Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

François Bachoc

Department of Statistics and Operations Research, University of Vienna

(This work was performed while the author was a PhD student, supervised by Josselin Garnier (Paris Diderot University) and Jean-Marc Martinez (French Atomic Energy commission))

UCM 2014 - Sheffield - July 2014
Covariance function estimation for Gaussian processes

Objective: asymptotic analysis of estimation and of spatial sampling impact

Randomly perturbed regular grid and asymptotic normality

Impact of spatial sampling
Kriging model with Gaussian processes

- **Kriging model**: study of a single realization of a Gaussian process $Y(x)$ on a domain $\mathcal{X} \subset \mathbb{R}^d$

- **Goal**: predicting the continuous realization function, from a finite number of observation points

![Graph of a Gaussian process realization](image)

Classical plug-in approach

Given an observation vector of Y at $x_1, \ldots, x_n \in \mathcal{X}$, $y = (Y(x_1), \ldots, Y(x_n))$:

1. **Estimation** of the covariance function
2. Assume the covariance function is known and equal to its estimate. Then **prediction** of the Gaussian process realization is carried out with the explicit Kriging equations

\implies This talk is mainly focused on covariance function estimation
Covariance function

The function $K : \mathcal{X}^2 \to \mathbb{R}$, defined by $K(x_1, x_2) = \text{cov}(Y(x_1), Y(x_2))$.

- We assume here for simplicity that the Gaussian process is centered ($\mathbb{E}(Y(x)) = 0$) \implies the covariance function characterizes the Gaussian process

Parameterization

Covariance function model $\{\sigma^2 K_\theta, \sigma^2 \geq 0, \theta \in \Theta\}$ for the Gaussian Process Y

- σ^2 is the variance parameter
- θ is a multidimensional correlation parameter. K_θ is a stationary correlation function

Observations

Y is observed at $x_1, ..., x_n \in \mathcal{X}$, yielding the Gaussian vector $y = (Y(x_1), ..., Y(x_n))$

Estimation

Objective: build estimators $\hat{\sigma}^2(y)$ and $\hat{\theta}(y)$
Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood

Define R_{θ} as the correlation matrix of $y = (Y(x_1), ..., Y(x_n))$ with correlation function K_{θ} and $\sigma^2 = 1$.

The Maximum Likelihood estimator of (σ^2, θ) is

$$(\hat{\sigma}^2_{ML}, \hat{\theta}_{ML}) \in \arg \min_{\sigma^2 \geq 0, \theta \in \Theta} \frac{1}{n} \left(\ln(|R_{\theta}|) + \frac{1}{\sigma^2} y^t R^{-1}_{\theta} y \right)$$

\Rightarrow Numerical optimization with $O(n^3)$ criterion

\Rightarrow Most standard estimation method. Expected to work best when the covariance function model is well specified
Cross Validation for estimation

\[\hat{y}_{\theta,i,-i} = \mathbb{E}_{\sigma^2,\theta}(Y(x_i)|y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n) \]

\[\sigma^2 c_{\theta,i,-i}^2 = \text{var}_{\sigma^2,\theta}(Y(x_i)|y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n) \]

Leave-One-Out criteria we study

\[\hat{\theta}_{CV} \in \arg\min_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2 \]

and

\[\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_{\hat{\theta}_{CV},i,-i} \right)^2 = 1 \iff \hat{\sigma}^2_{CV} = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_{\hat{\theta}_{CV},i,-i} \right)^2 \]

Robustness

We showed that Cross Validation can be preferable to Maximum Likelihood when the covariance function model is misspecified

François Bachoc, Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification, *Computational Statistics and Data Analysis* 66 (2013) 55-69
Let R_θ be the covariance matrix of $y = (y_1, ..., y_n)$ with correlation function K_θ and $\sigma^2 = 1$.

Virtual Leave-One-Out

$$y_i - \hat{y}_{\theta,i,-i} = \frac{1}{(R^{-1}_\theta)_{i,i}} (R^{-1}_\theta y)_i$$

and

$$c_{i,-i}^2 = \frac{1}{(R^{-1}_\theta)_{i,i}}$$

Using the virtual Cross Validation formula:

$$\hat{\theta}_{CV} \in \arg\min_{\theta \in \Theta} \frac{1}{n} y^t R^{-1}_\theta \text{diag}(R^{-1}_\theta)^{-2} R^{-1}_\theta y$$

and

$$\hat{\sigma}^2_{CV} = \frac{1}{n} y^t R^{-1}_{\hat{\theta}_{CV}} \text{diag}(R^{-1}_{\hat{\theta}_{CV}})^{-1} R^{-1}_{\hat{\theta}_{CV}} y$$

\Rightarrow Same computational cost as ML
The covariance function characterizes the Gaussian process.

Standard Kriging approach: estimation and prediction with "fixed" estimated covariance function

⇒ we focus on the estimation step

We consider Maximum Likelihood and Cross Validation estimation

⇒ numerical optimization with similar computational cost for both methods

⇒ Maximum Likelihood: the standard method

⇒ Cross Validation: can be a more appropriate alternative
1. Covariance function estimation for Gaussian processes

2. Objective: asymptotic analysis of estimation and of spatial sampling impact

3. Randomly perturbed regular grid and asymptotic normality

4. Impact of spatial sampling
Framework and objectives

Estimation
We do not make use of the distinction σ^2, θ. Hence we use the set $\{K_\theta, \theta \in \Theta\}$ of stationary covariance functions for the estimation.

Well-specified model
The true covariance function K of the Gaussian Process belongs to the set $\{K_\theta, \theta \in \Theta\}$. Hence

$$K = K_{\theta_0}, \theta_0 \in \Theta$$

Objectives
- Study the consistency and asymptotic distribution of the Cross Validation estimator
- Confirm that, asymptotically, Maximum Likelihood is more efficient
- Study the influence of the spatial sampling on the estimation
Spatial sampling: initial design of experiments for Kriging

It has been shown that irregular spatial sampling is often an advantage for covariance parameter estimation

- Our question: can we confirm this finding in an asymptotic framework?
Asymptotics (number of observations $n \to +\infty$) is an active area of research (Maximum Likelihood estimator).

Two main asymptotic frameworks

- **fixed-domain asymptotics**: The observation points are dense in a bounded domain.

- **increasing-domain asymptotics**: A minimum spacing exists between the observation points → infinite observation domain.
Choice of the asymptotic framework

Comments on the two asymptotic frameworks

- **fixed-domain asymptotics**
 From 80’-90’ and onwards. Fruitful theory

 However, when convergence in distribution is proved, the asymptotic distribution does not depend on the spatial sampling \(\rightarrow\) **Impossible** to compare sampling techniques for estimation in this context

- **increasing-domain asymptotics**:
 Asymptotic normality proved for Maximum Likelihood (under conditions that are not simple to check)

 (no results for CV)

We study increasing-domain asymptotics for ML and CV with spatial sampling with tunable irregularity
Covariance function estimation for Gaussian processes

Objective: asymptotic analysis of estimation and of spatial sampling impact

Randomly perturbed regular grid and asymptotic normality

Impact of spatial sampling
The randomly perturbed regular grid that we study

- Observation point i:

 $$v_i + \epsilon X_i$$

- $(v_i)_{i \in \mathbb{N}^*}$: regular square grid of step one in dimension d
- $(X_i)_{i \in \mathbb{N}^*}$: iid with uniform distribution on $[-1, 1]^d$

- $\epsilon \in (-\frac{1}{2}, \frac{1}{2})$ is the regularity parameter of the grid.
 - $\epsilon = 0 \rightarrow$ regular grid.
 - $|\epsilon|$ close to $\frac{1}{2} \rightarrow$ irregularity is maximal

Illustration with $\epsilon = 0, \frac{1}{8}, \frac{3}{8}$
Under general **summability**, **regularity** and **identifiability** conditions, we show

Proposition : for ML

- **a.s convergence of the random Fisher information** : The random trace
 \[
 \frac{1}{2n} \text{Tr} \left(R_{\theta_0}^{-1} \frac{\partial R_{\theta_0}}{\partial \theta_i} R_{\theta_0}^{-1} \frac{\partial R_{\theta_0}}{\partial \theta_j} \right)
 \]
 converges a.s to the element \((I_{ML})_{i,j}\) of a \(p \times p\) deterministic matrix \(I_{ML}\) as \(n \to +\infty\)

- **asymptotic normality** : With \(\Sigma_{ML} = I_{ML}^{-1}\)
 \[
 \sqrt{n} \left(\hat{\theta}_{ML} - \theta_0 \right) \to \mathcal{N} (0, \Sigma_{ML})
 \]

Proposition : for CV

Same result with more complex expressions for asymptotic covariance matrix \(\Sigma_{CV}\)

\[\implies\] Same rate of convergence for ML and CV

\[\implies\] The asymptotic covariance matrices \(\Sigma_{ML, CV}\) depend only on the regularity parameter \(\epsilon\)

\[\implies\] we can study the functions \(\epsilon \to \Sigma_{ML, CV}\)
Main ideas for the proof

- A central tool: because of the minimum distance between observation points, the eigenvalues of the random matrices involved are uniformly lower and upper bounded.
- For consistency: bounding from below the difference of M-estimator criteria between θ and θ_0 by the integrated square difference between K_θ and K_{θ_0}.
- For almost-sure convergence of random traces: block-diagonal approximation of the random matrices involved and Cauchy criterion.
- For asymptotic normality of criterion gradient: almost-sure (with respect to the random perturbations) Lindeberg-Feller Central Limit Theorem.
- Conclude with classical M-estimator method.
1. Covariance function estimation for Gaussian processes

2. Objective: asymptotic analysis of estimation and of spatial sampling impact

3. Randomly perturbed regular grid and asymptotic normality

4. Impact of spatial sampling
Analysis of the asymptotic covariance matrices

We study the functions \(\epsilon \rightarrow \Sigma_{ML, CV} \)

Matérn model in dimension one

\[
K_{\ell, \nu}(x_1, x_2) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(2\sqrt{\nu} \frac{|x_1 - x_2|}{\ell} \right)^\nu K_\nu \left(2\sqrt{\nu} \frac{|x_1 - x_2|}{\ell} \right),
\]

with \(\Gamma \) the Gamma function and \(K_\nu \) the modified Bessel function of second order

\(\ell \geq 0 \) : correlation length
\(\nu \geq 0 \) : smoothness parameter

We consider

- The estimation of \(\ell \) when \(\nu_0 \) is known
- The estimation of \(\nu \) when \(\ell_0 \) is known

We study scalar asymptotic variances
Estimation of ℓ when ν_0 is known.

Level plot of $\left[\Sigma_{ML, CV}(\epsilon = 0) \right] / \left[\Sigma_{ML, CV}(\epsilon = 0.45) \right]$ in $\ell_0 \times \nu_0$ for ML (left) and CV (right).

Perturbations of the regular grid are always beneficial for ML.
Estimation of ν when ℓ_0 is known.
Level plot of $[\Sigma_{ML,CV}(\epsilon = 0)] / [\Sigma_{ML,CV}(\epsilon = 0.45)]$ in $\ell_0 \times \nu_0$ for ML (left) and CV (right).

Perturbations of the regular grid are always beneficial for ML and CV.
Some particular functions $\epsilon \to \Sigma_{ML, CV} (1/2)$

Estimation of ℓ when ν_0 is known, for $\ell_0 = 2.7, \nu_0 = 1$.
Plot of $\epsilon \to \Sigma_{ML, CV}$ for ML (left) and CV (right)

The asymptotic variance of CV is significantly larger than that of ML (but ML uses the known variance value, contrary to CV)
Some particular functions $\epsilon \rightarrow \Sigma_{ML, CV}$ (2/2)

Estimation of ν when ℓ_0 is known, for $\ell_0 = 2.7$, $\nu_0 = 2.5$.
Plot of $\epsilon \rightarrow \Sigma_{ML, CV}$ for ML (left) and CV (right)

The asymptotic variance of CV is significantly larger than that of ML (but ML uses the known variance value, contrary to CV)
Let $\hat{Y}_\theta(t)$ be the Kriging prediction of the Gaussian process Y at t, under correlation function K_θ

Let $N_{1,n}$ so that $N_{1,n}^d \leq n < (N_{1,n} + 1)^d$ (\approx edge length of the spatial sampling)

Integrated prediction error

$E_{\epsilon, \theta} := \frac{1}{N_{1,n}^d} \int_{[0,N_{1,n}]^d} \left(\hat{Y}_\theta(t) - Y(t) \right)^2 dt$

We show

Proposition

Consider a consistent estimator $\hat{\theta}$ of θ_0. Then

$|E_{\epsilon, \theta_0} - E_{\epsilon, \hat{\theta}}| = o_p(1)$

Furthermore, there exists a constant $A > 0$ so that for all n,

$E \left(E_{\epsilon, \theta_0} \right) \geq A$

\implies No first-order difference of prediction error with estimated covariance between ML and CV (in the well-specified case)

\implies Other possible asymptotic framework showing a difference in the well-specified case (?)
Impact of spatial sampling on prediction error

Matérn model in dimension one. Plot in $\ell_0 \times \nu_0$ of an estimate (for $n = 100$) of

$$\frac{\mathbb{E} \left[E_{\epsilon, \ell_0, \nu_0} (\epsilon = 0) \right]}{\mathbb{E} \left[E_{\epsilon, \ell_0, \nu_0} (\epsilon = 0.45) \right]}$$

The regular grid is always better for prediction mean square error
CV is consistent and has the same rate of convergence as ML

We confirm that ML is more efficient

In our numerical study: strong irregularity in the sampling is an advantage for covariance function estimation

- With ML, irregular sampling is more often an advantage than with CV
- However, regular sampling is better for prediction with known covariance function

⇒ motivation for using space-filling samplings augmented with some clustered observation points

For further details:

Ongoing work

- Asymptotic analysis of the case of a misspecified covariance-function model with purely random sampling

Other potential perspectives

- Designing other CV procedures (LOO error weighting, decorrelation and penalty term) to reduce the variance
- Start studying the fixed-domain asymptotics of CV, in the particular cases where it is done for ML
Thank you for your attention!