriging in the context of numerical modelization of physical systems.

Calibration of a numerical model from physical experiments and prediction of undone experiments. • Goal: • Here, we focus on the problem of hyper-parameters estimation for the Kriging process.

université

DIDEROT

PARIS

0.0 0.2 0.4 0.6 0.8

RMI – Bavesian predictio observation

Theoretical Framework

We study the following Kriging model:

$$Y_{obs}(\omega, x) = \sum_{i=1}^{q} f_i(x)\beta_i(\omega) + Z(\omega, x) + \epsilon$$

where:

- $Y_{obs}(\omega, x)$ is the result of an experiment with experimental condition x.
- $\sum_{i=1}^{q} f_i(x)\beta_i$ is the result of the simulation of the physical system with experimental condition $x \in \mathcal{X}$, the numerical model being calibrated with parameters $(\beta_1, ..., \beta_q)$. We do the linear approximation of the numerical model.
- $\beta(\omega)$ is the correct parameter of the numerical model. In the frequentist case, β is an unknown constant and in the Bayesian case, β follows the $\mathcal{N}(\beta_{prior}, Q_{prior})$ law (known by expert judgement).
- $Z(\omega, x)$ is a centered Gaussian process on the set of experimental conditions $\mathcal{X} \in \mathbb{R}^d$ (model error).
- ϵ is an *iid* Gaussian centered measure error

When the covariance function of the measure and model error process $Z + \epsilon$ is known the tasks of calibration (estimation of β) and prediction (prediction of $Y_{obs}(x_{new})$ according to a set of observations) can be solved by the analytical Kriging equations from the DACE methodology (e.g [SWN03]).

We are interested in finding a suitable covariance function for $Z + \epsilon$ in a parametric set $\{C_{\theta}, \theta \in \Theta\}$ of covariance functions on \mathcal{X} . We study the methods deriving from the maximum likelihood and the cross validation principle. We focus on the latter in the next part.

Virtual Leave One Out

For n observations, the functional model becomes,

 $y_{obs} = H\beta + z + \epsilon$

Result of hyper-parameters estimation for calibration and prediction. Top: smooth real function. Bot: piecewise affine real function.

Calibration of the thermohydraulic code FLICA-4

• Physical context: Thermohydraulic studies of nuclear reactors carried out at Nuclear Energy Division of CEA

• Dimensions and number of experiments: q = 2, d = 6, n = 108.

- From a statistical point of view: design of experiments is not space filling. (4 of the 6 experimental conditions take less than 5 values and 2 of these 4 are quasi-linearly correlated).
- We place ourselves in the Bayesian case w.r.t the 2-dimensional parameter β of the code.

We present here the results obtained with the isotropic exponential covariance model (most interesting results because of the irregularity of the data).

Step 1: We see the behavior of 5 different methods on the 108 observations.

Method	RML	ML	LOO(PLP)	RLOO (MSE+WMSE)	LOO (MSE+CBR)
$\hat{\sigma}$	686	664	760	3476	390
Î	0 011	0.01	0.013	0.59	0.50

with y_{obs} , z and ϵ n-dimensional Gaussian vectors and H an $n \times q$ matrix. When the covariance matrix R of $z + \epsilon$ is known we have, for any *i*, the expression of the prediction $\hat{y}_{obs,i}$ of $y_{obs,i}$ and predictive variance $\hat{\sigma}_i^2$ according to the vector $y_{obs,-i}$ of remaining observations. These scalar expressions can be gathered in a closed form matricial expression (see [Dub83]).

In the frequentist framework we have:

with $\epsilon_{loo,i} = y_{obs,i} - \hat{y}_{obs,i}, \sigma_{loo,i}^2 = \hat{\sigma}_i^2$ and $Q^- = R^{-1} - R^{-1}H(H^tR^{-1}H)^{-1}H^tR^{-1}$,

$$\epsilon_{loo,i} = \frac{1}{Q_{i,i}^{-}} \left[Q^{-} y_{obs} \right]_{i} \quad \text{and} \quad \sigma_{loo,i}^{2} = \frac{1}{Q_{i,i}^{-}}.$$

In the Bayesian framework, the formula becomes, with $Q^{-1} = R^{-1} - R^{-1}H(H^tR^{-1}H + Q_{prior}^{-1})^{-1}H^tR^{-1}$:

$$\epsilon_{loo,i} = \frac{1}{(Q^{-1})_{i,i}} \left[Q^{-1}(y_{obs} - H\beta_{prior}) \right]_i \quad \text{and} \quad \sigma_{loo,i}^2 = \frac{1}{(Q^{-1})_{i,i}}$$

Notice also that the frequentist formula is the limit of the Bayesian formula when Q_{prior}^{-1} tends to zero. The principle

of LOO based methods (see e.g [ZW10]) is therefore the following:

• For $\theta \in \Theta$ a vector of hyper-parameters for the covariance function, compute the covariance matrix R_{θ} of $z + \epsilon$. • Compute the vectors of LOO errors $\epsilon_{loo,\theta}$ and predictive variance $\sigma_{loo,\theta}^2$ using formulas above (one $n \times n$ matrix inversion needed).

• "Optimize" criteria based on these vectors w.r.t θ .

Mean square error	MSE	$\ \epsilon_{loo,\theta}\ ^2$	to minimize
Weighted mean square error	WMSE	$\frac{1}{n}\sum_{i=1}^{n}\frac{(\epsilon_{loo,\theta,i})^2}{\sigma_{loo,\theta,i}^2}$	to set close to 1
Confidence bounds reliability	CBR	$\frac{1}{n}\sum_{i=1}^{n} \sharp \left\{ i \epsilon_{loo,\theta,i} \le t_{\alpha} \sigma_{loo,\theta,i} \right\}$	to set close to prob. α
Log predictive probability	LPP	$-\sum_{i=1}^{n} \left(\ln \sigma_{l=1,0,i}^2 + \frac{(\epsilon_{loo,\theta,i})^2}{2} \right)$	to maximize

	$0 \cdot 0 1 0$	$0\mathbf{\cdot}00$	0.00	

Hyper-parameter estimation for different LOO and ML methods. We see 2 groups of models proposed (one with $l_c \approx 0.01$ and one with $l_c \approx 0.5$). Between the 2 last columns, the criterion CBR seems preferable to us because of 2 outliers in the experiments (close in distance but very different for experimental results).

Step 2: We keep the RML and LOO(MSE+CBR) methods and see the results they give on a 12-fold cross validation procedure.

Plot of the observations, predictions and confidence bounds for the 2 methods. Left: Result of the RML algorithm: $MSE = 646^2$, 93% of 90%-confidence bounds are valid.Right: Result of the LOO(MSE+CBR) algorithm: $MSE = 281^2$, 83% of 90%-confidence bounds are valid.

Conclusion

	-	Ŭ	$\iota o o, o, \iota$	$O_{loo} \theta_i$	
				100,0,1	

Name, acronyms, expression and goal behavior for some LOO criteria. Criterion LPP is presented in [RW06].

Illustation on 1D cases

Covariance	hyper-parameter	real	estimated	
model	estimation method	function	hyper-parameter	
$\sigma^2 \exp\left(-\frac{(x-y)^2}{l_c^2}\right)$	RML	smooth	$\sigma = 1.77 \ l_c = 0.09$	
$\sigma^2 \exp\left(-\frac{(x-y)^2}{l_c^2}\right)$	RLOO (MSE + WMSE)	smooth	$\sigma = 1.76 \ l_c = 0.09$	
$\sigma^2 \exp\left(-\left(\frac{x-y}{l_c}\right)^p\right)$	RML	piecewise affine	$\sigma = 0.23 \ l_c = 0.078 \ p = 2$	
$\sigma^2 \exp\left(-\left(\frac{x-y}{l_c}\right)^p\right)$	RLOO (MSE + WMSE)	piecewise affine	$\sigma = 0.13 \ l_c = 0.065 \ p = 2$	

Hyper-parameter estimation for different real functions and covariance models using Restricted LOO and ML. For Resticted LOO we optimized both criteria MSE and WMSE.

• Cross validation is not much more costly than Maximum Likelihood. Good results on this thermohydraulic code FLICA-4 case study.

• Questions: Which criterion to use? Which covariance model to choose?

References

- [Dub83] O. Dubrule. Cross validation of kriging in a unique neighborhood. *Mathematical Geology*, 15, 1983.
- [RW06] C.E. Rasmussen and C.K.I. Williams. *Gaussian Processes for Machine Learning*. the MIT Press, 2006.
- [SWN03] T.J. Santner, B.J. Williams, and W.I. Notz. The design and analysis of computer experiments. Springer, 2003.
- H. Zhang and Y. Wang. Kriging and cross validation for massive spatial data. *Environ*- $|\mathrm{ZW10}|$ metrics, 21, 2010.