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Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme scenarios...
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Computer models as expensive functions

A computer model can be seen as a deterministic function

f : X ⊂ Rd → R
x 7→ f (x)

x : tunable simulation parameter (e.g. geometry)

f (x) : scalar quantity of interest (e.g. energetic efficiency)

The function f is usually

continuous (at least)

non-linear

only available through evaluations x 7→ f (x)

=⇒ black box model
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Gaussian process

Gaussian processes (Kriging model)
Modeling the black box function as a single realization of a Gaussian process ξ(x) on the
domain X ⊂ Rd
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Usefulness
Predicting the continuous realization function, from a finite number of observation points
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Gaussian processes

Definition
A stochastic process ξ : X→ R is Gaussian if for any x1, ..., xn ∈ X, the vector (ξ(x1), ..., ξ(xn)) is
a Gaussian process

Mean and covariance functions
The distribution of a Gaussian process is characterized by

Its mean function : x 7→ m(x) = E(ξ(x)). Can be any function X→ R
Its covariance function (x1, x2) 7→ k(x1, x2) = Cov(ξ(x1), ξ(x2))

The covariance function
The function k : X2 → R, defined by k1(x1, x2) = cov(ξ(x1), ξ(x2))

In most classical cases :

Stationarity : k(x1, x2) = k(x1 − x2)

Continuity : k(x) is continuous ‘⇒′ Gaussian process realizations are continuous

Decrease : k(x) decreases with ||x || and lim||x||→+∞ k(x) = 0
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The covariance function

The covariance function

k : (x1, x2)→ k(x1, x2) = cov(ξ(x1), ξ(x2))

k must me symmetric non-negative definite

∀n ∈ N, ∀x1, ..., xn ∈ Rd , ∀λ1, ..., λn ∈ R :
n∑

i,j=1

λiλj k(xi , xj ) ≥ 0

=⇒ the covariance matrix [k(xi , xj )]i,j=1,...,n must be non-negative definite
=⇒ Many possibilities on Rd

Often, we require the covariance function to be positive definite :

if (x1, ..., xn) are 2-by-2 distinct and (λ1, ..., λn) 6= (0, ..., 0) :
n∑

i,j=1

λiλj k(xi , xj ) > 0

=⇒ the covariance matrix [k(xi , xj )]i,j=1,...,n must be positive definite
=⇒ No ξ(x) can be expressed as a linear combination of ξ(x1), ..., ξ(xn) when x1 6= x , ..., xn 6= x
=⇒≈ the realizations of ξ are sufficiently complex
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Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 covariance function, for a Gaussian

process on R is parameterized by

A variance parameter σ2 > 0

A correlation length parameter ` > 0

It is defined as

kσ2,`(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|

`

)
e−
√

6
|x1−x2|
`

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

co
v

l=0.5
l=1
l=2

Interpretation
Stationarity, continuity, decrease

σ2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

⇒ Natural generalization on Rd
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Choice of the mean and covariance functions

In practice the mean and covariance functions are estimated from the observations
ξ(x1), ..., ξ(xn)

Typical estimation techniques are maximum likelihood (Mardia 83, Zhang 04) and cross
validation (Bachoc 13)

In the rest of the talk, we assume that the mean function m and the covariance function k are
known
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Conditional distribution

Gaussian process ξ observed at x1, ..., xn

Notation
y = (ξ(x1), ..., ξ(xn))t

R is the n × n matrix [k(xi , xj )]

r(x) = (k(x , x1), ..., k(x , xn))t

m = (m(x1), ...,m(xn))t

Conditional mean
The conditional mean is mn(x) := E(ξ(x)|ξ(x1), ..., ξ(xn)) = m(x) + r(x)t R−1(y−m).

Conditional variance
The conditional variance is
kn(x , x) = var(ξ(x)|ξ(x1), ..., ξ(xn)) = E

[
(ξ(x)−mn(x))2] = k(x , x)− r(x)t R−1r(x).

Conditional distribution
Conditionally to ξ(x1), ..., ξ(xn), ξ is a Gaussian process with (conditional) mean function mn and
(conditional) covariance function (x1, x2)→ kn(x1, x2) = k(x1, x2)− r(x1)

t R−1r(x2)
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Illustration of conditional mean and variance
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Illustration of the conditional distribution
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Application to computer experiments

Gaussian process model for computer experiments

Basic idea : representing the code function X ⊂ Rd → R by a realization of a Gaussian process

Bayesian framework on a fixed function

What we obtain
Metamodel of the code : the Gaussian process conditional mean function approximates the
code function, and its evaluation cost is negligible

Error indicator with the conditional variance

Full conditional Gaussian process⇒ possible goal-oriented iterative strategies for
optimization, failure domain estimation, probability estimation, code calibration...

=⇒ In the rest of the talk we focus on these iterative strategies
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Sequential designs

We consider a Gaussian process ξ on a compact X ⊂ Rd with continuous mean function m,
continuous covariance function k and continuous sample paths

Motivation
When we observe ξ(x1), ..., ξ(xn), the mean and covariance functions become mn and kn

=⇒We want to choose x1, ..., xn so that mn and kn become maximally informative (e.g.
kn(x , x) small, or kn(x , x) small when mn(x) is large)

Sequential design
It is more efficient to select xi+1 after ξ(x1), ..., ξ(xi ) are observed

The observation points x1, ..., xn become random observation points X1, ...,Xn
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Sequential designs : definitions

Definition
A sequence (Xn)n≥1 of random points in X will be said to form a (non-randomized) sequential
design if, for all n ≥ 1, Xn is Fn−1-measurable, where

Fk = σ(X1, ξ(x1), ...,Xk , ξ(xk ))

Gaussian measures
A Gaussian measure ν is a measure on C(X) corresponding to a Gaussian process with
continuous sample paths (see e.g. Bogachev 98).

ν is characterized by the mean function mν and the covariance function kν
We let GP(mν , kν) denote the Gaussian measure ν
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The conditioning mapping

The conditioning mapping
We let Condx1,z1,...,xn,zn (ν) be the Gaussian measure GP(mν,n, kν,n) where

mν,n(x) = mν(x) + r(x)t R−1(z−m)

and
kn(x1, x2) = kν(x1, x2)− r(x1)

t R−1r(x2)

with

z = (z1, ..., zn)t

R is the n × n matrix [kν(xi , xj )]

r(x) = (kν(x , x1), ..., kν(x , xn))t

m = (mν(x1), ...,mν(xn))t

A convenient result
For any sequential design of experiment (Xi ), the conditional distribution of ξ (with Gaussian
measure ν) given X1, ξ(X1), ...,Xn, ξ(Xn) is CondX1,ξ(X1),...,Xn,ξ(Xn)(ν)

=⇒ conditioning ‘as if’ X1, ...,Xn were deterministic
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Uncertainty functional

Let ν = GP(mν , kν) be a Gaussian measure and let ξν be a Gaussian process with measure ν

Uncertainty functional
It is a function H : ν 7→ H(ν) ∈ [0,∞)
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Uncertainty functional : examples

Expected global improvement (EGO) (Mockus 78, Jones et al 98)

H(ν) = E(max
u∈X

ξν(u))− max
u∈X;kν (u,u)=0

E(ξν(u))

Knowledge gradient (Frazier et al 08, 09)

H(ν) = E(max
u∈X

ξν(u))−max
u∈X

E(ξν(u))

Integrated Bernoulli variance (Bect at al 12, Chevalier et al 14)

H(ν) =

∫
X

pν(u)(1− pν(u))du

with pν(u) = P(ξν(u) ≤ T ) for fixed T ∈ R
Variance of excursion volume (Bect at al 12, Chevalier et al 14)

H(ν) = Var
(∫

X
1ξν (u)≤T du

)
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Stepwise Uncertainty Reduction

Let
Jx (ν) = E

(
H(Condx,ξν (x)(ν))

)
Jx (ν) is the expected uncertainty after observing ξ(x)

Stepwise Uncertainty Reduction (SUR)
The sequential design (Xi ) follows a SUR strategy when

Xi+1 ∈ argmin
x∈X

Jx (CondX1,ξ(X1),...,Xi ,ξ(Xi )
(ν0))

with ν0 the distribution of the Gaussian process ξ
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For the examples

Let En, Covn and Pn denote conditional mean, covariance and probability for the distribution of ξ
given Fn

Expected global improvement

Xn+1 ∈ argmax
x∈X

En

((
ξ(x)− max

u∈X;kn+1,x (u,u)=0

)+)

with kn+1,x (u, v) = Covn(ξ(u), ξ(v)|ξ(x))
Knowledge gradient

Xi+1 ∈ argmax
x∈X

E
(

max
u∈X

En(ξ(u)|ξ(x))
)

Integrated Bernoulli variance

Xn+1 ∈ argmin
x∈X

E
(∫

X
pn+1,x (u)(1− pn+1,x (u))du

)
with pn+1,x (u) = Pn(ξ ≤ T |ξ(x))
Variance of excursion volume

Xn+1 ∈ argmin
x∈X

E
(

Varn

(∫
X

1ξ(u)≤T du
∣∣∣∣ ξ(x)))
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Illustration of Expected Global Improvement

(for minimization)

(Figure borrowed from Viana et al 13, Journal of Global Optimization)
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Some applications

Expected global improvement is the most used SUR strategy
optimal design (car industry...)
optimal fitting of parametric model (chemistry...)

Integrated Bernoulli variance and Variance of excursion volume are used in failure domain
estimation

nuclear engineering...

Knowledge gradient can be used when Expected global improvement is used
drug discovery...
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Goal

The rest of the talk is based on joint work with Julien Bect and David Ginsbourger

Preliminary version

Bect, Bachoc and Ginsbourger ; A supermartingale approach to Gaussian process based
sequential design of experiments, Arxiv 1608.01118v1

A final version is in preparation

We want to provide general conditions ensuring that

H
(
CondX1,ξ(X1),...,Xn,ξ(Xn)(ν0)

)
→a.s.

n→∞ 0

with ν0 the distribution of the Gaussian process ξ
=⇒ Uncertainty going to zero
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Existing consistency results for sequential strategies

Srinivas et al 12 provide rates of convergence for the sequential strategy GP-UCB
(optimization)

Bull 11 provide rates of convergence for expected improvement. Here the function f to
optimize is deterministic and belongs to the RKHS of k
However in general P(ξ ∈ RKHS(k)) = 0 =⇒ problematic from a Bayesian point of view

Bect et Vazquez 10 prove the consistency of Expected Global Improvement. They work with
covariance functions which are not too smooth and not degenerate (we will improve this point
here)
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Convergence of conditional moments

Convergence
For any sequential design of experiments (Xi ), a.s. as n→∞

The conditional mean function mn converges to a random continuous function m∞ : X→ R
The conditional covariance function kn converges to a random continuous function
k∞ : X× X→ R
The above convergences are uniform on X and X× X

Proof : the conditional variance is decreasing + martingale arguments

Limit conditionning
Let F∞ be the sigma-algebra generated by ∪n≥1Fn. Then conditionally to F∞, ξ is a Gaussian
process with mean function m∞ and covariance function k∞
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An ‘Ad Hoc’ convergence for Gaussian measures

Definition
Let (νn) denote a sequence of Gaussian measures. We will say that (νn) is an almost surely
convergent sequence of conditional distributions if

i) there exists a random Gaussian measure ν∞ such a.s., as n→∞, mνn and kνn converge to
mν∞ and kν∞ uniformly on X and X× X ;

ii) there exists a Gaussian process ξ such that, for all n ∈ N ∪ {+∞},
νn = P

(
ξ ∈ · | F̃n

)
for some σ-algebra F̃n ⊂ F .

Two Examples

For any sequential design, the conditional distribution Pξn = P(ξ ∈ .|Fn) converges almost
surely to Pξ∞ = P(ξ ∈ .|F∞)

Let x∞ ∈ X such that k(x∞, x∞) > 0. Let (xk ) be a sequence in X such that xk → x∞. For
each k ∈ N ∪ {+∞}, let νk = Condxk , ξ(xk )

(
Pξ0
)
. Then (νk ) is an almost surely convergent

sequence of conditional distributions with limit ν∞.
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Supermartingale property

Definition
The functional H is said to have the supermartingale property if, for any sequential design X1, X2,
. . . , the sequence

(
H(Pξn)

)
is an (Fn)-supermartingale.

The supermartingale propery holds for the four examples.

Expected global improvement

with Pξn+1,ξ(x) = Condx,ξ(x)(P
ξ
n )

H(Pξn )− En[H(Pξn+1,ξ(Xn+1)
)] = En(max

u∈X
ξ(u))− En

(
En(max

u∈X
ξ(u)|ξ(Xn+1))

)
− max

kn(u,u)=0
En(ξ(u)) + En

(
max

kn(u,u|ξ(Xn+1))=0
En(ξ(u)|ξ(Xn+1))

)

≥ En

(
max

kn(u,u)=0
En(ξ(u)|ξ(Xn+1))

)
− max

kn(u,u)=0
En(ξ(u))

= max
kn(u,u)=0

ξ(u)− max
kn(u,u)=0

ξ(u)

= 0

from law of total variance and since kn(u, u|ξ(x)) = Varn(ξ(u)|ξ(u)) ≤ kn(u, u)
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Supermartingale property

Integrated Bernoulli variance
Let pn+1,x,z(u) = En(1ξ(u)≤T |ξ(x) = z)

H(Pξn+1) = En

(∫
X

pn+1,Xn+1,ξ(Xn+1)
(u)(1− pn+1,Xn+1,ξ(Xn+1)

(u))du
)

=

∫
X
E
(
varn(1ξu≤T |ξ(Xn+1))

)
du

≤
∫
X

varn(1ξu≤T )du

= H(Pξn )
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The convergence result

Let
G(ν) = sup

x∈X

(
H(ν)− E(H(Condx,ξν(x) (ν)))

)
(maximum expected uncertainty reduction)

Theorem
Let H denote an uncertainty functional with the supermartingale property.
Let (Xn) denote a SUR sequential design for H

Xn+1 ∈ argmin
x∈X

E(H(Condx,ξ(x)(P
ξ
n )))

Then G
(
Pξn
)
→ 0 almost surely. If, moreover,

i) H
(
Pξn
)
→H

(
Pξ∞
)

almost surely,

ii) G
(
Pξn
)
→ G

(
Pξ∞
)

almost surely ;

iii) G(ν) = 0 =⇒H(ν) = 0 ;

then H
(
Pξn
)
→ 0 almost surely.

Assumptions i) and ii) are continuity assumptions
Assumption iii) is essential, it means

no possible uncertainty reduction with one more observation =⇒ no uncertainty
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Summary of additional results

We prove that the general results apply to the four examples

We introduce the notion of regular loss function, where H is an average loss when estimating
a quantity of interest (e.g. maximum of ξ, {u ∈ X : ξ(u) ≤ T},...).
We provide a specific convergence result for regular loss function, with easier to check
assumptions
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Conclusion

Summary

Gaussian process provide a Bayesian framework on deterministic function (e.g. computer
models)

The probabilistic framework enables to define expected uncertainties and Stepwise
Uncertainty Reduction (SUR) strategies

We prove convergence of SUR strategies

Remark : Our proof does not rely on showing that (Xi ) is almost surely dense in X. We allow
for degenerate or very smooth covariance functions. Sometimes we do not need
supu∈X kn(u, u)→ 0

Two open questions

When the covariance function is estimated (frequentist or Bayesian)

Rate of convergence

Thank you for your attention !
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