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Introduction

e Context: Kriging in the context of numerical modelization of physical systems.

e Goal: Calibration of a numerical model from physical experiments and prediction of undone experiments.

e Here, we focus on the problem of hyper-parameters estimation for the Kriging process.

Theoretical Framework

We study the following Kriging model:

q
Yobs(wv x) = Z fz(x)ﬁz@d) + Z(w, x) T €
=1

where:
o Y 1o(w,x) is the result of an experiment with experimental condition x.

o Z;’]:l fi(x)B; is the result of the simulation of the physical system with experimental condition x € X, the numerical
model being calibrated with parameters (31, ..., 8;). We do the linear approximation of the numerical model.

e 5(w) is the correct parameter of the numerical model. In the frequentist case, 8 is an unknown constant and in the
Bayesian case, 3 follows the N (8,0, @prior) law (known by expert judgement).

e Z(w,x) is a centered Gaussian process on the set of experimental conditions X € RY (model error).
e ¢ is an 1zd Gaussian centered measure error.

When the covariance function of the measure and model error process Z + € is known the tasks of calibration (estima-
tion of ) and prediction (prediction of Y, p.(xnew) according to a set of observations) can be solved by the analytical
Kriging equations from the DACE methodology (e.g [SWNO03]).

We are interested in finding a suitable covariance function for Z + € in a parametric set {Cy, 0 € ©} of covariance
functions on X. We study the methods deriving from the maximum likelihood and the cross validation principle. We
focus on the latter in the next part.

Virtual Leave One Out

For n observations, the functional model becomes,

yobSZH6‘|’Z+€

with y,p¢, 2 and € n-dimensional Gaussian vectors and H an n X ¢ matrix. When the covariance matrix R of z 4 € is
known we have, for any ¢, the expression of the prediction gy ; of yyps ; and predictive variance (72-2 according to the
vector Yops —; Of remaining observations. These scalar expressions can be gathered in a closed form matricial expression
(see |Dub83J).

In the frequentist framework we have:

With €005 = Yobs.i — Yobs.is Oy = 07 and Q7 = RV — RTVH(H'R™'H) " H! R,
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In the Bayesian framework, the formula becomes, with Q' =R~ — R~ H(H'R™"H + me o) H'R™
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Notice also that the frequentist formula is the limit of the Bayesian formula when QZ;?}&' . tends to zero. The principle

of LOO based methods (see e.g [ZW10]) is therefore the following:

e For 6 € O a vector of hyper-parameters for the covariance function, compute the covariance matrix Ry of z + €.

e Compute the vectors of LOO errors €, g and predictive variance OZZOO g using formulas above (one n X n matrix

inversion needed).

e "Optimize”’ criteria based on these vectors w.r.t 6.

Mean square error MSE €006 B to minimize
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Weighted mean square error | WMSE %2?21 <ZOQO’9’Z) to set close to 1
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Log predictive probability | LPP | —>71 (111 0120 o0q Tt <€Z%0’9’Z> to maximize
7 loo,0,i
Name, acronyms, expression and goal behavior for some LOO criteria. Criterion LPP is presented
in [RWO06].
[llustation on 1D cases
Covariance hyper-parameter real estimated
model estimation method function hyper-parameter
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o2 exp (—(:Cl—Qy)> RML smooth oc=1771.=0.09
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o2 exp (— (xl y) ) RML piecewise affine|oc = 0.23 [, = 0.078 p = 2
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Hyper-parameter estimation for different real functions and covariance models using Restricted
LOO and ML. For Resticted LOO we optimized both criteria MSE and WMSE.
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Result of hyper-parameters estimation for calibration and prediction. Top: smooth real function.
Bot: piecewise afline real function.

Calibration of the thermohydraulic code FLICA-4

e Physical context: Thermohydraulic studies of nuclear reactors carried out at Nuclear Energy Division of CEA
e Dimensions and number of experiments: ¢ = 2, d = 6, n = 108.

e [rom a statistical point of view: design of experiments is not space filling. ( 4 of the 6 experimental conditions take
less than 5 values and 2 of these 4 are quasi-linearly correlated).

e We place ourselves in the Bayesian case w.r.t the 2-dimensional parameter 5 of the code.

We present here the results obained with the isotropic exponential covariance model (most interesting results because
of the irregularity of the data).

Step 1: We see the behavior of 5 different methods on the 108 observations.

Method | RML| ML 'LOO(PLP) [ RLOO (MSE+WMSE) LOO (MSE+CBR)
686 | 664 760 3476 390

0.01170.01]  0.013 0.59 0.50

Hyper-parameter estimation for different LOO and ML methods. We see 2 groups
of models proposed (one with [. =~ 0.01 and one with [. ~ 0.5). Between the 2
last columns, the criterion C' BR seems preferable to us because of 2 outliers in
the experiments (close in distance but very different for experimental results).
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Step 2: We keep the RML and LOO(MSE+CBR) methods and see the results they give on a
12-fold cross validation procedure.

RML Results on a 12 Fold CV RLOO (MSE + CBR) Results on a 12 Fold CV
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Plot of the observations, predictions and confidence bounds for the 2 methods.
Left: Result of the RML algorithm: MSE = 6462, 93% of 90%-confidence bounds

are valid.Right: Result of the LOO(MSE+CBR) algorithm: MSE = 281%, 83%
of 90%-confidence bounds are valid.

Conclusion

e Cross validation i1s not much more costly than Maximum Likelihood. Good

results on this thermohydraulic code FLICA-4 case study.

e Questions: Which criterion to use? Which covariance model to choose?
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