
Master internship and PhD thesis offer
Additive constrained Gaussian processes in high dimension

General context. This master internship and PhD thesis are part of the ANR JCJC “GAP”
project, a 5-year research project funded by the French national research agency. GAP focuses
on both theoretical and practical aspects related to Gaussian processes (GPs), a class of stochas-
tic processes widely used in machine learning and computer experiments. The guiding prin-
ciple of GAP is to push the boundaries of the current mathematical models and algorithmic
procedures based on GPs, with a strong emphasis on reliability. The research proposal seeks to
exploit additive structures in constrained GPs for which constraints are verified everywhere.
This reliability property is key for real-world applications concerned by risk assessment, espe-
cially in criticality safety.

The framework of constrained GPs. Adding physical information in models can signifi-
cantly reduce the size of the training set which is necessary to reach a certain level of accuracy.
We consider here the information given by inequality constraints, such as monotonicity. This
research considers a class of GP models proposed by [3], for which the inequality constraints are
verified everywhere in the space. This GP model has been investigated under different angles:
simulation [6], inference properties [1], noisy observations [5] and Bayesian inference [8]. How-
ever, in its original form, the model is constructed by tensorization of 1-dimensional models,
and thus structurally limited to low dimensional problems (typically less than 5 dimensions).
To scale to higher dimensions, a promising algorithm called MaxMod has been introduced,
which sequentially finds the more active input variables [2]. Recently, MaxMod has been ex-
tended to hundreds of dimensions under additivity assumptions of the GP model [7].

Research directions. Constrained additive GPs are of great interest to address high dimen-
sional problems with inequality information. However, the additivity assumption used in [7]
excludes the presence of interactions of input variables, which may be very restrictive in real-
world applications. To conciliate these two objectives, we propose to consider block-additive
GPs of the form, X

I2I
ZI(xI). (1)

which are additive with respect to groups of input variables. In (1), I contains groups of input
variables. While considering interactions in additive model is not new (see, e.g., [4] in ma-
chine learning, or [9] in computer experiments), there still remain difficult questions to solve,
especially when inequality constraints are considered. To cite a few: how to select the groups,
namely the subsets I 2 I? How to adapt the MaxMod algorithm? How to deal with non-
overlapping groups? How to obtain theoretical guarantees?
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Expected research outputs. The output is methodological and will lead to publications in
international journals in applied mathematics and/or conferences in machine learning. Fur-
thermore, the methodology may also be applied on real-world applications, such as the envi-
ronmental risk studies considered in [2, 7]. We expect to significantly improve the efficiency of
the current models and algorithms by using both the wider class of block-additive GPs and the
physical information brought by inequality constraints.

Supervising team and organizational details. The master internship is funded for about 6
months and will start in Spring 2023. The PhD is funded for 3 years and will start in Fall 2023.
For a student already holding a master degree, the PhD training can start as soon as possible.
The student will be supervised by a leading team on constrained Gaussian processes:

• François Bachoc, Ass. Prof. at Institut de Mathématiques de Toulouse (IMT),

• Andrés F. Lopéz-Lopera, Ass. Prof. at Université Polytechnique Hauts-de-France,

• Olivier Roustant, Prof. at INSA Toulouse & IMT.

The student will be located at IMT, France. An international mobility during the PhD is envis-
aged, as a collaboration with other researchers of the ANR JCJC GAP project.

How to apply? Applications will be considered until the position is filled. The candidates
should have master-level skills in mathematics / statistics / machine learning. Please send a
CV (either in English or French), application letter and grade transcripts (bachelor and master
level) to

• François Bachoc (francois.bachoc@math.univ-toulouse.fr),

• Andrés F. Lopéz-Lopera (andres.lopezlopera@uphf.fr), and

• Olivier Roustant (roustant@insa-toulouse.fr).
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