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@ Kriging prediction

e Application to metamodeling of the GERMINAL code

° Application to validation of the FLICA 4 thermal-hydraulic code
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Random variables and vectors

@ A random Variable X is a random
number, defined by a probability
density function fx : R — R+ for
which, for a,b € R :

density
00 01 02 03 04

b
"probability of a < X < b" = / fx(x)dx T
a

@ Similarly a random Vector
V = (Vy,..., Vo)t is a vector of
random variables. It is also defined
by a probability density function
fy : R" — R+ for which, for
EeR":

"probability of V € E" = / fv(v)av
E

Naturally we have [T fy(x)dx = [pn fy(v)dv =1
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Mean, variance and covariance

@ The mean of a random variable X with density fy is denoted E(X) and is
+o0
E(X) = / Xy (x)dx

@ Let X be a random variable. The variance of X is denoted var(X) and is

var(X) = E {(x - ]E(X))z}

o var(X) is large — X can be far from its mean — more uncertainty.
e var(X)is small — X is close to its mean — less uncertainty.

@ Let X, Y be two random variables. The covariance between X and Y is denoted cov(X, Y)
and is
cov(X,Y) = E{(X - E(X))(Y —E(Y))}

e |cov(X,Y)| = /var(X)var(Y) — X and Y are almost proportional to one another.
o |cov(X,Y)| << y/var(X)var(Y) — X and Y are almost independent (when they are Gaussian).
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Mean vector and covariance matrix

@ Let V = (V4,..., V)! be a random vector. The mean vector of V is denoted E( V) and is the
n x 1 vector defined by
(E(V)); = E(V))

@ Let V = (V4,..., Vs)! be a random vector. The covariance matrix of V is denoted cov(V) and
is the n x n matrix defined by
(cov(V));j = cov(V;, V)

@ The diagonal terms show which components are the most uncertain.
@ The non-diagonal terms show the dependence between the components.
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Stochastic processes

A stochastic process is a function b

Z : R" — R such that Z(x) is a random " MM\ /Nm
variable. Alternatively a stochastic ri/\m//~,»,,/~'~\/’.‘- W
process is a function on R” that is | W)-/\ “/;«Qx N
unknown, or that depends of underlying oW WM \\;\\\/ o
random phenomena. O

We explicit the randomness of Z(x) by writing it Z(w, x) with w in a probability space Q2. For a
given wp, we call the function x — Z(wp, X) a realization of the stochastic process Z. J

Mean function M : x — M(x) = E(Z(x))
Covariance function C : (x1, X2) — C(x1, X2) = cov(Z(x1), Z(x2)) J

Frangois Bachoc Introduction to Kriging models March 2014 6/55



Gaussian variables and vectors

A random variable X is a Gaussian
variable with mean p and variance
o2 > 0 when its probability density
function is

foa () = —o—oxp (~ 5 (x— 02

A n-dimensional random vector V' is a
Gaussian vector with mean vector m
and invertible covariance matrix R when
its multidimensional probability density
function is

fm,H(V) =

f%(v —m)R (v — m))

% exp (
(27)2 \/det(R)

oo "p,o

E.g. for Gaussian variables : 1 and ¢ are both parameters of the probability density function and
the mean and variances of it. Thatis [ xf, »(x)dx = pand [*2°(x — 1)?f, 2 (x)dx = o2
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Gaussian processes

A stochastic process Z on R? is a Gaussian process when for all x4, ..., xn, the random vector
(Z(x1), ..., Z(xn)) is Gaussian.

@ A Gaussian process is characterized by its mean and covariance functions.

Why are Gaussian processes convenient ?
@ Gaussian distribution is reasonable for modeling a large variety of random variables
@ Gaussian processes are simple to define and simulate
@ They are characterized by their mean and covariance functions
@ As we will see, Gaussian properties simplify the resolution of problems
@ Gaussian processes have been the most studied theoretically
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Example of the Matérn 3 covariance function on R

The Matérn g covariance function, for a
Gaussian process on R is
parameterized by

@ A variance parameter o2 > 0

@ A correlation length parameter
£>0

It is defined as

— |x1 —xo|
C(x1,%) = (1 + \/67“1 7 X2|) e~ VoI

1.0
L

0.8
L

cov
04 06
L L

0.2
L

0.0
L

Interpretation

@ The Matérn % function is stationary : C(x; + h, xo + h) = ¢(x1, X2) = The behavior of the
corresponding Gaussian process is invariant by translation.

@ o2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

@ ¢ corresponds to the speed of variation of the functions that are realizations of the Gaussian
process
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The Matérn 3 convariance function on R : illustration of ¢

Plot of realizations of a Gaussian process having the Matérn g covariance function for o2 = 1 and
¢=0,5,1,2 from left to right
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The Matérn 3 convariance function : generalization to R?

We now consider a Gaussian process on RY.
The corresponding multidimensional Matérn % convariance function is parameterized by

@ A variance parameter o2 > 0
@ d correlation length parameters ¢ > 0,...,45 > 0

It is defined as .
Cx,y) = (1 + V6||x — nynm,lZd) o VBIIx—Ylly ... g

with

Xi — ;)2
1% = Vlley oy = | S0 IS

Interpretation

@ Still stationary

@ o2 still drives the order of magnitudes of the realizations

@ /4,...,£q correspond to the speed of variation of the realizations x — Z(w, x) when only the
corresponding variable x1, ..., X4 varies.

@ = when ¢; is particularly small, then the variable x; is particularly important = hierarchy of
the input variables x4, ...xy according to their correlation lengths 41, ..., 44
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@ A Gaussian process can be seen as a random phenomenon yielding realizations, i.e. specific
functions RY — R

@ The standard probability tools enable to model and quantify the uncertainty we have on these
realizations

@ The choice of the covariance function (e.g. Matérn %) enables to synthesize the information
we have (get) on the nature of the realizations with a small number of parameters
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@ Kriging prediction

Frangois Bachoc Introduction to Kriging models March 2014 13/55



Conditional probability density function

Consider a partitioned random vector ( Yy, Y2)!
of size (ny + 1) x 1, with probability density
function fy, vy, : Rm*' — R*. Then, Y; has the
probability density function

fr,(y1) = [z fvy, v, (Y1, y2)dya.

The conditional probability density function of Y,
given Y7 = yq is then

1/

mean

Ywnme)
4 v2

P(y2|y1=1.0}

P(y1,y2)

0.55

Ty, v, (Y1, ¥2) 75 :

f; _ — 1.2

Yo|Y1=y1 (y2) fY1 1) 03 2
Interpretation
It is the continuous generalization of the Bayes formula

P(A, B)
P(A|B) =
(AB) =
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Conditional mean

Consider a partitioned random vector ( Yy, Y2)! of size (ny + 1) x 1, with conditional probability
density function of Y> given Y; = y; given by fyz‘y1 —y, (¥2)-
Then the conditional mean of Y, given Yy = y; is

E(Ye|Y1 =y1) = /RJ/2fY2|Y1:y1 (y2)dy2

E(Y2|Y: = yq) isin fact a function of Y;. Thus it is also a random variable. We emphasize this by
writing E(Y2|Y1). Thus E(Y2|Ys = y1) is a realization of E( Yz|Y7).

Optimality

The function y; — E(Y2|Y; = y1) is the best prediction of Y, we can make, when observing only
Y;. That is, for any function f : R™ — R :

E{(Yo - 1)} > E{(Y2 — E(%2I%1))?}

| \
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Conditional variance

Consider a partitioned random vector ( Yy, Y2)! of size (ny + 1) x 1, with conditional probability
density function of Y> given Y; = y4 given by fyzw1 —y, (12)-
Then the conditional variance of Y given Yy = y; is

var(Ya| Y1 = y1) = /R(Y2 —E(YalY1 = y1)) fy, vy —y, (V2)dy2

@ The conditional mean E(Y>|Y;) is the best possible prediction of Ys given Y;

@ The conditional probability density function y» — fy,|y,—,, (¥2) can give the probability density
function of the corresponding error (= most probable value, probability of threshold
exceedance...)

@ The conditional variance var(Yz|Y; = y1) summarizes the order of magnitude of the
prediction error
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Gaussian conditioning theorem

Let (Ys, Y2)! be a (ny + 1) x 1 Gaussian vector with mean vector (mﬁ,yg)’ and covariance matrix

( ?1 ﬁf )
e 02
Then, conditionaly on Yy = y4, Y> is a Gaussian vector with mean
E(Y2|Y1 = y1) = pz + 1 ,Ry (1 — my)
and variance
var(Ya|Ys = y1) = 05 —1{ R 'ri 2
Illustration

When (Y3, Y2)! be a2 x 1 Gaussian vector with mean vector (u1, u2)! and covariance matrix

(3 %)

E(Y2Yi =y1) =p2+p(y1 —m1) and var(Ye|Y; =y1) =1—p°

Then

v
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@ Kriging prediction

@ Kriging prediction
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A problem of function approximation

We want to approximate a deterministic function, from a finite number of observed values of it.

>0

A possibility : deterministic approximation : polynomial regression, neural networks, splines,
RKHS, ...

— we can have a deterministic error bound
With a Kriging model : stochastic method
— gives a stochastic error bound
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Kriging model with Gaussian process realizations

Kriging model : representing the deterministic and unknown function by a realization of a Gaussian
process.

Bayesian interpretation

In statistics, a Bayesian model generally consists in representing a deterministic and unknown
number by the realization of a random variable (= enables to incorporate expert knowledge, gives
access to Bayes formula...). Here, we do the same with functions
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Kriging prediction

We let Y be the Gaussian process, on R?. Y is observed at x1, ..., X, € R9. We consider here that
we know the covariance function C of Y, and that the mean function of Y is zero

@ Let Yo = (Y(x1), ..., Y(xn))! be the observation vector. It is a Gaussian vector
@ Let R be the n x n covariance matrix of Yy : (R);; = C(X;, X;)-

@ Let xpew € RY be a new input point for the Gaussian process Y. We want to predict Y (Xnew).
@ Let r be the n x 1 covariance vector between y and Y (Xpew) : ri = C(Xj, Xnew)

Then the Gaussian conditioning theorem gives the conditional mean of Y(xpew) given the
observed values in Yp :
P(Xnew) = B(Y (Xnew)| Yn) = r'R™" Y,

We also have the conditional variance :

52 (Xnew) := var(Y(Xnew)| Yn) = C(Xnew, Xnew) — 'R~ 'r
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Kriging prediction : interpretation
Exact reproduction of known values

Assume, xnew = X1. Then, R; 1 = C(Xj, x1) = C(X;, Xnew) = r;. Thus

rty !
N Y(x1) Y(x1)

rR=1Y, =rf x : X : =(1,0,...,0) : =Y(x)
Y(Xn) Y(Xn)

*

Conservative extrapolation

Let Xpew be far from xq, ..., Xa. Then, we generally have r; = C(X;, Xnew) = 0. Thus

Y(Xnew) = r'R~1Y, =~ 0

and
6'2(Xnew) = C(Xnew, Xnew) — rR~'r~ C(Xnew, Xnew)

= conservative
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lllustration of Kriging prediction

Processus Gaussien conditionne

0o observations
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lllustration of Kriging prediction

Processus Gaussien conditionne
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lllustration of Kriging prediction

Processus Gaussien conditionne

7 observations

realizations from conditional distribution given Y,

conditional mean Xpew — E(Y (Xnew)| Yn)
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lllustration of Kriging prediction

Processus Gaussien conditionne

0.0

observations

realizations from conditional distribution given Y,

conditional mean Xpew — E(Y (Xnew)| Yn)

95% confidence intervals

L5t T T T T T T T 1
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Kriging prediction with measure error

It can be desirable not to reproduce the observed value exactly :
@ when the observations comes from experiments = variability of the response for a fixed input
point
@ even when the response is fixed for a given input point, it can vary strongly between very
close input points

Observations with measure error

We consider that at Xy, ..., Xn, we observe Y(xq) + €1, ..., Y(Xn) + €n. €1, ..., €n are independent
and are Gaussian variables, with mean 0 and known variance 02,.

@ WeLet Yn = (Y(x1) + €1, ..., Y(Xn)en)!

Then the Gaussian conditioning theorem still gives the conditional mean of Y (xnew) given the
observed values in Yy :

J(Xnew) := E(Y (Xnew)| Yn) = r'(R + 05esln) ™" Yn
We also have the conditional variance :

CATZ(Xnew) := var(Y(Xnew)| Yn) = C(Xnew, Xnew) — r'(R + Uzmes/n)_1r
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lllustration of Kriging prediction with measure error

20

057

0.0+

observations *

05 %
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lllustration of Kriging prediction with measure error

20

05

0.0+

observations
0.5
realizations from conditional distribution given Y,

Frangois Bachoc Introduction to Kriging models March 2014 29/55



lllustration of Kriging prediction with measure error

20
1.5
1.0
057
0.0+ 3
observations
realizations from conditional distribution given Y,

0.5

conditional mean Xpew — E(Y (Xnew)| Yn)
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lllustration of Kriging prediction with measure error

20

05

0.0+

observations
-0.5
realizations from conditional distribution given Y,

1.0 conditional mean Xpew — E(Y (Xnew)| Yn)

95% confidence intervals
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Covariance function estimation

In most practical cases, the covariance function (xy, x2) — C(Xq, X2) is unknown.
It is important to choose it correctly.
In practice, it is first constrained in a parametric family of the form

{Cy,0 €O}, ©CRP

= E.g. the multidimensional Matérn g covariance function model on R?, with 6 = (02, ¢4, ..., £4)

Then, most classically, the covariance parameter 6 is automatically selected by Maximum
Likelihood
In the case without measure errors :

@ Let Yy = (Y(x1),..., Y(xn))! be the n x 1 observation vector
@ Let Ry, be the n x n covariance matrix of Yn, under covariance parameter 0 :
(Re)ij = Cal(Xi, X))
The Maximum Likelihood estimator 6y, of 6 is then :

A 1
OpL € argmin —— ,§Ff9_1 Yn)

1
— 7 ———=SXp (

9co (27)2/det(Ry) 2

@ We maximize the Gaussian probability density function of the observation vector, as a

function of the covariance parameter
@ Numerical optimization problem, where the cost function has a O(n®) computational cost
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Summary for Kriging prediction

Most classical method :
@ From observed values gathered in the vector Y,

@ Choose a covariance function family, parameterized by 6

o Generally before investigating the observed values in detail and from a limited number of classical
options (e.g. Matérn 3)

© Optimize the Maximum Likelihood criterion w.r.t § = éML

o Numerical optimization : gradient, quasi Newton, genetic algorithm... Potential condition-number
problems

@ Inthe sequel, do as if the estimated covariance function C{;ML(X1 , X2) is the true covariance
function (plug-in method).

© Compute the conditional mean Xnew — E(Y(Xnew)|Yn) and the conditional variance
Xnew — var( 'Y (xnew)|Yn) with explicit matrix vector formulas (Gaussian conditioning theorem)
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e Application to metamodeling of the GERMINAL code
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GERMINAL code : presentation

Context
@ GERMINAL code : simulation of the thermal-mechanical impact of the irradiation on a nuclear
fuel pin
@ lts utilization is part of a multi-physics and multi-objective optimization problem from reactor
core design

@ In collaboration with Karim Ammar (PhD student, CEA, DEN)

SEONCOO000000

OO0

pLoese; .

OO0 4

blele) Fuel assembly -

(e]e) ,/ Sodium
30 ’

p) S

’/
Fuel pin
\\
~
5
S N Spacing wire Clad  Fuel G.
2\0‘-‘0A Jeaazazz22) N pacing wire a ue az
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GERMINAL code : inputs and outputs

12 inputs Xq, ..., X12 € [0, 1] (normalization)
@ xq, Xo : Schedule parameters for the exploitation of the fuel pin
@ Xs,..., Xg : Nature parameters of the fuel pin (geometry, plutonium concentration)
@ Xg, X109, X11 : parameters for the characterization of the power map in the fuel pin
@ Xy : disposal volume for the fission gas produced in the fuel pin
2 scalar variable of interests
@ gy :initial temperature. Maximum, over space, of the temperature at the initial time. Rather
simple to approximate
@ g» : fusion-margin. Minimum difference, over space and time, of the fusion temperature of the
fuel and the current temperature. More difficult to approximate

general scheme

12 scalar inputs = GERMINAL run = spatio-temporal maps =- 2 scalar outputs

— We want to approximate 2 functions gy, g» : R'> = R
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GERMINAL code : data bases and measure error

Data bases

For the first output g1, we have a learning base of n = 15722 points (15722 couples
(x1,91(%1)), ---, (Xn, g1 (xn)) with x; € R'? ). We have a test base of nst = 6521 elements.
For the second output g», we have n = 3807 and nyest = 1613

Measure errors

The GERMINAL computation scheme (GERMINAL + pre and post-treatment) had not been used
for so many inputs — numerical instabilities (some very close inputs can give significantly distant
outputs)

= we incorporate the measure error parameter o2, to model numerical instabilities (estimated by
Maximum Likelihood, together with covariance function parameters)
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GERMINAL code : metamodels and performance indicators

Metamodel

A metamodel of g is a function § : [0, 1]'2 — R, that is built using the learning base only.
We consider 2 metamodels :

@ The Kriging conditional mean (with Matérn % covariance function and measure error variance
estimated by Maximum Likelihood)

@ A neural-network method, of the uncertainty platform URANIE

= Once built, the cost of computing §(Xnew) for a new xnew € [0, 1]'2 is very small compared to a
GERMINAL run.

Error indicator
Root Mean Square Error (RMSE) on the test base :

| A\

Ntest

RMSE = \j ! Z(Q(Xtest,i) - g(xtest,i))2

Ntest =3
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For initial temperature g, (standard deviation of 344°)

estimated omes | RMSE
Kriging 7.8 9.03°
Neural networks 11.9°

For Fusion Margin g» (standard deviation of 342°)

estimated omes | RMSE
Kriging 28° 35.9°
Neural networks 39.7°

@ Confirmation that output g» is more difficult to predict than g,

@ In both cases, a significant part of the RMSE comes from the numerical instability, of order of
magnitude omes

@ The metamodels have overall quite good performances (3% and 10% relative error)

@ The Kriging metamodel has here comparable to slightly larger accuracy than the neural
networks

@ On the other hand, the neural network metamodel is significantly faster than Kriging
(computational cost in O(n) with n large). Nevertheless both metamodels can be considered
as fast enough
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e Application to validation of the FLICA 4 thermal-hydraulic code
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Computer code and physical system

The computer code is represented by a function f :
f :RIXR” SR

The physical system is represented by a function Y.

Yea :RY =R
X — Yreal(x)
Yobs X = Yops(X) i= Yiea(X) + €(x)

@ The inputs in x are the experimental conditions

@ The inputs in g are the calibration parameters of the computer code
@ The outputs f(x, 3) and Y,eq/(x) are the variable of interest

@ Measure error ¢(x)
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Explaining discrepancies between simulation and experimental

results

We have carried out experiments Yops(X1), ..., Yobs(Xn). Discrepancies between simulations
f(x;, B) and observations Yps(X;) can have 3 sources :

@ misspecification of 5
@ measure errors on the observations Yps(X;)
@ Errors on the specifications of the experimental conditions x;
— These 3 errors can insufficient to explain the differences between simulations and experiments
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Gaussian process modeling of the

model error

Gaussian process model : unknown physical system — represented by a realization of a Gaussian
process

Yreal(X) f(x, 8) + Z(x)
Yobs(X) = Yrear(X) +¢(x)

@ (3 : calibration parameter
incorporation of expert knowledge with the Bayesian framework

@ Zis the model error of the code. Z is modeled as the realization of a Gaussian process

Frangois Bachoc Introduction to Kriging models March 2014 43 /55



Universal Kriging model

Linear approximation of the code
m
vx: f(x,8) =Y hi(x)B;
i=1

— small uncertainty on g
Observations stem from a Gaussian process with linearly parameterized mean function with

unknown coefficients = universal Kriging model.

With similar matrix vector formula and interpretation as for the 0 mean function case :

@ Estimation of the covariance function of Z
@ Code calibration : conditional probability density function of g

@ Prediction of the physical system : conditional mean E( Yez/(Xnew)| Yn) and conditional
variance var(Yrea(Xnew)| Yn)
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Universal Kriging model : calibration and prediction formula (1

Y,eql is Observed at x1, ..., xn € RY. We consider here that we know the covariance function C of
the model error Z

Notations
@ Let Yn = (Yrea(X1), -+, Yreai(Xn))! be the observation vector. It is a Gaussian vector

Let R be the n x n covariance matrix of (Z(xy), ..., Z(Xn)) : (R)i,j = C(X;, X})-

Let xpew € RY be a new input point for the Gaussian process Y,z . We want to predict
Y(Xnew)-

Let r be the n x 1 covariance vector between Z(x), ..., Z(xn) and Z(Xnpew) : r; = C(Xj, Xnew)
Let H be the n x m matrix of partial derivatives of f at xy, ..., Xn : H; ; = h;j(x;)

Let h be the m x 1 vector of partial derivatives of f at Xpew : hj = hj(Xnew)

Let 02,.¢ be the variance of the measure error

Then the Gaussian conditioning theorem gives the conditional mean of 3 given the observed
valuesin Yy :

Bpost == E(B|Yn) = 5prior + (Op,,L, + HT(R + ‘72mesl")_1 H)_1 HT(RJr Uzmesln)_1(Yﬂ - Hﬁprior)-
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Universal Kriging model : calibration and prediction formula (2/

We also have the conditional mean of Yiez/(Xnew) :

Vreal(Xnew) := E(Yreai(Xnew)| Yn) = htﬂpost + rt(H + Urzneslﬂ)_1 (Yn — HBpost)

The conditional variance of Yyea/(Xnew) is

&Z(Xnew) = var(Yrea(Xnew)| Yn)
= C(Xnew, Xnew) — "t(RJF U?nesln)71r
+ (h— H'(R + 0Besh) " W) (H!(R + 0esh) ~"H + Q1

prior

)~ (h— H'(R+ 0fesln) ~'r)

Interpretation

@ The prediction expression is decomposed into a calibration term and a Gaussian inference
term of the model error

@ When the code has a small error on the n observations, the prediction at xpew uses almost
only the calibrated code

@ The conditional variance is larger than when the mean function is known

Frangois Bachoc Introduction to Kriging models March 2014 46 /55



Application to FLICA 4 thermal-hydraulic code

The experiment consists in pressurized and possibly heated water passing through a cylinder. We
measure the pressure drop between the two ends of the cylinder.

Quantity of interest : The part of the pressure drop due to friction : APy,

Two kinds of experimental conditions :

@ System parameters : Hydraulic diameter Dy, Friction height H, Channel width e

@ Environment variables : Output pressure Ps, Flowrate Ge, Parietal heat flux ®p, Liquid
enthalpy hl, Thermodynamic title X¢, Input temperature T,

th
We have 253 experimental results
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Friction model of FLICA 4

Code based on the (local) analytical model
H

APpo = 2oDp

C';2’(isafh-

with
@ fiso : Isothermal model. Parameterized a; and by;.
@ f, : Monophasic model.

Prior information case with

0.22 0.112 0
/Bprior = < 0.21 ) 7Qprior = ( 0 0.1052 )
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G Vaidation

We compare predictions to observations
using Cross Validation

We dispose of :
@ The vector of posterior mean APy, of size n.

@ The vector of posterior variance agred of size n.

2 quantitative criteria :

" 2
@ RMSE : \/% > (Ame,i - APfro(Xi))

@ Confidence Interval Reliability : proportion of observations that fall in the posterior 90%
confidence interval.
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Results with the thermal-hydraulic code Flica IV (2

RMSE

90% Confidence Interval Reliability
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Conclusion

@ We can improve the predictions of a computer code by completing it with a Kriging model built
with the experimental results

@ The number of experimental results needs to be sufficient. No extrapolation

For more details

@ Bachoc F, Bois G, Garnier J and Martinez J.M, Calibration and improved prediction of
computer models by universal Kriging, Nuclear Science and Engineering 176(1) (2014)
81-97.
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General conclusion

Standard Kriging framework

@ Versatile and easy-to-use statistical model

@ We can incorporate a priori knowledge in the choice of the covariance function family
@ After this choice, the standard method is rather automatic

@ We associate confidence intervals to the predictions

@ The Gaussian framework brings numerical criteria for the quality of the obtained model

Extensions

@ Kriging model can be goal-oriented : optimization, code validation, estimation of failure
regions, global sensitivity analysis...

@ Standard Kriging method can be computationally costly for large n = approximate Kriging
prediction and covariance function estimation is a current research domain
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Thank you for your attention !
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