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A short CV

Career

2013 PhD defense in October at University Paris Diderot

2013-2015 Post-doctoral fellow at the University of Vienna

2015-... Maître de Conférences at Institut de Mathématiques de Toulouse

Teaching and service

Gave various courses in Vienna and Toulouse on mathematics and statistics

2016-2018 Responsible of the “CMI” track for bachelor students in mathematics

2016-2018 Co-organizer of the statistics seminar

Reviewer for statistics journals and machine learning conferences
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Student mentoring

PhD theses co-advision
2016-... Andrés Felipe López-Lopera,

Gaussian processes with inequality constraints
With École des Mines de Saint Etienne
Co-supervision with Nicolas Durrande and Olivier Roustant

2017-... Baptiste Broto
Shapley effects in sensitivity analysis + Gaussian processes with permutations
With CEA Saclay (alternative energies and atomic energy commission)
Co-supervision with Marine Depecker and Jean-Marc Martinez

2017-... José Daniel Betancourt
Gaussian processes with functional inputs for coastal flooding
Institut de Mathématiques de Toulouse
Co-supervision with Thierry Klein

Bachelor and master theses advision

2016 Antonin Lavigne (bachelor), with Sébastien Gerchinovitz

2017 Théo Barthe (master)
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Organization of the presentation

1. Covariance parameter estimation for Gaussian processes
since PhD thesis beginning in 2010

Includes funding from OQUAIDO, PEPITO, RISCOPE

2. Other contributions to Gaussian processes
mostly since 2015 in Toulouse

Includes Andrés’, Baptiste’s and José’s theses

Includes funding from OQUAIDO, PEPITO, RISCOPE

3. Valid confidence intervals post-model-selection
since post-doc beginning in 2013

Includes funding from SansSoucis
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1 Covariance parameter estimation for Gaussian processes
Introduction to Gaussian processes
A focus on one paper
Short description of other papers

2 Other contributions to Gaussian processes
A focus on one paper
Short description of other papers

3 Valid confidence intervals post-model-selection
Introduction to post-model-selection inference
A focus on one paper
Short description of other papers
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Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme scenarios...
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Computer models as expensive functions

A computer model can be seen as a deterministic function

f : X ⊂ Rd → R
x 7→ f (x)

x : tunable simulation parameter (e.g. geometry)

f (x) : scalar quantity of interest (e.g. energetic efficiency)

The function f is usually

continuous (at least)

non-linear

only available through evaluations x 7→ f (x)

=⇒ black box model
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Gaussian process

Gaussian processes
Modeling the black box function as a single realization of a Gaussian process x → ξ(x) on the
domain X ⊂ Rd
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Usefulness
Predicting the continuous realization function, from a finite number of observation points
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Gaussian processes

Definition
A stochastic process ξ : X→ R is Gaussian if for any x1, ..., xn ∈ X, the vector (ξ(x1), ..., ξ(xn)) is
a Gaussian vector

Mean and covariance functions
The distribution of a Gaussian process is characterized by

Its mean function : x 7→ m(x) = E(ξ(x)). Can be any function X→ R
Its covariance function (x1, x2) 7→ k(x1, x2) = Cov(ξ(x1), ξ(x2)). Must yield valid covariance
matrices

The covariance function
In most classical cases :

Stationarity : k(x1, x2) = k(x1 − x2)

Continuity : k(x) is continuous ‘⇒′ Gaussian process realizations are continuous

Decrease : k(x) decreases with ||x || and lim||x||→+∞ k(x) = 0

Example k(x1, x2) = σ2e−||x1−x2||/`

François Bachoc Habilitation defense Toulouse - 2018 11 / 46



Conditional distribution

Gaussian process ξ observed at x1, ..., xn

Notation
y = (ξ(x1), ..., ξ(xn))′

R is the n × n matrix [k(xi , xj )]

r(x) = (k(x , x1), ..., k(x , xn))′

m = (m(x1), ...,m(xn))′

Conditional mean
The conditional mean is mn(x) := E(ξ(x)|ξ(x1), ..., ξ(xn)) = m(x) + r(x)′R−1(y −m)

Conditional variance
The conditional variance is kn(x , x) = var(ξ(x)|ξ(x1), ..., ξ(xn)) = k(x , x)− r(x)′R−1r(x)

Conditional distribution
Conditionally to ξ(x1), ..., ξ(xn), ξ is a Gaussian process with (conditional) mean function mn and
(conditional) covariance function (x , y)→ kn(x , y) = k(x , y)− r(x)′R−1r(y)
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Illustration of conditional mean and variance
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Illustration of the conditional distribution

−2 −1 0 1 2

−2
.0

−1
.0

0.
0

0.
5

1.
0

x

y

François Bachoc Habilitation defense Toulouse - 2018 14 / 46



Covariance function estimation

Assume in the rest of the section that the mean function of ξ is zero

One needs to select (estimate) a covariance function in order to apply the prediction formulas

Classically, it is assumed that the covariance function k belongs to a parametric set

Parameterization
Covariance function model {kθ, θ ∈ Θ} for the Gaussian process ξ

θ is the multidimensional covariance parameter. kθ is a covariance function

Observations
ξ is observed at x1, ..., xn ∈ X, yielding the Gaussian vector y = (ξ(x1), ..., ξ(xn))′

Estimation

Objective : build estimator θ̂(y)
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Maximum likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum likelihood
Define Rθ as the covariance matrix of y = (ξ(x1), ..., ξ(xn))′ with covariance function kθ :
Rθ = [kθ(xi , xj )]i,j=1,...,n
The maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ∈Θ

(
1

(2π)n/2|Rθ|
e−

1
2 y′R−1

θ
y
)

⇒ Numerical optimization with O(n3) criterion
⇒ Most standard estimation method
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Cross Validation (CV) for estimation

ŷθ,i,−i = Eθ(ξ(xi )|y1, ..., yi−1, yi+1, ..., yn)

Cross Validation

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

=⇒ Alternative method used by some authors. E.g. Sundararajan and Keerthi 2001, Zhang and
Wang, 2010
=⇒ Cost is O(n3) as well (Dubrule, 1983)
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Two asymptotic frameworks for Gaussian processes

Asymptotics (number of observations n→ +∞) is an active area of research

There are several asymptotic frameworks because there are several possible location
patterns for the observation points

Two main asymptotic frameworks
fixed-domain asymptotics : The observation points are dense in a bounded domain

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

increasing-domain asymptotics : number of observation points is proportional to domain
volume −→ unbounded observation domain.
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A focus on one paper : asymptotics for CV in misspecified case

F. Bachoc, “Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case”, Bernoulli, 2018.

Misspecified case

The covariance function k of ξ does not belong to

{kθ, θ ∈ Θ}

=⇒ There is no true covariance parameter but there may be optimal covariance parameters for
difference criteria :

prediction mean square error

confidence interval reliability

multidimensional Kullback-Leibler distance

...

=⇒ Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria
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Expansion-domain asymptotics with random sampling

The observation points (x1, . . . , xn) = (X1, . . . ,Xn) are iid and uniformly distributed on
[0, n1/d ]d

We consider a covariance model {kθ; θ ∈ Θ}
Regularity and summability conditions

François Bachoc Habilitation defense Toulouse - 2018 20 / 46



CV minimizes the integrated prediction error

Let ξ̂θ(t) be the prediction of ξ(t), under covariance function kθ , from observations ξ(x1), ..., ξ(xn)

Integrated prediction error :

En,θ :=
1
n

∫
[0,n1/d ]d

(
ξ̂θ(t)− ξ(t)

)2
dt

Intuition :
The variable t above plays the same role as a new observation point Xn+1, uniform on [0, n1/d ]d

and independent of X1, ...,Xn

So we have
E
(
En,θ

)
= E

([
ξ(Xn+1)− Eθ|X (ξ(Xn+1)|ξ(X1), ..., ξ(Xn))

]2)
and so when n is large

E
(
En,θ

)
≈ E

(
1
n

n∑
i=1

(yi − ŷθ,i,−i )
2

)
=⇒ This is an indication that the Cross Validation estimator can be optimal for integrated
prediction error
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CV minimizes the integrated prediction error

We show

Theorem
With

En,θ =

∫
[0,n1/d ]d

(
ξ̂θ(t)− ξ(t)

)2
dt

we have
En,θ̂CV

= inf
θ∈Θ

En,θ + op(1)

Comment :

The optimal (unreachable) prediction error infθ∈Θ En,θ is lower-bounded =⇒ CV is indeed
asymptotically optimal
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Short description of other papers

In Furrer, Bachoc, Du 2016, we show the increasing-domain asymptotic consistency of
covariance tapering

Motivation : approximation to circumvent the O(n3) cost

In Bachoc, Furrer 2017, we lower bound the smallest eigenvalues of covariance matrices
from multivariate processes

Motivation : appears as a necessary condition for increasing-domain asymptotic results

In Velandia, Bachoc, Bevilacqua, Gendre, Loubes 2017 and Bachoc, Lagnoux, Nguyen 2017,
we study consistency and asymptotic normality under fixed-domain asymptotics

For exponential covariance function in dimension one
Bivariate maximum likelihood and cross validation
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A focus on one paper : consistency of stepwise uncertainty reduction

J. Bect, F. Bachoc and D. Ginsbourger, A supermartingale approach to Gaussian process
based sequential design of experiments, Bernoulli, forthcoming

We consider a Gaussian process ξ on a fixed compact X ⊂ Rd

continuous mean function m

continuous covariance function k

continuous sample paths

Motivation
When we observe ξ(x1), ..., ξ(xn), the mean and covariance functions become mn and kn

=⇒We want to choose x1, ..., xn so that mn and kn become maximally informative

e.g. kn(x , x) small, or kn(x , x) small when mn(x) is large

Sequential design
It is more efficient to select xi+1 after ξ(x1), ..., ξ(xi ) are observed

The observation points x1, ..., xn become random observation points X1, ...,Xn

François Bachoc Habilitation defense Toulouse - 2018 25 / 46



Uncertainty functionals

Gaussian measures
A Gaussian measure ν is a measure on C(X) corresponding to a Gaussian process with
continuous sample paths (see e.g. Bogachev 98).

Uncertainty functional
It is a function H : ν 7→ H(ν) ∈ [0,∞)
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Uncertainty functional : example

Expected improvement (EI) (Mockus 78, Jones et al. 98)

H(ν) = E(max
u∈X

ξν(u))− max
u∈X;kν (u,u)=0

E(ξν(u))

where

ν has covariance function kν
ξν is a Gaussian process with distribution ν

=⇒ global optimization
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Stepwise Uncertainty Reduction (SUR)

Let
Condξ(X1),...,ξ(Xi ),ξ(x)

be the conditional distribution of ξ given ξ(X1), . . . , ξ(Xi ), ξ(x)

Stepwise Uncertainty Reduction (SUR)
The choice of observation points (Xi )i≥1 follows a SUR strategy when

Xi+1 ∈ argmin
x∈X

E|ξ(X1),...,ξ(Xi )

(
H
[
Condξ(X1),...,ξ(Xi ),ξ(x)

])
=⇒ minimizing the expected uncertainty after one additional evaluation of ξ
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Expected improvement example

Let En be the conditional mean given ξ(X1), . . . , ξ(Xn)

Expected improvement

Xn+1 ∈ argmax
x∈X

En

((
ξ(x)− max

u∈X;kn(u,u)=0
ξ(u)

)+
)
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Illustration of Expected Improvement

(for minimization)

(Figure borrowed from Viana et al. 13, Journal of global optimization)
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Consistency

We want to provide general conditions ensuring that

H
(
Condξ(X1),...,ξ(Xn)

) a.s.−−−−→
n→∞

0

=⇒ Uncertainty going to zero
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Consistency

Let
Gn = sup

x∈X

(
H
[
Condξ(X1),...,ξ(Xn)

]
− E|ξ(X1),...,ξ(Xn)

{
H
[
Condξ(X1),...,ξ(Xn),ξ(x)

]})
(maximum expected uncertainty reduction)

Theorem
Let H denote an uncertainty functional with the supermartingale property

uncertainty always decreases on average when adding an observation

Let (Xn) follow a SUR strategy

Then Gn → 0 almost surely

If, moreover, continuity conditions hold and if H is such that

no possible uncertainty reduction with one more observation =⇒ no uncertainty

then
H
(
Condξ(X1),...,ξ(Xn)

) a.s.−−−−→
n→∞

0
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Summary of additional results

We prove that the general results apply to four examples

We introduce the notion of regular loss function, where H is an average loss when estimating
a quantity of interest (e.g. maximum and maximizer of ξ).

We provide a specific convergence result for regular loss functions, with easier to check
assumptions
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Short description of other papers

In Bachoc, Ammar, Martinez 2016, we apply Gaussian processes to nuclear engineering
Comparison with neural networks and kernel regression
Outlier and numerical instability detection

In Rullière, Durrande, Bachoc, Chevalier 2017 and Bachoc, Durrande, Rullière, Chevalier
2018+, we study the aggregation of Gaussian process models from data subsets

Motivation : approximation to circumvent the O(n3) cost

In Bachoc, Gamboa, Loubes, Venet 2017, we study Gaussian processes indexed by
one-dimensional probability distributions

Transport-based distances for covariance functions
Increasing-domain consistency and asymptotic normality for maximum likelihood

In López-Lopera, Bachoc, Durrande, Roustant 2018 and Bachoc, Lagnoux, López-Lopera
2018+ we study Gaussian processes with inequality constraints

Boundedness and/or monotonicity and/or convexity
More intensive MCMC procedures
Fixed-domain consistency and asymptotic normality for constrained maximum likelihood
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Introduction to post-model-selection inference

Data generating process

Location model
Y = µ+ U

Y of size n × 1 : observation vector

µ of size n × 1 : unknown mean vector

U ∼ N (0, σ2In)

σ2 unknown

=⇒Working distribution Pn,µ,σ
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Linear submodels

Consider a design matrix X of size n × p

p < n or p ≥ n

Linear submodels

Subsets M ⊂ {1, ..., p} of the columns of X . Approximating µ by

X [M]v

X [M] of size n × |M| : only the columns of X that are in M

X [M] full rank

v of size |M| × 1 : needs to be selected/estimated

Restricted least square estimator

β̂M =
(
X ′[M]X [M]

)−1 X ′[M]Y
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The projection-based target

Let for |M| ≤ n
β

(n)
M = argmin

v
||µ− X [M]v ||

β
(n)
M =

(
X ′[M]X [M]

)−1 X ′[M]µ

Then β(n)
M is a target of inference here
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Post-model-selection inference

Model selection procedure

Data-driven selection of the model with M̂(Y ) = M̂
Ex : sequential testing, AIC, BIC, LASSO

In Berk et al. 2013, annals of statistics, the target for inference is β
(n)

M̂
and M̂ can be any

model selection procedure
Model selector M̂ is "imposed"
Objective : best coefficients in this imposed model

This is what we call a post-model-selection inference problem
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A focus on one paper : confidence intervals for post-model-selection
predictors

F. Bachoc, H. Leeb, B.M. Pötscher, “Valid confidence intervals for post-model-selection
predictors”, Annals of Statistics (forthcoming).

Predictors

Let
y0 = µ0 + u0

u0 ∼ N (0, σ2)

Let x0 be a p × 1 vector
We consider the predictor target

x ′0[M̂]β
(n)

M̂

François Bachoc Habilitation defense Toulouse - 2018 40 / 46



The confidence interval construction of Berk et al. 2013

Let a nominal level 1− α ∈ (0, 1) be fixed
The method of Berk et al. (2013) directly yields confidence intervals for x ′0[M̂]β

(n)

M̂
of the form

CI = x ′0[M̂]β̂M̂ ± K1||sM̂ ||σ̂,

with

s′M = x ′0[M] (X ′[M]X [M])−1 X ′[M]

σ̂2 a variance estimator with appropriate properties

"POSI Constant" K1 does not depend on Y (but on X , x0) (main novelty)

Interpretation
Except from K1 : standard confidence intervals for fixed M

K1 adresses the randomness of M̂

The CIs satisfy
inf

µ∈Rn,σ>0
Pn,µ,σ

(
x ′0[M̂]β

(n)

M̂
∈ CI

)
≥ 1− α

=⇒ Uniformly valid confidence interval
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Other post-model-selection constants

Issues when x0 is partially observed

The constant K1 depends on all the components of x0

It can happen that only x0[M̂] is observed

model selection for cost reason

We hence construct other constants so that

K1 ≤ K2 ≤ K3 ≤ K4

(The CIs given by K2,K3,K4 are hence universally valid)
K2,K3,K4 depend only on x0[M̂]

Remarks :
K4 is introduced in a version of Berk et al. 2013

The cost of computing K1 can be exponential in p (in practice : p ≤ 30 if all submodels
considered)

K4 is cheap to compute
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Large p analysis of K1,K2,K3,K4

K1 depends on x0 and X , and it does not seem easy to provide a systematic large p analysis,
for any X , x0

When x0 = ei (base vector), Berk et al. 2013 show that (for p ≤ n)
When X has orthogonal columns, K1 has rate

√
log(p)

There exists sequences of X so that K1 has rate
√

p

We show

Proposition
=⇒When all submodels are allowed for
(a) Let X have orthogonal columns. There exists a sequence of vectors x0 such that

lim inf
p→∞

K1(x0)/
√

p > 0

(b) K2,K3,K4 have rate
√

p for any sequence of matrices X

=⇒When submodels are restricted
K4 has a smaller rate that is explicit
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Design-independent target

Issue : The target x ′0[M̂]β
(n)

M̂
depends on X but is a predictor of y0 from x0

Issue is solved when lines of X and x ′0 are realizations from the same distribution L

We define the design-independent target x0[M̂]′β
(?)

M̂

It depends on L but not on X

Theorem : asymptotic coverage for fixed p

Under conditions on X and M̂ :

For CI obtained by K1,K2,K3,K4,

inf
µ,σ

Pn,µ,σ

(
x ′0[M̂]β

(?)

M̂
∈ CI

∣∣∣X) ≥ (1− α) + op(1)
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Short description of other papers

In Bachoc, Ehler, Gräf 2017, we use optimal configurations of lines for computation of
post-model-selection inference constants K

Link with potential minimization in applied mathematics

In Bachoc, Blanchard, Neuvial 2018, we provide an upper bound on K1 under restricted
isometry properties (RIP)

Asymptotically tight
Extends results on orthogonal X

In Bachoc, Preinerstorfer, Steinberger 2018, we extend the previous confidence intervals
General data generating processes
Non-linear models (e.g. binary regression)
Conservative intervals for unknown variances
Uniform asymptotic guarantees for fixed dimension
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General conclusion

Summary
Gaussian processes (Section 1 + Section 2)

Bayesian framework over functions
Asymptotic results for covariance estimation and sample path inference
Applications to computer models

Post-model-selection inference (Section 3)
Selected model is imposed, inference over projection-based target
Asymptotic guarantees
Many numerical comparisons between procedures

Other work and ongoing work→ manuscript

Some open perspectives

More general fixed-domain asymptotic results for Gaussian processes

Tailored Gaussian processes for specific data

Post-model-selection inference : algorithms for approximating/bounding K1

Thank you for your attention !
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