
Improvement of code behaviour in a design of
experiments by metamodeling

François Bachoc∗†

Institut de Mathématiques de Toulouse

Karim Ammar

CEA-Saclay, DEN, DM2S, SERMA, LPEC, F-91191 Gif-Sur-Yvette, France

Jean-Marc Martinez

CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France

Total number of pages: 59

Total number of tables: 6

Total number of figures: 10

∗Corresponding author. E-mail: francois.bachoc@math.univ-toulouse.fr Address: In-
stitut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne,
31062 TOULOUSE Cedex 9, France. Phone: 0033 5 61 55 69 16
†The author conducted a part of the research related to this manuscript when he was

affiliated first to CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-Sur-Yvette, France
and then to the University of Vienna.

1

Improvement of code behaviour in a design of

experiments by metamodeling

François Bachoc (IMT), Karim Ammar (CEA), Jean-Marc Martinez (CEA)

Abstract

It is now common practice in nuclear engineering to base extensive

studies on numerical computer models. These studies require to run

computer codes in potentially thousands of numerical configurations

and without expert individual controls on the computational and phys-

ical aspects of each simulations. In this paper, we compare different

statistical metamodeling techniques and show how metamodels can

help to improve the global behaviour of codes in these extensive stud-

ies. We consider the metamodeling of the Germinal thermalmechan-

ical code by Kriging, kernel regression and neural networks. Kriging

provides the most accurate predictions while neural networks yield the

fastest metamodel functions. All three metamodels can conveniently

detect strong computation failures. It is however more challenging to

detect code instabilities, that is groups of computations that are all

valid, but numerically inconsistent with one another. For code insta-

bility detection, we find that Kriging provides an interesting tool.

Keywords: computer models, metamodeling, code instabilities

2

1 Introduction

Physical models and corresponding computer codes enable one to evaluate

nuclear reactor performances within a computation time of a few hours (see

e.g. [1, 2]). However, to be relevant, an optimization or a propagation of

uncertainty study requires the numerical evaluations of a significant number

of reactor configurations (for instance several million in optimization [3]).

Because of the current limitation of computing resources, these procedures

can not be directly applied to computer codes. Hence, metamodels that

provide a computationally cheap approximation of the output of computer

codes are commonly used. Metamodels are constructed from a learning base

of code inputs and outputs, the generation of which is called a design of

experiments. In this paper, we give a detailed analysis of the metamodeling

process for the Germinal V1 thermomechanical code [4]. [Note that the

metamodels of the Germinal code are typically intended to be used in an

optimization process applied to a sodium cooled fast reactor [5].]

Different metamodeling methods (neural networks, Kriging and kernel

methods) are analyzed and benchmarked in this paper. Furthermore, as

detailed below, metamodels can not only predict computer code results but

also contribute to the improvement of the behaviour of these codes during

the design of experiments.

To understand this last point it is important to highlight that it is chal-

lenging to automatically carry out several thousands of code simulations, as

is typically the case in a design of experiments. Indeed current codes in

nuclear engineering are complex:

3

• The code inputs and outputs are not simple scalars. For instance, it

may be necessary to generate a 3D geometry and its associated meshing

(see for instance http://www.salome-platform.org).

• It requires significant expertise to assess or anticipate the numerical

validity of a calculation. Indeed, many different convergence criteria

need to be taken into account. A code output file may include several

indications such as “error” or “warning”, whose impact is difficult to

assess.

• There are a large number of possible calculation options that can be

mixed.

Germinal V1 is one of the multiple codes designed in the 1990s, developed

to be launched manually and on a case-by-case basis. That is, for each run, an

expert generates the input files and checks the consistency of the code results.

However, in a design of experiments, many code runs need to be carried

out, each of which can not be managed manually. It is hence necessary to

develop a “code manager” or workflow coordinator, as has become a standard

practice for large scale computer experiments (see e.g. [6]), and as shown in

Figure 1. In order to explain the code manager, consider a parametric study

where each simulation is characterized by a finite number of scalar parameters

(see Section 2 for those considered in this paper). Then, the code manager

consists first of a preprocessor which generates the code input files from the

parametric variables (for example, it may automatically construct an axial

mesh from a global variable like a height). After the code execution, the code

manager also incorporates a postprocessor which checks for the occurrence

4

Figure 1: Illustration of the code manager. This schematic code manager
architecture is now largely used to handle large scale computer experiments.
In a parametric study, all the code simulations are characterized by a finite-
dimensional vector x of scalar parameters. The code manager first consists of
a preprocessor, which generates code inputs from these parameters. After the
simulation, the code manager incorporates a postprocessor, which checks for
the occurrence of computational failure and then condenses the code output
in some variables of interest.

of computational failures and then condenses the code output file in some

variables of interest. The construction of an efficient postprocessor, able to

correctly interpret all the output messages produced by the code, is a real

challenge. Indeed, when many simulations are carried out for many different

inputs, a very large number of failure scenarios can occur, not all of which

can be anticipated.

In this paper, we consider a parametric study in which the Germinal code

is used to evaluate the thermalmechanical response of a nuclear fuel pin to

irradiation. Each simulation is characterized by 11 parameters (given in Sec-

tion 2), and we consider a single scalar variable of interest for the simulation

results. Hence, the code manager is represented by a function fcode from R11

to R that the metamodels under consideration aim at approximating. In the

sequel, we refer to this function as the code function.

5

We compare the metamodels obtained from neural networks, Kriging and

kernel methods. We find that neural networks require the shortest computa-

tion time for metamodel evaluation, while Kriging provides the most accurate

predictions. Kernel methods, and most of all Kriging, provide valuable ac-

curacy indicators for their predictions.

We also analyze several issues related to the construction of the code

manager. We show that the postprocessor can fail to detect computation

failures, and that the preprocessor can generate code input files as a function

of the simulation parameters in an inconsistent way. This preprocessor issue

yields code instabilities, that is, groups of computations with similar input

conditions but overly different output values.

The issue with the postprocessor is, as we show, well solved by the three

metamodels. Indeed, their prediction errors for the simulations in the learn-

ing base can be investigated, and a few outlier computations can be flagged.

It is then possible to manually check these computations and to confirm

their numerical failures. We also find that the methodology of [7], with the

probabilistic setting of Kriging, works very well for detecting computational

failures. The reference [8] is also related to computation failure detection,

but it is not clear to us how it can directly be used with the probabilistic

setting of Kriging. Indeed, roughly speaking, in the framework of [8], each

computation/measurement is intended to estimate a unique common under-

lying value, while in the context of Kriging, the different computation results

are intended to take different values.

On the other hand, code instabilities are difficult to handle and we find

that Kriging provides interesting tools to tackle them. Indeed, the estimated

6

nugget effect in the Kriging metamodel (to be defined in Section 3.1) is a

direct quantifier of small scale variations of the Germinal code function. This

nugget effect turns out to be large in the first learning base we have consid-

ered. As a consequence, we have investigated the preprocessor behaviour,

and we have found and solved an important input file generation issue. This

improvement of the preprocessor results in an updated version of the code

manager, from which we have generated an updated Germinal simulation

base. We find that the three metamodels are more accurate for predicting

the updated Germinal computations. Furthermore, the estimated nugget ef-

fect for Kriging decreases between the original and updated computations,

confirming the improvement of the code manager. In light of this discussion,

we believe that the estimated nugget effect of Kriging is a reliable quantifier

of the global order of magnitude of the code instabilities.

The rest of the paper is organized as follows. In Section 2, we present

the parametric study for the Germinal code. In Section 3, we introduce the

Kriging, kernel and neural network metamodels. In Section 4, we discuss the

prediction results of the metamodels for the original Germinal computations.

In Section 5, we show how the metamodels, and in particular Kriging, help in

detecting outlier computations and code instabilities. In Section 6, we present

the resulting prediction improvement of the metamodels for the updated

computations. In Section 7, we study the influence of the number of available

computations on our results. In Section 8, we provide complementary results

and discussion on outlier detection and numerical instabilities.

Finally, it should be noted that, in this paper, we do not discuss the

important problem of code validation. That is, we aim at predicting the

7

output of the Germinal code, without assessing if the picture displayed by

this output is representative of the underlying physical reality. We refer

to [9, 7] for references on code validation. We remark nevertheless that

constructing an accurate metamodel of a code is also useful for its validation

(see e.g. [10] for the Kriging metamodel).

2 Presentation of the parametric study for

the Germinal code

2.1 Fuel pin thermomechanical simulation with the Ger-

minal code

It is well known that material properties evolve when they are submitted

to high neutron flux. In particular, in fast breeding reactors, irradiation can

have a strong impact on fuel pin thermomechanical properties. The Germinal

code V1 [4] can be used to simulate the temporal evolution of these thermo-

mechanical properties, resulting from irradiation. This code implements a

simplified fuel description model based on mono-group neutron flux, power

and irradiation damage distribution as well as sodium inlet temperature and

mass flow per pin. In this paper, the variable of interest we focus on is the

fusion margin, which is the difference between the fuel melting temperature

and the maximal fuel temperature obtained throughout the Germinal simu-

lation of the fuel life. [We remark that, in the parametric study described

below, the fusion margin is not an affine transformation of the maximal fuel

temperature. Indeed, the fuel melting temperature depends non-linearly on

8

some of the simulation parameters (as it is impacted by the irradiation con-

ditions). Hence, it is not a similar problem to predict the fusion margin or

the maximal fuel temperature. We focus on the fusion margin because of its

convenient interpretation as a safety criterion, as discussed in Section 4.2.]

The fusion margin prediction by metamodels is particularly challenging.

Indeed, the computation of the fuel temperature depends on the fuel conduc-

tivity and on the heat transfer coefficients between the fuel pellets and the

cladding. These coefficients depend on the irradiation in a strong non-linear

manner. Hence, in the parametric study described below, the fusion margin

is definitely a non-linear function of the simulation parameters. Note also

that, in a context of multi-physical optimization (neutron physics, thermal-

hydraulics and thermomechanics) for fast reactor core (using the TRIAD

platform [5]), we have built neural network metamodels for a large number

of variables of interests of the Germinal code. We have found that the fusion

margin variable was the most difficult to predict by the neural networks.

Finally, the fusion margin is interesting in that it characterizes two very

different physical regimes. When it is large and positive, the fuel pin me-

chanical properties do not change throughout the simulation. When it is

small, or negative, they do, which results in much more involved physical

phenomena, that are challenging to model numerically. As a result, the fu-

sion margin is generally more difficult to predict by metamodels when it is

small or negative.

9

2.2 The parametric study

We are interested in a parametric study where a Germinal simulation is

characterized by 11 scalar parameters x1, ..., x11 defined as follows. [These

parameters are used by the preprocessor to generate input files for the Ger-

minal code, see Figure 1.]

• The parameter x1 is the cycle length in the fuel pin simulation.

• The parameters x2, ..., x7 characterize the nature of the fuel pin. The

parameter x2 is the plutonium concentration, x3 is the diameter of the

fuel hole, x4 is the external diameter of the clad, x5 is the thickness of

the gap between the fuel and the clad, x6 is the thickness of the clad

and x7 is the height of the fuel pin. Figure 2 provides a visualization

of x3 to x6.

• The parameters x8, x9, x10 characterize the power map in the fuel pin,

with x8 the average power, x9 the axial form factor and x10 the power

shift due to the fuel depletion. [Note that, in the case of multi-physics

coupling [5, 11], x9, x10 and x11 would be obtained from a neutron-

physics simulation.]

• The parameter x11 is the volume of expansion for fission gas.

When building the learning base for the metamodels, we consider an hy-

percubic domain for the 11 input variables, characterized by 11 minimal

and maximal values, summarized in Table I. The learning base is then

obtained by first generating a LHS-Maximin [12] set of input parameters

10

Figure 2: A schematic representation of a fuel pin and a fuel assembly in
nuclear fast-neutron reactors.

x = (x1, ..., x11) on this hypercubic domain, and then removing some of

them that can be shown to result in infeasible fuel pins prior to carrying

out the corresponding Germinal simulation. The resulting learning base un-

der consideration in this paper includes 3807 input vectors x. We write

y1 = fcode(x
(1)), ..., yn = fcode(x

(n)) for the n = 3807 computation inputs and

outputs.

3 Presentation of the metamodels

3.1 Kriging

Kriging is widely used in nuclear engineering, for instance for metamodeling

of computer codes [13] or for improving their predictions using experimental

results [14]. In this paper, we use a standard implementation of Kriging [12,

15, 16], adjusted to take into account the large number of simulation results

(3807). Roughly speaking, the implementation of the Kriging metamodel

11

parameter x1: cycle x2: plutonium x3: hole x4: external x5: fuel x6: clad

length content diameter clad diameter gap thickness

(EFPD) (% atomic) (mm) (mm) (mm) (mm)

min 360 10 0.125 6.2 0.1 0.5

max 440 30 3 12.8 0.2 0.6

parameter x7: pin x8: average x9: axial x10: power x11: volume

height pin power form factor shift of expansion

(mm) (W/cm) (cm3)

min 60 150 1 0.8 32

max 160 440 1.6 1.2 94

Table I: Minima and maxima of the intervals of variations for the 11 simula-
tion parameters in the parametric study. [EFPD stands for Equivalent Full
Power Day.]

12

is decomposed into a covariance parameter estimation step and a prediction

step. For the estimation step, we use only a subset of 1000 simulation results,

to obtain manageable computation time, while for the prediction step we use

the totality of the 3807 simulation results.

Gaussian process model. The Kriging metamodel is based on modeling

a deterministic computer code function fcode : D ⊂ Rd → R (where in Section

2, d = 11) as a realization of a Gaussian process Y on D. That is, we assume,

for x ∈ D,

fcode(x) = Y (ω,x),

where ω is a fixed element in a probability space Ω. Hence, the paradigm

is that, although the computer code function is fixed, the value fcode(x)

remains unknown to the user as long as a computation is not carried out for

the conditions x. The Kriging metamodel thus follows a Bayesian approach,

by considering the unknown fcode(x) as the realization of a Gaussian variable

Y (x) (see also the presentation in [14]).

In this paper, we assume that the Gaussian process Y has a zero mean

function and is hence characterized by its covariance function C : D×D → R.

In general, this covariance function is assumed to be continuous, so that the

Gaussian process Y yields continuous realizations, which is consistent with

the fact that the code function fcode is continuous, or at least that a small

variation in the condition x causes only a small change in the computed

value fcode(x). Nevertheless, the Germinal code function studied in this

paper is subject to small scale variations, meaning that a small variation in

x can cause a significant change in fcode(x), because of the code instabilities.

13

Hence, we assume that

C(x(a),x(b)) = σ2
0C̄(x(a),x(b)) + δ201{x(a) = x(b)}, (1)

with 1{.} the indicator function, where C̄ is a continuous correlation function

and with σ2
0 > 0 and δ20 ≥ 0. Thus, Y can be written

Y (x) = Yc(x) + Yd(x), (2)

where Yc(x) is a continuous Gaussian process with covariance function σ2
0C̄(x(a),x(b))

and Yd(x) is a discontinuous Gaussian process with covariance function δ201{x(a) =

x(b)}. The term δ201{x(a) = x(b)} is referred to as a nugget effect or nugget

variance [17].

Covariance parameter estimation. Most classically in Kriging, the co-

variance function C is estimated from the computations y1 = fcode(x
(1)), ..., yn =

fcode(x
(n)) in the learning base. In this paper, we estimate the covariance

function within the parametric set

C =
{
σ2
[
C̄`(x

(a) − x(b)) + α1{x(a) = x(b)}
]
, σ > 0, ` ∈ (0,+∞)d, α ≥ 0

}
,

(3)

where C̄`(h) is the Matérn 3/2 correlation function,

C̄`(h) = (1 +
√

6|h|`) exp (−
√

6|h|`),

with |h|` =
√∑d

i=1
h2i
`2i

.

14

The Matérn 3/2 correlation function C̄`(h) is one of the most commonly

used covariance functions. It is stationary, that is C̄`(x
(a) − x(b)) depends

on x(a) and x(b) only through their difference. Furthermore, for every `,

this correlation function yields Gaussian process realizations that are exactly

one time continuously differentiable (see for instance [15]). The component

`i can be seen as a correlation length in the i-th dimension. When `i is

small, the condition xi is particularly important for the Gaussian process

Y (x). Conversely, if `i is very large, then the realizations of Y (x) are almost

independent of xi.

The covariance parameters σ2, `, α are estimated from the learning base.

In this paper, we address Maximum Likelihood estimation (ML) which is the

most standard method. [We note that other methods can also be employed,

like Cross Validation [16, 18, 19].] Let, R`,α be the n × n matrix defined

by (R`,α)i,j = C̄`(x
(i) − x(j)) + α1{x(i) = x(j)}. Let y be the n × 1 vector

(y1, ..., yn)t. Then, the Maximum Likelihood estimator of σ2, `, α is defined

by

(ˆ̀, α̂) ∈ arg min
(`,α)

log

(
1

n
ytR−1`,αy

)
+

1

n
log(|R`,α|), (4)

where |.| is the determinant, and by

σ̂2 =
1

n
ytR−1ˆ̀,α̂

y. (5)

The nugget variance δ20 in (1) is estimated by δ̂2 = σ̂2α̂. Note that the

advantage of the parameterization with σ2, `, α in (3), compared to a param-

eterization with σ2, `, δ2 as in (1), is that it provides an explicit expression

15

for σ̂2.

Numerical optimization of the likelihood. The optimization problem

(4) is relatively challenging in our case, since the optimization space has

dimension d + 1 = 12 and since n is around 3800 which makes it compu-

tationally costly to evaluate the determinant and to solve the linear system

in (4). [In our investigations, inverting a 3800 × 3800 matrix takes several

minutes on a personal computer.]

Hence, we evaluate ˆ̀ and α̂ in two steps. First, we select a random

subsample of the learning base, of size 1000 and minimize the equivalent of

the function (4), when the learning base is equal to this random subsample.

We let ˆ̀ and α̃ be the outcome of this first step.

For the second, step, recall that Rˆ̀,α̃ is the n × n matrix defined by

(Rˆ̀,α̃)i,j = C̄ˆ̀(x(i) −x(j)) + α̃1{x(i) = x(j)}. Consider a SVD decomposition

of this matrix, Rˆ̀,α̃ = USUt, with U of size n × n so that UUt = In and

S a diagonal matrix with diagonal elements s1 ≥ ... ≥ sn > 0. Then, let Lα

be the function in (4) evaluated at ˆ̀, α. This function can be written, with

vi = (Uty)i,

Lα = log

(
1

n

n∑
i=1

v2i
si + α− α̃

)
+

1

n

n∑
i=1

log (si + α− α̃) , (6)

which is computed with negligible computational cost. Hence, we can plot

the graph of Lα and compute α̂ as its minimizer. Finally, σ̂2 is computed by

(5).

Hence, in this two-step optimization procedure, only the first step entails

16

an important computational cost. The second step is carried out in negligible

time and provides an estimation of the nugget component α that is more

accurate since all the elements of the learning base are used.

Prediction. Once the estimators σ̂2, ˆ̀, α̂ are computed, the standard “plug-

in” approach [15] is to assume that the covariance function is known and equal

to that obtained from the estimators, that is

C(x(a),x(b)) = σ̂2
[
C̄ˆ̀(x

(a) − x(b)) + α̂1{x(a) = x(b)}
]
.

We make this assumption, which enables one to construct the Kriging meta-

model of fcode as follows. Let R be a shorthand for Rˆ̀,α̂. Let, for x ∈ D,

r(x) be the n× 1 vector defined by (r(x))i = C̄ˆ̀(x− x(i)) + α̂1{x = x(i)}.

Then, conditionally to y, Y (x) follows a Gaussian distribution with mean

f̂code(x) = r(x)tR−1y, (7)

and variance

σ̂2
code(x) = σ̂2

(
1 + α̂− r(x)tR−1r(x)

)
. (8)

In the above display, f̂code(x) is the metamodel function of fcode, that can

be compared with those obtained from the artificial neural network and kernel

regression methods. The quantity σ̂2
code(x), that we call the predictive vari-

ance, is however specific to Kriging. It is one of the benefits of considering a

Gaussian process model for fcode. The predictive variance can be used, for in-

stance, to construct the confidence interval [f̂code(x)−1.65σ̂code(x), f̂code(x)+

17

1.65σ̂code(x)] that contains Y (x) with probability 0.9. We remark that the

quantities (7) and (8) are computed from all of the n = 3807 simulation

results, so that the Kriging metamodel is in fine built from the totality of

the learning base.

Impact of the nugget parameter δ̂2. Note that, for any x which does

not belong to {x(1), ...,x(n)}, we have with the notation of (2), and where E

denotes the expected value,

σ̂2
code(x) = E

(
(f̂code(x)− Yc(x))2

)
+E(Yd(x)2) = E

(
(f̂code(x)− Yc(x))2

)
+δ̂2.

(9)

The display (9) follows from (8) by noting that E
(

(f̂code(x)− Yc(x))2
)

=

σ̂2 (1− r(x)tR−1r(x)) and that E(Yd(x)2) = σ̂2α̂ = δ̂2.

The display (9) is interpreted as follows: the value of the discontinu-

ous Gaussian process Yd(x) in (2) can not be inferred from the values of

Yd(x
(1)), ..., Yd(x

(n)) (predicting Yd(x) by 0 is in fact the best possibility).

Hence, the prediction mean square error σ̂2
code(x) for Y (x) is larger than δ̂2,

and the difference between σ̂2
code(x) and δ̂2 corresponds to the prediction error

for Yc(x), which is the continuous component of Y (x). Thus, in practice, the

square prediction error for the code function fcode(x) should be on average

larger than δ̂2.

In this paper, we attach a special importance to the value of δ̂2 since it

is an estimate of the order of magnitude of the small scale variations of the

Germinal code. Figure 6 provides an illustration of these variations. It is, in

our opinion, particularly important in practice to be aware of the existence of

18

these variations, and to decrease their order of magnitude whenever possible.

Indeed, these variations directly go against the principle according to which

similar simulation parameters yield similar outputs, so that they cause an

increase of the metamodel prediction errors. It is necessary to include δ̂2 =

σ̂2α̂ in the computation of σ̂2
code(x), see the discussion of Table III

Virtual cross validation formulas. We conclude this presentation of

Kriging with the virtual cross validation formulas [18, 20]. Consider σ̂2, ˆ̀, α̂

to be estimated from the learning base y1 = fcode(x
(1)), ..., yn = fcode(x

(n))

and fixed. Then, let f̂code,LOO(x(i)) and σ̂2
code,LOO(x(i)) be the Leave-One-Out

(LOO) prediction and predictive variance for fcode(x
(i)), that would be ob-

tained from (7) and (8) if x(i) and fcode(x
(i)) were removed from the learning

base. Then we have, for 1 ≤ i ≤ n,

fcode(x
(i))− f̂code,LOO(x(i)) =

1

(R−1)i,i
(R−1y)i (10)

and

σ̂2
code,LOO(x(i)) =

1

(R−1)i,i
. (11)

Hence, the n LOO errors and predictive variances can be computed by means

of a single n × n matrix inversion, while a naive approach, consisting in

evaluating n different versions of (7) and (8), would necessitate to solve n

linear systems of size (n− 1)× (n− 1).

19

3.2 Kernel methods

Kernel methods [21, 22] are frequently used for statistical learning and meta-

modeling. The kernel metamodel eventually yields prediction formula similar

to Kriging (compare (7) and (13)), although the philosophy is different.

Kernel methods, for inputs in a domainD ⊂ Rd, are based on a symmetric

nonnegative definite kernel function k : (x,y) ∈ D2 → R, see [22]. This

kernel function defines a Hilbert space Hk of functions from D to R, that is

called the Reproducing Kernel Hilbert Space (RKHS) corresponding to the

kernel function (see [22] for details).

Consider now the learning base (x(1), y1 = fcode(x
(1))), ..., (x(n), yn =

fcode(x
(n))). Then, for each λ ≥ 0, that we call the regularity parameter,

we can consider the function f̂λ ∈ Hk which solves

f̂λ = arg min
f∈Hk

1

n

n∑
i=1

(yi − f(xi))
2 + λ||f ||2Hk

, (12)

where ||f ||Hk
is a regularization term, see [22]. Thus, the aim is that the

function f̂λ both reproduce well the observations yi and be regular, in order

to prevent overfitting. Increasing the value of λ prevents overfitting all the

more.

It turns out that the abstract optimization problem (12) has an explicit

solution that is computable in practice. Let Rλ be the n× n matrix defined

by (Rλ)i,j = k(x(i),x(j)) + nλ1{i = j}, let r(x) be the n× 1 vector defined

by r(x)i = k(x(i),x) and let y = (y1, ..., yn)t. Then, we have

f̂λ(x) = r(x)tR−1λ y. (13)

20

Note that, when λ = 0 and R0 is of full rank, we obtain an exact inter-

polation: f̂0(x
(i)) = yi. Nevertheless, using a non-zero λ enables us to deal

with the small scale variations of the Germinal code (similarly to the nugget

effect of the Kriging metamodel). Note also that calculating R−1λ y is more

convenient numerically when λ is large.

We select the value of the regularity parameter λ by Generalized Cross

Validation (GCV) [23]. The selected λ is given by

λGCV = arg min
λ

||R−1λ y||
Trace(R−1λ)

, (14)

where ||.|| is the Euclidean norm. Hence, the final kernel metamodel function

is f̂code = f̂λGCV
. Note that the minimization problem (14) entails a negligible

computation cost, since a SVD decomposition can be used, similarly to (6)

for Kriging.

Because the prediction formula (7) and (13) are identical, there exist

virtual LOO formulas for kernel methods, that are similar to those of Kriging

in (10). By letting R be RλGCV
, we have

fcode(x
(i))− f̂code,LOO(x(i)) =

1

(R−1)i,i
(R−1y)i, (15)

where f̂code,LOO(x(i)) is defined as in (10) but for the kernel metamodel.

Note that, since kernel methods are not based on a probabilistic model,

there are no error indicators similar to σ̂2
code(x) in (8) for Kriging.

In this paper, the kernel function k we consider is defined by k(x,y) =

21

∏d
i=1 k̄(xi, yi) with

k̄(x, y) =
m∑
l=0

1

(l!)2
Bl(x)Bl(y) +

(−1)m+1

(2m)!
B2m(|x− y|), (16)

where Bl is the l-th Bernoulli polynomial. The benefit of this kernel function

is that the corresponding RKHSHk consists in the Sobolev space of functions

that are m times differentiable [21, 24]. Hence m can be chosen according to

the smoothness we require from the metamodel function. We choose m = 2

in this paper, as it provides the minimal value for (14).

3.3 Artificial neural networks

Artificial Neural Networks (ANNs) are known as efficient modelling tools to

approximate nonlinear functions with the fundamental property of parsimo-

nious approximation [25]. We carried out all computations for the neural

networks with the uncertainty quantification platform URANIE [26]. We

consider the Multi Layer Perceptron (MLP) [27] with one hidden layer and

one output. The MLP consists of simple connections between neurons and

is characterized by the number of hidden neurons and the weights of their

corresponding connections.

For a given number of hidden neurons, the weights are fitted by using

the standard back-propagation procedure [28]. This procedure is repeated

with different weight initializations, and the eventual values of the weights

are selected by cross validation. Finally, the number of hidden neurons is

selected by a minimization of the RMSE (Root Mean Square Error) on the

full learning data set.

22

3.4 Computation times

The Kriging and neural network metamodels are used in two steps. First,

in what we call the construction phase, the neural network structure and

the covariance parameters for Kriging are optimized (Sections 3.1 and 3.3).

This first step yields the metamodel function f̂code. Note that, beneficially,

the construction phase is not needed for kernel regression. Second, in what

we call the evaluation phase, for many inputs x, the metamodel predictions

f̂code(x) are calculated.

With the implementation we used, for the learning base under considera-

tion, and on a personal computer, the computation time for the construction

phase is around five to ten hours for both Kriging and neural networks. Since

this typically takes place only once, this time is not critical. The evaluation

time is, on average, 0.00015 seconds per input x for the neural networks and

0.004 seconds for Kriging and kernel methods. Hence, neural network eval-

uation is faster, which is explained because the evaluation cost of the neural

network metamodel function is proportional to the number of hidden neu-

rons, while those of the Kriging or kernel regression metamodel functions are

proportional to n. In our case, n is much larger than the number of hidden

neurons. For the three metamodels, the evaluation times are not prohibitive

for using the metamodel functions in an optimization framework, like in [5],

where a few million of metamodel evaluations would be required.

23

σ̂(◦) ˆ̀
1

ˆ̀
2

ˆ̀
3

ˆ̀
4

ˆ̀
5

ˆ̀
6

ˆ̀
7

ˆ̀
8

ˆ̀
9

ˆ̀
10

ˆ̀
11 δ̂(◦)

1264 21 50 12 4.5 12 64 100 2.2 6.6 5.9 100 28.5

Table II: Estimated covariance parameters (σ̂, ˆ̀, δ̂) for the Kriging metamodel
of the fusion margin output of the Germinal code.

4 Prediction and classification results for the

original Germinal computations

4.1 Prediction results

Estimated covariance parameters for Kriging. The estimated covari-

ance parameters for the Kriging metamodel are presented in Table II. Note

that we have applied an affine standardization of {x(1), ...,x(n)} in [0, 1]11,

to obtain, for i = 1, ..., 11, minj x
(j)
i = 0 and maxj x

(j)
i = 1. Hence, for the

correlation length vector ` we present, all the components are at the same

scale and should be compared to inputs in [0, 1]11.

The input variables xi with smallest estimated correlation lengths ˆ̀
i are

considered the most influential for the code function in the Kriging model.

In Table II, the smallest estimated correlation length is ˆ̀
8, corresponding to

the average pin power input. This is natural, since the average pin power

has a strong direct influence on the power map in the fuel pin, which is

intrinsically related to the temperature in the fuel pin and thus to the fusion

margin. Similarly, the inputs x9 (axial form factor) and x10 (power shift)

impact the power map and the inputs x3 (hole diameter) and x4 (external

clad diameter) characterize the geometry of the fuel pin. These four inputs

24

thus have a strong impact on the fusion margin, so that their corresponding

estimated correlation lengths are also relatively small.

On the contrary, in the Kriging model, the code output is considered

unaffected by the values of the input variables xi with very large correlation

lengths. [Note that in Table II, the maximum correlation length value is

100, which is the upper bound in the likelihood optimization procedure, and

is practically equivalent to an infinite correlation length.] The two input

variables with correlation lengths 100 are x7 (pin height) and x11 (volume of

expansion). Indeed, the fuel power (and thus the temperature) is not related

to the pin height. Furthermore, the volume of expansion has no physical link

with the temperature.

The estimated nugget variance is δ̂2 = (28.5◦)2, which is a signal that

code instabilities might be present, as confirmed in Section 5.2, and which

indicates that the RMSE should be at least around 30◦, as is confirmed

below. This interpretation of the covariance parameters of Kriging is hence

beneficial and constitutes an asset, in comparison with neural networks and

kernel methods.

Prediction criteria. We evaluate the accuracy of the metamodels by us-

ing a test base (x
(1)
t , fcode(x

(1)
t)), ..., (x

(nt)
t , fcode(x

(nt)
t)), that is generated in-

dependently from and in the same way as the learning base, with nt = 1613.

The first criterion we consider is the Root Mean Square Error on the test

base (RMSE), with f̂code(x) the prediction of fcode(x), obtained from the

25

artificial neural network, Kriging or kernel methods,

RMSE2 =
1

nt

nt∑
i=1

(
f̂code(x

(i)
t)− fcode(x(i)

t)
)2
. (17)

A second criterion is the Q2 (considered for instance in [29]) defined by

Q2 = 1− RMSE2

sd2code
, (18)

where sdcode is the standard deviation of the output on the test base (the

standard deviation of {fcode(x(1)
t), ..., fcode(x

(nt)
t)}). The Q2 is thus a relative

efficiency criterion, whose value is always smaller than 1 and increases with

the accuracy of the predictions.

The criteria RMSE and Q2 are not observable in practice, but can be

estimated from the learning base. In order to do so, let f̃code(x
(i)) be the

prediction f̂code(x
(i)) of fcode(x

(i)) obtained from the artificial neural network,

or the LOO prediction f̂code,LOO(x(i)) of fcode(x
(i)) with Kriging or kernel

methods. Then, RMSE and Q2 can be estimated by R̂MSE and Q̂2, defined

by

R̂MSE
2

=
1

n

n∑
i=1

(
f̃code(x

(i))− fcode(x(i))
)2

(19)

and

Q̂2 = 1− R̂MSE
2

ŝd
2

code

, (20)

where ŝdcode is the standard deviation of the output on the learning base.

Then, for γ ∈ (0, 1), we define the criterion qγ as the empirical quantile

γ of the set of errors
∣∣∣f̂code(x(i)

t)− fcode(x(i)
t)
∣∣∣, for i = 1, ..., nt.

26

Finally, one specificity of Kriging is that it provides the predictive variance

(8) which enables to build predictive confidence intervals for the code values

fcode(x). To assess the accuracy of the 90%-confidence intervals presented

after (8), we consider the following Confidence Interval Ratio (CIR), defined

as

CIR =
1

nt

nt∑
i=1

1{|f̂code(x(i)
t)− fcode(x(i)

t)| ≤ 1.64σ̂code(x
(i)
t)}. (21)

The CIR criterion is specific to Kriging and should be close to 0.9.

Prediction results. The prediction results are given in Table III. The

standard deviation of the output on the test base is sdcode = 342◦, and the

RMSE for the neural network, Kriging and kernel methods are respectively

38.5◦, 36.1◦ and 44.5◦. The relative prediction errors are thus around 10%,

which is a good performance considering the complexity of the fusion margin

output. Similarly, the relative efficiency criteria Q2 are around 99% for the

three metamodels. Kriging provides slightly more accurate predictions than

the neural networks, and these two metamodels perform better than kernel

methods. The same hierarchy holds when we consider the quantiles q0.9 and

q0.95 of the absolute prediction errors.

The Kriging estimate of the nugget variance is δ̂2 = (28.5◦)2. As is seen

in Section 3.1, under the Gaussian process assumption of Kriging, this value

corresponds to the irreducible prediction error for fcode(x), stemming from

the small scale variations of fcode which are due to code instabilities. Hence,

a large part of the prediction errors of the metamodels comes from these code

instabilities.

For Kriging and kernel methods, R̂MSE is a very reliable estimate of

27

RMSE, while R̂MSE is moderately too optimistic for the neural networks, as

it is smaller than RMSE. Indeed, the neural network functions are optimized

according to their prediction errors on the learning base, so that these errors

are eventually slightly smaller than the new errors on the test base. For

Kriging and kernel methods, the LOO precisely avoids this phenomenon, by

providing prediction errors for outputs fcode(x
(i)) that are removed from the

learning base.

The 90% confidence intervals provided by Kriging are also appropriate,

as they contain 89.8% of the output values in the test base (CIR = 89.8% in

(21)). Note that this is so because we have incorporated the nugget term δ̂2

in the prediction mean square error σ̂2
code(x), see (8) and (9). Neglecting this

nugget term would result in overoptimistic prediction mean square errors

and overly short confidence intervals, since one source of prediction errors

(the unpredictable change of the code output for very small input variation),

would not be taken into account.

In Figure 3, we plot the predictions as functions of the Germinal output

values. For the three metamodels, the predictions are less accurate when the

fusion margin is negative or close to negative. Indeed, this corresponds to

complex physical processes that are challenging to simulate numerically, as

discussed in Section 2. Some of the prediction errors are particularly large

and stand out in Figure 3. We call outliers these Germinal computations

that are poorly predicted, and give more comments on their detection in the

learning base and their analysis in section 5.

28

R̂MSE RMSE Q̂2 Q2 q0.9 q0.95

Neural network 34.5◦ 38.5◦ 0.990 0.987 61.6◦ 76.7◦

Kriging 35.6◦ 36.1◦ 0.989 0.989 57.4◦ 72.7◦

Kernel methods 44.3◦ 44.5◦ 0.983 0.983 68.5◦ 88.8◦

Table III: Prediction results for the fusion margin output of the Germinal
code (original computations). The standard deviation of the output on the
test base is 342◦. The quantities RMSE and Q2 are error and efficiency

criteria for prediction on the test base. They are estimated by R̂MSE and

Q̂2 that use the learning base, see (19) and (20). The estimates R̂MSE and

Q̂2 are more accurate for Kriging and kernel methods than for the neural
networks, thanks to the virtual LOO formulas.

Neural network

code output

p
re

d
ic

ti
o

n
0

5
0

0
1

0
0

0
1

5
0

0

0 500 1000 1500

Kriging

code output

p
re

d
ic

ti
o

n
0

5
0

0
1

0
0

0
1

5
0

0

0 500 1000 1500

Kernel regression

code output

p
re

d
ic

ti
o

n
0

5
0

0
1

0
0

0
1

5
0

0

0 500 1000 1500

Figure 3: Plot of the metamodel predictions in the test base (y-axis), as
a function of the Germinal output values (x-axis), for the neural networks
(left), Kriging (middle) and kernel methods (right). Case of the original
computations. The dashed lines is defined by y = x.

29

4.2 Classification

Classification goal and classifiers. In practice, a simulated fuel pin

(characterized by x) is considered viable if the fusion margin output (fcode(x))

is larger than 300◦. This value of 300◦ is a security margin, accounting for the

possible discrepancies between a Germinal simulation and a real utilization

of a fuel pin.

Hence, besides predicting the fusion margin output fcode(x), it is desirable

to classify the inputs x in two classes: Those which are viable (fcode(x) >

300◦) and those which are unsafe (fcode(x) ≤ 300◦). Furthermore, the two

possible corresponding classification errors do not have the same impact, so

that it is very beneficial to have a tunable classifier, that can for example

decrease the number of unsafe x that are classified as viable, at the cost of

increasing the number of viable x that are classified as unsafe.

This tuning can be achieved naturally with metamodels. Let f̂code(x) be

the metamodel prediction at x and let σ̂2
code(x) be as in (8) for Kriging and

be R̂MSE for neural networks and for kernel methods. Then, we consider

the classifier, tuned by the parameter τ ∈ R, that classifies x as unsafe if

f̂code(x)− τ σ̂code(x) (22)

is smaller than 300◦, and classifies x as viable otherwise. One can give a

large value to τ , if one considers that classifying as viable an unsafe x is

more harmful than classifying as unsafe a viable x, and a small value to τ

otherwise.

30

Classification Results. We present the classification results of the three

metamodels in the form of their Receiver Operating Characteristic (ROC)

curves (see e.g. [30, Ch.11.16]). For any fixed τ and for each classifier, we

define the “true unsafe rate” as the ratio, on the test base, of the number

of x that are unsafe and classified as unsafe, divided by the number of x

that are unsafe (385). We also define the the “false unsafe rate” as the ratio,

on the test base, of the number of x that are viable and classified as unsafe,

divided by the number of x that are viable (1228). Thus, selecting a sequence

of increasing values of τ yields a sequence of increasing “false unsafe rate”

values and a sequence of increasing “true unsafe rate” values. Plotting the

latter sequence as a function of the former constitutes a ROC curve. The

higher this curve is, the better the classifier is, since the “true unsafe rate”

is larger, for a given “false unsafe rate”.

The ROC curves for the three metamodels are presented in Figure 4.

The classification results are good, since one can, for example, achieve more

than 95% “true unsafe rate” for less than 5% “false unsafe rate”. The three

ROC curves are difficult to compare visually, since depending on the value of

the “false unsafe rate”, any of them can be above the others. Nevertheless,

the values of the area under the ROC curves [30, Ch.11.16], are 0.9977 for

Kriging, 0.9974 for the neural networks and 0.9972 for kernel methods, which

give the same ranking of the three metamodels, in terms of accuracy, as for

the prediction errors.

31

false unsafe rate

tr
ue

 u
ns

af
e

ra
te

neural network
Kriging
kernel regression

0.
80

0.
85

0.
90

0.
95

1.
00

0.00 0.01 0.02 0.03 0.04 0.05

Figure 4: Plot of the “true unsafe rate” as a function of the “false unsafe
rate”, for varying values of the tuning parameter τ in (22). The total number
of unsafe x is 385 and the total number of viable x is 1228. The areas under
the ROC curves are 0.9977 for Kriging, 0.9974 for the neural networks and
0.9972 for kernel methods.

32

5 Improvement of code behaviour

5.1 Outlier detection

As shown in Figure 3, for some inputs x
(j)
t in the test base, the correspond-

ing Germinal output values fcode(x
(j)
t) are predicted with particularly large

errors. As we show below, similar couples (x(j), fcode(x
(j))), that we call

outliers, exist in the learning base.

To detect outliers in the learning base, we define the normalized prediction

error at x(j) as

fcode(x
(j))− f̃code(x(j))

σ̃code(x(j))
, (23)

where f̃code(x) is defined for the three metamodels as in (19), and where

σ̃code(x
(j)) is defined as R̂MSE for neural networks and kernel methods and

as in (11) for Kriging. For neural networks and kernel methods, the normal-

ization term is σ̃code(x
(j)) = R̂MSE, so that the average of the squares of

(23), for j = 1, ..., n, is 1. Under the Gaussian process assumption, the Krig-

ing normalized errors (23) follow the standard Gaussian distribution. [Note

that these errors are however not independent in general.]

The normalized errors are presented in Figure 5. For the three metamod-

els, two particularly large (in absolute value) normalized errors stand out.

The other remaining errors are homogeneous and considerably smaller. In

addition, for the three metamodels, these two largest errors correspond to

the same computations (x(j), fcode(x
(j))). Thus, these two computations are

detected as outliers and should be thoroughly studied. The other computa-

tions with large normalized errors could possibly benefit from a more detailed

33

Neural network

index

n
o

rm
a

liz
e

d
 e

rr
o

r
−

5
0

5
1

0
1

5

0 1000 2000 3000 4000

Kriging

index

n
o

rm
a

liz
e

d
 e

rr
o

r
−

5
0

5
1

0
1

5

0 1000 2000 3000 4000

Kernel regression

index

n
o

rm
a

liz
e

d
 e

rr
o

r
−

5
0

5
1

0
1

5

0 1000 2000 3000 4000

Figure 5: Plot of the normalized prediction errors (23) on the learning base
(y-axis), as a function of the computation index (x-axis), for neural networks
(left), Kriging (middle) and kernel methods (right). Case of the original com-
putations. Two outliers stand out and correspond to the same computations
for the three metamodels.

investigation, but this is less of a priority.

One should explain why the normalized prediction errors for the two

outliers are so large. We think that there are, in general, three possible causes

for large prediction errors. The metamodels can be imperfectly specified, the

input x(j) for the outlier can be isolated in the learning base, and the output

fcode(x
(j)) can stem from a computation of the Germinal code that has failed,

so that the value fcode(x
(j)) does not make sense from a physical point of view

and is very different from the values fcode(x
(k)), for inputs x(k) in the learning

base that are close to x(j).

These three causes can and should be addressed: Metamodels can be

questioned and improved (for example the choice of the covariance function

in Kriging or the structure of the neural network can be updated). New

computations of the code can be made for inputs x in areas of the input

34

space D that are insufficiently covered. Finally, suspicious computations can

be checked manually. For the two aforementioned outlier computations, this

third solution is appropriate.

Indeed, a detailed analysis of the two computation output files for the two

outliers shows that the same specific warning message was given for both.

This message appears in only 14 of the remaining computations of the learn-

ing base. Furthermore, computations with input variables similar to those

of the two outliers show drastically different output values. Hence, we can

conclude that this warning message implies much more serious consequences

on the computation result than indicates its current description (“relatively”

bad numerical behaviour).

In light of this analysis, we update the code postprocessor by giving a

more important weight to this warning message. Computations whose output

files contain this message are now labelled as failures and are not incorporated

in the learning base. In Section 5.2, we show how the postprocessor can

also be updated, and we present the metamodel prediction results for the

corresponding improved code manager in Section 6.

Note that, even though our analysis indicated that the computations have

failed numerically for the two outliers, it would be very challenging and time

consuming to point out the exact nature of the failure.

5.2 Reduction of the code instabilities

As discussed in Section 4.1, the relatively large nugget effect estimated by

Kriging ((28.5◦)2) is a sign of code instabilities. [Note, in comparison, that

35

position

Figure 6: One-dimensional representation of the Germinal code function. We
run 97 computations, whose input points are located along a line segment,
between two points a and b of the (normalized) input space [0, 1]11. Input
points are thus indexed by their position on the segment, where 0 corresponds
to a and 1 corresponds to b. We observe a code instability, causing oscil-
lations of the code response, that have no physical meaning but are caused
by a preprocessing issue. We also show the prediction and 95% confidence
intervals obtained with the Kriging estimated covariance parameters of Table
II, where the support points of (7) and (8) correspond to these 97 compu-
tations. The output files of the two outlier computations contain the same
warning as that described in Section 5.1.

the designed numerical approximations of Germinal, including for instance

rounding of values, are around 1◦.] To obtain graphical information on these

instabilities, we run 97 additional computations, whose input points are lo-

cated along a line segment of the (normalized) input space [0, 1]11, and can

hence be ordered. This provides us a one-dimensional visualization of the

Germinal code function that we show in Figure 6.

In Figure 6, we observe oscillations of the code response, that can clearly

not correspond to the modelled physical process (typically assumed to entail

piecewise differentiable functions), and are hence code instabilities. [Note

36

that we also observe two outlier computations, whose output files actually

contain the same warning as that described in Section 5.1.] For the sake of

illustration, we also show the prediction and 95% confidence intervals ob-

tained with the Kriging estimated covariance parameters of Table II, where

the support points (used to construct r(x), R and y) of (7) and (8) corre-

spond to the aforementioned 97 additional computations. We see that the

covariance parameters estimated by Kriging, and in particular the nugget

effect, are appropriate and adapted to the code instabilities, and entail sat-

isfactory prediction and confidence intervals.

We investigated closely consecutive computations in the code instability

zones of Figure 6. We found out that the code preprocessor generates auto-

matically an axial mesh from a global pin height. A small variation of the

pin height changes the fusion margin only moderately but may change the

location of the maximum-temperature space point (the physical hot point)

much more significantly. As illustrated in Figure 7, with the current mesh

method, a computation point (a mesh node) coinciding with the physical hot

point can shift away from it with a small pin height variation, thus yielding

a computation of the fusion margin that is numerically (and erroneously)

overly different.

Consequently, we updated the preprocessor, as illustrated in Figure 7.

Together with the previously discussed postprocessor update, this yields an

updated version of the Germinal code manager, that we used to generate

new output values for the inputs of Figure 6. Figure 8 shows that the code

instabilities have been corrected in the new code version. In addition, the two

outlier computations of Figure 6 are now detected by the updated postpro-

37

Figure 7: Simplified illustration of the impact of a perturbation of the pin
height input on the mesh generation for a Germinal computation. In the
original Germinal computations, mild changes of the pin height can cause
significant modifications of the mesh, themselves causing the code instabil-
ities of Figure 6. We consequently updated the preprocessor to solve this
issue.

cessor and removed from the base of computation results. Hence, eventually,

the Kriging nugget effect helps detecting code instabilities that can then be

investigated and corrected.

6 Prediction and classification results for the

updated Germinal computations

6.1 Prediction results

As discussed in Section 5, the Germinal code manager has been updated.

We have repeated all the Germinal computations for the input points of the

original learning and test bases of Section 4. These inputs, together with the

38

Figure 8: Same settings as in Figure 6, but for the updated Germinal com-
putations. The code instabilities have been corrected and the two outlier
computations of Figure 6 are not considered anymore.

new output values, correspond to updated learning and test bases that we

use in this section. Because the postprocessor has been updated, additional

computations are flagged as failure (those presenting the warning message

discussed in Section 5.1), so that the updated learning and test bases have

3791 and 1606 points. The metamodels are then used exactly as for the

original learning and test bases.

Estimated covariance parameters for Kriging. For the updated learn-

ing base, the estimated correlation lengths of the Kriging metamodel are

similar to those for the original learning base. However, the estimate of the

nugget variance δ̂2 decreases significantly from the original to the updated

learning base, going from (28.5◦)2 (Table II) to (19.8◦)2 . This is a sign that

the pre- and post-treatment procedures for the Germinal code have been im-

proved, as is illustrated by Figure 8. Nevertheless, since the nugget variance

39

remains significant, we believe that pre- and post-treatment issues might re-

main. The prediction results presented below are in agreement with this

discussion.

Prediction results. The prediction results, for the updated learning and

test bases, are given in Table IV. The standard deviation of the output on

the test base is 326◦, and the RMSE for neural networks, Kriging and kernel

methods are respectively 31.3◦, 27.6◦ and 38.5◦. Hence, the prediction errors

of the metamodels are smaller than for the original computations in Section

4, but still are of comparable order of magnitude. This observation, together

with the updated estimate of the nugget variance, indicates that the code

instabilities have been reduced but not suppressed.

As for the original computations, Kriging gives the smallest RMSE, fol-

lowed by neural networks and kernel methods. The quantity R̂MSE is al-

most a perfect estimator of RMSE for Kriging and kernel methods and is

again slightly too optimistic for neural networks. The 90% confidence inter-

vals provided by Kriging are also appropriate, as they contain 91.2% of the

output values in the test base (CIR = 91.2% in (21)).

6.2 Classification

The ROC curves for the three metamodels for the updated computations

are presented in Figure 9, where we also re-plot the ROC curve of Figure 4

(original computations) for comparison. In line with the prediction improve-

ment in Table IV, the ROC curves are higher for the updated computations,

which indicates that the classifiers perform better. Similarly, the area un-

40

R̂MSE RMSE Q̂2 Q2 q0.9 q0.95

Neural network 27.5◦ 31.3◦ 0.993 0.991 48.7◦ 63.4◦

Kriging 27.2◦ 27.6◦ 0.993 0.993 43.2◦ 54.0◦

Kernel methods 38.3◦ 38.5◦ 0.986 0.986 60.8◦ 75.3◦

Table IV: Same context as for Table III but for the updated Germinal compu-
tations. The standard deviation of the output on the test base is 326.2◦. The

estimates R̂MSE and Q̂2 are more accurate for Kriging and kernel methods
than for the neural networks, thanks to the virtual LOO formulas.

der the ROC curves are now 0.9984 for Kriging, 0.9980 for neural networks

and 0.9978 for kernel methods. Hence the three classifiers have improved

performances compared to the original computations. For the updated com-

putations, the ROC curve of Kriging is more clearly above the ROC curves

of neural networks and kernel methods.

Note finally that, from Figure 9 and Table IV, Kriging performs better,

in comparison to neural networks and kernel methods, for the updated com-

putations than for the original ones. Indeed, first, the ratios of the RMSE

of Kriging divided by the RMSE of neural networks and kernel methods are

smaller in Table IV than in Table III. Second, the Kriging ROC curve be-

comes clearly higher than the two other ones for the updated computations.

Similarly, the ratio of the RMSE of neural networks divided by the RMSE

of kernel methods is smaller in Table IV than in Table III .

Hence, the relative differences between the three metamodel prediction

errors are more accentuated for the new computations than for the old com-

putations. We believe that this holds because of the decrease of the code

41

false unsafe rate

tr
ue

 u
ns

af
e

ra
te

neural network
Kriging
kernel regression

0.
80

0.
85

0.
90

0.
95

1.
00

0.00 0.01 0.02 0.03 0.04 0.05

false unsafe rate

tr
ue

 u
ns

af
e

ra
te

neural network
Kriging
kernel regression

0.
80

0.
85

0.
90

0.
95

1.
00

0.00 0.01 0.02 0.03 0.04 0.05

Figure 9: Plot of the “true unsafe rate” as a function of the “false unsafe
rate”, for varying values of the tuning parameter τ in (22), for the original
computations (left) and the updated computations (right). The total number
of unsafe x is 385 (left) and 359 (right), and the total number of viable x is
1228 (left) and 1247 (right). For the updated computations, Kriging becomes
more accurate than neural networks and kernel methods.

42

instabilities in the new computations. Indeed, intuitively, the code insta-

bilities cause systematic prediction errors, stemming from the fact that the

brusque changes of fcode(x) for very small changes of x are not predictable.

[The square of these prediction errors have values δ̂2 on average under the

Gaussian process model, see (9).] These systematic errors are the same for

the three metamodels, so that, when they become large, the ratios of predic-

tion errors between different metamodels become closer to one.

7 Impact of the number of simulation results

The context of the present paper is that of large learning bases of simulation

results (n = 3807 for the original simulations and n = 3791 for the updated

ones). Indeed, one Germinal code simulation takes around one minute on a

personal computer, which is why these large learning bases can be obtained

with reasonable time and computing resources.

Nevertheless, there also exist many codes for which the simulation time

is longer, for instance a few hours. For these codes, the number of available

simulation results is smaller. [It is often acknowledged that, as a rule of

thumb, the number of simulation results should be (at least) 10 − 50 times

the number of simulation parameters.]

In order to study the impact of the number of simulation results in the

learning base, we now repeat the analysis of the metamodel predictions with

the original computations (as in Section 4) and with n′ = 500 for the learning

base. To construct this reduced learning base, we select randomly n′ = 500

simulations among the n = 3807 simulations. Otherwise, we proceed as in

43

σ̂(◦) ˆ̀
1

ˆ̀
2

ˆ̀
3

ˆ̀
4

ˆ̀
5

ˆ̀
6

ˆ̀
7

ˆ̀
8

ˆ̀
9

ˆ̀
10

ˆ̀
11 δ̂(◦)

1251 18 47 9.3 5.4 12 40 100 2.6 6.9 6.3 100 22

Table V: Estimated covariance parameters (σ̂, ˆ̀, δ̂) for the Kriging metamodel
of the fusion margin output of the Germinal code, with n′ = 500 simulation
results.

Section 4.

The estimated covariance parameters for Kriging, with the n′ observation

points, are given in Table V (for the numerical optimization of the likelihood,

we can use all the n′ simulation results in this case). We observe that the es-

timated correlation lengths take similar values with those of Table II, where

1000 simulation results were used. On the other hand, the estimated nugget

variance is δ̂2 = (22◦)2 compared to (28.5◦)2 in Table II. Our interpreta-

tion for this difference is that, when the number of simulation parameters

decreases (from 3807 to 500) while their range remains unchanged, the sim-

ulation parameters are, on average, further apart from one another. As a

consequence, there is less statistical evidence for the numerical instabilities

in the simulation results, so that the estimated nugget variance decreases.

The values of the prediction criteria for the three metamodels are given in

Table VI. We observe that the RMSE criteria on the test base are 20% to 50%

larger than in Table III for the three metamodels. Hence, increasing the size

of the learning base from 500 to 3807 results in a significant improvement

of the metamodels accuracy. We also remark that the ratio between the

RMSE for Kriging and the RMSE for the neural networks or kernel regression

increases when 500 observation points are used instead of 3807. Thus, the

44

R̂MSE RMSE Q̂2 Q2 q0.9 q0.95

Neural network 32.1◦ 54.7◦ 0.991 0.974 86◦ 108◦

Kriging 37◦ 44.6◦ 0.987 0.982 60.1◦ 71.1◦

Kernel methods 50.7◦ 60◦ 0.975 0.969 96.8◦ 117.0◦

Table VI: Same context as for Table III but with a reduced-size learning base
(n′ = 500). The standard deviation of the output on the test base is 342◦.

differences between the metamodel accuracies increase with a smaller learning

base. Finally, we observe in Table VI that R̂MSE and Q̂2 are less reliable

estimators of RMSE and Q2 with n′ = 500 simulation results than with

n = 3807 simulation results. The estimators R̂MSE and Q̂2 are more reliable

for Kriging and kernel regression than for the neural networks, similarly as

for table III.

Hence, the conclusion of this section is that using all the 3807 simulation

results to build the metamodels is strongly beneficial. Indeed, this decreases

the prediction errors and enables to have more reliable estimates of the order

of magnitude of these prediction errors. In addition, the nugget variance

estimate is arguably more reliable with a larger number of simulation results,

since in this case there exist more pairs of simulations with closely spaced

parameters, for which the output difference is mostly due to the numerical

instabilities.

45

8 Complements on outlier detection and nu-

merical instability detection

In this paper, we have shown that metamodels are valuable to detect outlier

computations (isolated computation failures) and that Kriging can contribute

to detect the presence of numerical instabilities (pairs or groups of computa-

tions with similar parameters but abnormally large output differences). We

now analyse how other procedures can achieve these two kinds of detections.

8.1 Outlier detection

We first consider outlier detection. We recall that, even though simulation

parameters exhibiting computational failures are, in this paper, obtained rel-

atively simply by generating a space filling design of simulation parameters,

the few computational failures can not be retrieved directly in the learning

base, since it is not possible to check manually all the simulation results in

this base. Hence, it is necessary to develop automatic procedures for outlier

detection.

We note that, in our opinion, this detection is not really possible in prac-

tice if the simulation results are analysed separately. Indeed, in the original

learning base of Germinal computations, the two outlier computations of

Figure 5 have fusion margin values 211◦ and 217◦, while the minimum and

maximum of the fusion margin over all the learning base simulations are

−149◦ and 1322◦. Hence, the two outlier computations can not be detected

as doubtful based only on their output values.

46

Instead, a computation can be flagged as an outlier if its output value

strongly differs from those of computations with similar parameters. Hence,

in our opinion, investigating metamodel prediction errors, as is done in Sec-

tion 5 is a very natural way to detect computation failures.

For the case of the Kriging metamodel, we remark that ranking the nor-

malized LOO errors, as in Figure 5, is not the only possibility for outlier

detection. Indeed, we now show how the chi-squared-based methodology

of [7] can be used, in relation to the probabilistic model provided by Krig-

ing, for outlier detection. We remark that the scope of [7] is considerably

larger than that of the present paper, since both simulation and experi-

mental results are under consideration and since time-dependent problems

are treated. We now present one possible adaptation of the methodology

of [7] for the simpler Kriging model of the present paper. We recall that

we consider the learning base x(1), y1, ...,x
(n), yn. For i = 1, ..., n, we let

R(i) be defined as R in Section 3.1, but where the set of simulation results

is x(1), y1, ...,x
(i−1), yi−1,x

(i+1), yi+1, ...,x
(n), yn instead of x(1), y1, ...,x

(n), yn.

Then, we compute the vector of the n − 1 LOO errors ε(i) = (ε
(i)
1 , ..., ε

(i)
n−1)

t

from (10), with R replaced by R(i) and y replaced by (y1, ..., yi−1, yi+1, ..., yn)t.

We also let

Q(i) = cov(ε(i)) = diag((R(i))−1)−1(R(i))−1diag((R(i))−1)−1,

where diag(M) is the matrix obtained by setting to zero all the non-diagonal

elements of a square matrixM . Finally, we set Xn,i = (1/(n−1))(ε(i))t(Q(i))−1ε(i).

As shown in [7], the quantity (n − 1)Xn,i follows a chi-squared distribution

47

with n− 1 degrees of freedom.

Then, the technique of [7] consists in considering as most suspicious the

computation (x(i), yi) for which the index i minimizes Xn,i. Indeed, a com-

putation failure corresponds to a large LOO error, so that removing this

computation decreases the value of Xn,i. We now show in Figure 10 the 97

values of X97,i for the 97 computations of Figure 6, among which there are

two outlier points, one of them being particularly inconsistent will all the

remaining points. We observe that the value of X97,i clearly stands out as

minimal for the index i1 of this most inconsistent computation. In order to

detect automatically the second outlier computation, we follow the guideline

of [7] and remove the computation with index i1 from the 97 computation

results. From the 96 remaining computation results, we recalculate the 96

values of the X96,i criterion. We also show these values in Figure 10, and we

clearly observe that the criterion X96,i is this time minimal for the index i2 of

the second outlier computation. Thus, the methodology of [7] can perfectly

detect automatically the two outlier computations in the example of Figure

6. [In Figure 10, we have in fact performed universal Kriging predictions

[12], with a linear mean function, to compute Xn,i, since this turns out to

yield better performances for the methodology of [7].] Finally, we also show

in Figure 10 the 97 Kriging normalized LOO errors of (23). We see that plot-

ting these LOO errors also enables one to detect the two outliers, although

the second outlier do not stand out as clearly as for the methodology of [7].

[In particular, the normalized error for the second outlier is barely outside of

the 95% confidence interval [−1.96, 1.96].]

48

Figure 10: Methodology of [7] and normalized Kriging LOO errors to au-
tomatically detect the two outlier computations of Figure 6. Plot of the
97 values of X97,i (left), the smallest of which corresponds to the most in-
consistent outlier computation in Figure 6, as discussed in [7]. Plot of the
96 values of X96,i after removing the most inconsistent outlier computation
(middle). The second outlier computation is also detected as yielding the
smallest value of X96,i. Plot of the 97 normalized Kriging LOO errors (right),
the two largest of which (in absolute value) corresponding to the two outlier
computations. The normalized error for the second outlier is barely outside
of the 95% confidence interval [−1.96, 1.96] (dashed lines).

49

8.2 Numerical instability detection

In Figure 10 (middle), we observe that, despite the presence of numerical

instability (see Figure 6), the indicators X96,i of [7] take values between the

5% quantile (0.77) and the 95% quantile (1.25) of the distribution X 2/95.

This illustrates that the methodology of [7] is not designed to provide an

estimate of the order of magnitude of the numerical instabilities.

On the other hand, we have argued above that the estimated nugget

variance of the Kriging model provides an useful estimate of this order of

magnitude. We now reinforce this conclusion based on the computation

results of Figures 6 and 8. In order to only address numerical instabilities,

we remove the two outlier computations from the computation results of

Figure 6. Then, we carry out the maximum likelihood estimation method

of Section 3.1, where the dimension of the Kriging model is d = 1. [That

is, each computation is represented by xi, yi, where xi ∈ [0, 1] is the position

on the line segment.] Hence, we estimate one correlation length and the

nugget variance δ̂2. The estimated nugget variance δ̂2 is (20.3◦)2 for Figure

6, while it is (1.99◦)2 for Figure 8. Hence, for this one-dimensional case, the

Kriging estimated nugget effect clearly indicates that significant numerical

instabilities are present with the original computations and that they are

almost completely corrected with the updated computations.

Furthermore, since the simulation parameters x1, ..., x95 are identical in

Figures 6 and 8, one sees that the important estimated nugget variance of

Figure 6 is not due to the configuration of x1, ..., x95. In particular, for

the estimated covariance parameters of Figure 8, if the nugget variance δ̂2

50

were set to zero, the condition number of the covariance matrix R would be

around 109. Hence, in this case, an ill-conditioned covariance matrix might

contribute to yield a nugget variance estimate of (1.99◦)2, but its effect on the

nugget variance estimate is negligible compared to the effect of the numerical

instabilities. [It is our general experience that a small nugget variance is

sufficient to solve condition number issues with Kriging models.]

Similarly, we believe that, with the larger learning bases of Sections 4 and

6, the two estimated nugget variances are principally due to numerical insta-

bilities. Note that the presence of outlier computations can also contribute to

increase the estimated nugget variance. For instance, for the case of Figure 6,

keeping the two outlier computations in the learning base would increase the

estimated nugget variance. Nevertheless, the original learning base of Sec-

tion 4 only has two ‘obvious’ outlier computations among 3807 computations

(Figure 5), and those computations are removed in the updated learning base

of Section 6. Furthermore, we have checked that removing these two ‘obvi-

ous’ outlier computations from the original learning base leaves the estimated

nugget variance almost unchanged. Thus, in our opinion, the weight of the

outlier computations on the nugget variance estimate is small in Sections 4

and 6.

9 Conclusion

Many studies in nuclear engineering, such as optimal conception, require an

extensive use of computer codes, for many different input conditions. In order

to limit the computation time, computer codes are replaced by metamodels,

51

that provide approximations of the code output values, for a much cheaper

computational cost.

In this paper, we present a detailed case study of the metamodeling of

the fusion margin output of the Germinal code, in the case of the thermo-

mechanical simulation of a fuel pin under irradiation. We compare the meta-

models obtained from neural networks, Kriging and kernel methods. In our

study, the computation time for metamodel evaluation is similar for Kriging

and kernel methods and is the smallest for neural networks. The most accu-

rate predictions are obtained from Kriging, followed by those obtained from

neural networks, and finally by those obtained from kernel methods. Kriging

and kernel methods provide the most reliable estimates of their prediction

errors. This is thanks to the Leave-One-Out formula, which are not directly

available for the neural networks. Kriging also provides interpretability, with

the underlying Gaussian process model and the covariance parameters. The

kernel methods are the simplest to implement, and the fit of the correspond-

ing metamodel is the fastest.

Beyond this comparison, we demonstrate the pertinence of these three

metamodeling techniques to improve the behaviour of the Germinal code in

a design of experiments. Indeed, as many simulation codes, the Germinal

code is conceived to be used for a limited number of specific situations,

in which experts in physics or numerical simulation dedicate a consequent

time to specify the simulation conditions and to interpret the results. In a

design of experiments, where here thousands of simulations are carried out,

an automatic code manager, consisting in pre- and post-processing scripts,

has to replace this human intervention. Hence, specific problems and errors

52

arise in the use of this code manager that metamodeling techniques can

detect, quantify and contribute to correct.

In the case study we address, we distinguish two types of issues related

to the use of a code manager. First, some of the simulations in the design

of experiments can be plagued by numerical flaws, that are not flagged by

the code manager and which cause the simulation outputs to be meaningless.

These meaningless simulation results are well-detected by the metamodels:

In our study, the three metamodels detect the same two simulations as doubt-

ful, and a human intervention indeed confirms that computational failures

occurred. This property of the metamodels to rank the simulations according

to statistical estimates of their reliability is very attractive. Indeed, it is not

possible to check manually all the simulations that are carried out, but it is

possible to do so for a few simulations that are automatically detected. We

have also found that the methodology of [7] performs very well for detecting

unreliable simulations.

The second issue related to the use of a code manager is the instability

of the preprocessing step. In our study, we have analysed that modifying

input conditions very slightly can cause a non-negligible change in the pre-

processing step (e.g. a significantly different mesh), this change then causing

a significant variation in the simulation result. This code instability is prob-

lematic because it increases the prediction errors of the metamodels. We

find that the estimate of the nugget variance provided by Kriging is par-

ticularly efficient for detecting and quantifying code instability. Especially,

this nugget variance estimate decreases between the original and updated

Germinal computations, which coincides with an improvement of the pre-

53

processing step, this improvement then enabling more accurate predictions

for the three metamodels. Nevertheless, the nugget variance remains non-

negligible for the updated Germinal computations, which is a signal that the

code manager can still be improved.

Once the global presence of code instabilities is detected and quantified,

we consider as a rather open problem the question of using metamodels to

help code experts to solve them. In this study, we have proposed to carry

out computations in a segment of the input space (see Figure 6), in order

to have visual information on the code instabilities. This method enables us

to detect pairs of very close input conditions yielding significantly different

simulation results and to investigate them in details. It would be interesting

to see if more automatic tools could be developped to isolate such pairs of

input conditions automatically.

We have found that some of the aforementioned conclusions rely, to some

extent, on the large number of computations that are available for this paper.

Specifically, reducing this number can make the accuracy indicators of the

metamodels and the estimated nugget effect for Kriging less reliable.

Finally, we believe that the above-described issues, arising from the use

of the Germinal code in a design of experiments, also occur in a large variety

of situations in numerical simulation, in which codes are used automatically

for a large number of different simulation conditions.

54

Acknowledgements

The authors would like to thank Guillaume Damblin, Chunyang Li, Cyril

Patricot and Amélie Rouchon for valuable comments and suggestions. The

authors are also indebted to two anonymous reviewers who suggested inter-

esting extensions and literature discussions for this paper.

References

[1] H. Golfier, R. Lenain, C. Calvin, J.J. Lautard, A.M. Baudron, P.H.

Fougeras, P.H. Magat, E. Martinolli, and Y. Dutheillet. APOLLO3:

a common project of CEA, AREVA and EDF for the development of

a new deterministic multi-purpose code for core physics analysis. In

Int Conf. on Math., Computational Meth., M&C2009, New York, USA,

2009.

[2] G. Geffraye, O. Antoni, M. Farvacque, D. Kadri, G. Lavialle, B. Rameau,

and A. Ruby. CATHARE 2 V2.5 2: A single version for various appli-

cations. Nuclear Engineering and Design, 241(11):4456–4463, 2011.

[3] E. Hourcade, X. Ingremeau, P. Dumaz, S. Dardour, D. Schmitt, and

S. Massara. Innovative methodologies for fast reactor core design and

optimization. In ICAPP Nice, 2011.

[4] L. Roche and M. Pelletier. Modelling of the thermomechanical and

physical processes in FR fuel pins using the GERMINAL code. In MOX

55

Fuel Cycle Technologies for Medium and Long Term Deployment, page

322, 2000.

[5] E. Hourcade, F. Jasserand, K. Ammar, and C. Patricot. SFR core

design: a system-driven multi-criteria core optimisation exercice with

TRIAD. In FR13 Paris, 2013.

[6] E. Dede, M. Govindaraju, D. Gunter, and L. Ramakrishnan. Riding

the elephant: Managing ensembles with hadoop. In 4th Workshop on

Many-Task Computing on Grids and Supercomputers (MTAGS), 2011.

[7] D.G. Cacuci and M. Ionescu-Bujor. Best-Estimate model calibration

and prediction through experimental data assimilation-I: Mathematical

framework. Nuclear Science and Engineering, 165:18–44, 2010.

[8] D.G. Cacuci and M. Ionescu-Bujor. On the evaluation of discrepant sci-

entific data with unrecognized errors. Nuclear Science and Engineering,

165:1–17, 2010.

[9] D.G. Cacuci. Sensitivity and uncertainty analysis. Theory. Chapman &

Hall/CRC, Boca Raton, FL, 2003.

[10] D. Higdon, M. Kennedy, J.C. Cavendish, J.A. Cafeo, and R.D. Ryne.

Combining field data and computer simulations for calibration and pre-

diction. SIAM Journal on Scientific Computing, 26:448–466, 2004.

[11] J.C. Le Pallec, C. Poinot-Salanon, N. Crouzet, and S. Zimmer.

HEMERA V2: An evolutionary tool for PWR multi-physics analysis

56

in salome platform. In Proceedings of ICAPP 2011, France, page 2851,

2011.

[12] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis

of Computer Experiments. Springer, New York, 2003.

[13] B. A. Lockwood and M. Anitescu. Gradient-enhanced universal Kriging

for uncertainty propagation. Nuclear Science and Engineering, 170:168–

195, 2012.

[14] F. Bachoc, G. Bois, J. Garnier, and J.M. Martinez. Calibration and

improved prediction of computer models by universal Kriging. Nuclear

Science and Engineering, 176(1):81–97, 2014.

[15] M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging.

Springer, New York, 1999.

[16] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine

Learning. The MIT Press, Cambridge, 2006.

[17] I. Andrianakis and P. G. Challenor. The effect of the nugget on Gaussian

process emulators of computer models. Computational Statistics and

Data Analysis, 56:4215–4228, 2012.

[18] F. Bachoc. Cross validation and maximum likelihood estimations of

hyper-parameters of Gaussian processes with model mispecification.

Computational Statistics and Data Analysis, 66:55–69, 2013.

[19] F. Bachoc. Asymptotic analysis of the role of spatial sampling for co-

57

variance parameter estimation of Gaussian processes. Journal of Multi-

variate Analysis, 125:1–35, 2014.

[20] O. Dubrule. Cross validation of Kriging in a unique neighborhood. Math-

ematical Geology, 15:687–699, 1983.

[21] G. Wahba. Spline Models for Observational Data. Society for Industrial

and Applied Mathematics, 1990.

[22] B. Schölkopf and A. J. Smola. Learning with kernels: support vector

machines, regularization, optimization and beyond. MIT Press, 2002.

[23] G. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a

method for choosing a good ridge parameter. Technometrics, 21(2):215–

223, 1979.

[24] R. X. Yue and F. J. Hickernell. Robust designs for fitting linear models

with misspecification. Statistica Sinica, 9:1053–1069, 1999.

[25] G. Dreyfus. Neural Networks, Methodology and Applications. Springer,

2005.

[26] F. Gaudier. URANIE: The CEA DEN uncertainty and sensitivity plat-

form. In Procedia - Social and Behavioral Sciences, volume 2, pages

7660–7661, 2010.

[27] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon

Press, Oxford, 1995.

[28] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal rep-

resentation by error backpropagation. In Parallel Distributed Processing

58

: Explorations in the Microstructures of Cognition, pages 318–362. MIT

Press, Cambridge, 1986.

[29] A. Marrel, B. Iooss, F. Van Dorpe, and E. Volkova. An efficient method-

ology for modeling complex computer codes with Gaussian processes.

Computational Statistics and Data Analysis, 52:4731–4744, 2008.

[30] S. Tufféry. Data Mining and Statistics for Decision Making Methods.

John Wiley and Sons, 2011.

59

