
Chapter 6

Stochastic approximation

This chapter is dedicated to stochastic approximation for large sums. Stochastic approximation
has a long history starting with Robbins-Monro algorithm [53] with the ODE method [38] from
Ljung and latter extensions, see [11] for a complete exposition and [16]. The idea of using stochastic
approximation in large scale setting gained significance interest in the machine learning littera-
ture see for example [17]. We provide example of non asymptotic convergence rate analyses for
stochastic subgradient and stochastic proximal gradient for finite sums.

6.1 Motivation, large n

6.1.1 Lasso estimator

The Lasso estimator is given as follows:

θ̂�1 ∈ arg min
θ∈Rd

1

2n
�Xθ − Y �2 + λ�θ�1.

We have seen that the optimization problem has a favorable structure which allow to devise efficient
algorithms. Another way to write the same optimization problem is to consider

θ̂�1 ∈ arg min
θ∈Rd

1

n

n�

i=1

1

2
(xT

i θ − yi)
2 + λ�θ�1,

which actually exhibits an additional sum structure. In this chapter we will be considering opti-
mization problems of the form

min
x∈Rd

F (x) :=
1

n

n�

i=1

fi(x) + g(x). (6.1)

where fi and g are convex lower semicontinuous convex functions.

6.1.2 Stochastic approximation

To solve problem (6.1), one may use first order methods such as the ones described in the previous
chapter. Computing a subgradient in this case require to compute subgradient of fi, i = 1, . . . , n
and average them. The computational cost is of the order of n subgradient computation and n
vector operations. When n is very large, or even infinite, this could be prohibitive. Intuitively, if
there is redundancy in the elements of the sum, one should be able to take advantage of it. For
example, suppose that fi = f , for all i, then blindly computing the gradient of F has a cost of the
order n× d, while only d operations (computing one gradient would suffice).
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66 CHAPTER 6. STOCHASTIC APPROXIMATION

More generally, one could rewrite the objective function in (6.1) in the following form:

F : x �→ E [fI(x)] + g(x),

where I denotes a uniform random variable over {1, . . . , n}. Stochastic approximation, or stochas-
tic optimization algorithm allow to handle such objectives. The main algorithmic step is as follows:

• For any x ∈ Rd,

• Sample i uniformly at random in {1, . . . , n}.

• Perform an algorithmic step using only the value of fi(x) and ∇fi(x) or eventually v ∈ ∂fi(x)

The simple example can be extended to more general random variables I and under proper in-
tegrability and domination conditions, one can invert gradient (or subgradient) and expectation,
assuming g = 0 for simplicity

• If for each value of I, fI is continuously differentiable, we then have for any x ∈ Rd,

E [∇fI(x)] = ∇E [fI(x)] = ∇F (x)

• Assume that fI is convex for all realizations of I. Assume that we have access to a random
variable vI such that vI ∈ ∂fI(x) almost surely, then the expectation is convex and

E [vI ] ∈ ∂E [fI(x)] = ∂F (x).

Hence the process of using a single element of the sum in an algorithm can be seen as performing
optimization based on noisy unbiased estimates of the gradient, or subgradient, of the objective.
This intuition is described more formaly in the coming section.

6.2 Prototype stochastic approximation algorithm
This section describes Robbins-Monro algorithm for stochastic approximation. Consider a Lips-
chitz map h : Rp �→ Rp, the goal is to find a zero of h. The operator only has access to unbiased
noisy estimates of h. The Robins-Monro algorithm is described as follows, (Xk)k∈N is a sequence
of random variables such that for any k ∈ N

Xk+1 = Xk + αk (h(Xk) +Mk+1) (6.2)

where

• (αk)k∈N is a sequence of positive step sizes satisfying

n�

i=1

αk = +∞

n�

i=1

α2
k < +∞

• (Mk)k∈N is a martingale difference sequence with respect to the increasing family of σ-fields

Fk = σ(Xm,Mm,m ≤ k) = σ(X0,M1, . . . ,Mk).

This means that E [Mk+1|Fk] = 0, for all k ∈ N.

• In addition, we assume that there exists a positive constant C such that

sup
k∈N

E
�
�Mk+1�22|Fk

�
≤ C.
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The intuition here is that our hypotheses on the step size ensure that the quantity
�+∞

k=0 E
�
α2
k�Mk+1�2|Fk

�

is finite and hence the zero mean martingale
�K

k=0 αkMk+1 has square summable increments and
converges to a square integrable random varible M in Rp both almost surely and in L2 (see for
example [29, Section 5.4]).

The long term behaviour of such recursions is at the heart of the field of stochastic approx-
imation. The fact that the step sizes tends to 0 and that the sum of perturbation stabilizes
suggests that in the limit one obtains trajectories of a continuous time differential equation. This
is formalized in the next section.

6.3 The ODE approach

For optimization we may choose h = −∇F (x) assuming that F has Lispchitz gradient. We consider
Robbins-Monro algorithm in this setting. This idea dates back to Ljung [38], see also [11] for an
advanced presentation. An accessible exposition of the following result is found in [16],

Theorem 6.3.1. Conditioning on boundedness of {Xk}k∈N, almost surely, the (random) set of
accumulation point of the sequence is compact connected and invariant by the flow generated by
the continuous time limit:

ẋ = h(x).

This theorems means that for any x̄ accumulation point of the algorithm, the unique solution
x : t �→ Rp of the continuous time ODE satisfying x(0) = x̄ remains bounded for all t ∈ R. This
allows to conclude in the convex case.

Corollary 6.3.1. If F is convex, differentiable and attains its minimum, setting h = −∇F ,
conditioning on the event that supk∈N �Xk� is finite, almost surely, all the accumulation points of
Xk are critical points of F .

Proof. Fix x̄ ∈ Rp such that ∇F (x̄) �= 0, this means that F (x̄)−F ∗ > 0. Consider the solution to

ẋ = ∇F (x),

starting at x̄, we have

∂

∂t
F (x(t)) = �∇F (x(t))�22 ≥ 0

∂

∂t
�x(t)− x∗�22 = �∇F (x(t)), x(t)− x∗� ≥ F (x(t))− F ∗ ≥ F (x̄)− F ∗ > 0.

We deduce that F is increasing along the trajectory and diverges, hence the solution escapes any
compact set which means that x̄ does not belong to a compact invariant set.

The power of the ODE approach lies in the fact that it allows to treat much more complicated
situations beyond convexity and differentiability.

6.4 Rates for convex optimization

In the context of convex optimization problems of the form described in the introduction of this
chapter, one can obtain precise covergence rate estimates using elementary arguments.
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6.4.1 Stochastic subgradient descent
Proposition 6.4.1. Consider the problem

min
x∈Rd

F (x) :=
1

n

n�

i=1

fi(x),

where each fi is convex and L-Lipschitz. Choose x0 ∈ R and a sequence of random variables
(ik)k∈N independently identically distributed uniformly on {1, . . . , n} and a sequence of positive
step sizes (αk)k∈N. Consider the recursion

xk+1 = xk − αkvk (6.3)
vk ∈ ∂fik(xk) (6.4)

Then for all K ∈ N, K ≥ 1

E [F (x̄K)− F ∗] ≤ L�x0 − x∗�22 + 2G2

L

�K
k=0 α

2
k

2
�K

k=0 αk

where x̄K =
�K

k=0 αkxk�K
k=0 αk

.

Proof. We fix k ∈ N and condition on i1, . . . , ik so that xk and xk+1 are fixed. We have for any
k ∈ N

1

2
�xk+1 − x∗�22 =

1

2
�xk − αkvk − x∗�22

=
1

2
�xk − x∗�22 + αkv

T
k (x

∗ − xk) +
α2
k

2
�vk�22

≤ 1

2
�xk − x∗�22 + αk(fik(x

∗)− fik(xk)) +
α2
k

2
L2.

Conditioning on xk and taking expectation with respect to ik,

E
�
1

2
�xk+1 − x∗�22|xk

�
≤ E

�
1

2
�xk − x∗�22|xk

�
+

α2
kL

2

2
+ E [αk(fik(x

∗)− fik(xk))|xk]

=
1

2
�xk − x∗�22 +

α2
kL

2

2
+ αk(F (x∗)− F (xk)).

Taking expectation with respect to xk, using tower property of conditional expectation, we have

E
�
1

2
�xk+1 − x∗�22

�
≤ E

�
1

2
�xk − x∗�22

�
+

α2
kL

2

2
+ αkE [(F (x∗)− F (xk))] .

By summing up, we obtain, for all K ∈ N, K ≥ 1

�K
k=0 αkE [F (xk)− F ∗]

�k
i=0 αi

≤ �x0 − x∗�2 + L2
�K

k=0 α
2
k

2
�K

k=0 αi

and the result follows from convexity of f .

Corollary 6.4.1. Under the hypotheses of Proposition 6.4.1, we have the following

• If αk = α is constant, we have

E [F (x̄k)− F ∗] ≤ �x0 − x∗�2
2(k + 1)α

+
L2α

2
.
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• In particular, choosing αi =
�x0−x∗�/L√

k+1
, we have

E [F (x̄k)− F ∗] ≤ �x0 − x∗�L√
k + 1

.

• Choosing αk = �x0 − x∗�/(L
√
k) for all k, we obtain for all k

E [F (x̄k)− F ∗] = O

��x0 − x∗�2L(1 + log(k))√
k

�
.

6.4.2 Stochastic proximal gradient descent
This method is sometimes called FOBOS in the litterature. I could not find a reference for the
following result.

Proposition 6.4.2. Consider the problem

min
x∈Rd

F (x) :=
1

n

n�

i=1

fi(x) + g(x)

where each fi is convex with L-Lipschitz gradient and g is convex. Choose x0 ∈ R and a sequence
of random variables (ik)k∈N independently identically distributed uniformly on {1, . . . , n} and a
sequence of positive step sizes (αk)k∈N. Consider the recursion

xk+1 = proxαkg/L
(xk − αk/L∇fik(xk)) . (6.5)

Assume the following

• 0 < αk ≤ 1, for all k ∈ N.

• fi and g are G-Lipschitz for all i = 1, . . . , n;

Then for all K ∈ N, K ≥ 1

E [F (x̄K)− F ∗] ≤ L�x0 − x∗�22 + 2G2

L

�K
k=0 α

2
k

2
�K

k=0 αk

where x̄K =
�K

k=0 αkxk�K
k=0 αk

.

Proof. We fix k ∈ N and condition on i1, . . . , ik so that xk and xk+1 are deterministic. Note that
the prox iteration gives

αk

L
∂g(xk+1) + xk+1 = xk − αk

L
∇fik(xk)

�xk+1 − xk�2 ≤ 2G
αk

L

Fix k ∈ N, applying Lemma 5.4.1 with x = xk, z = x∗ and y = xk+1, using the fact that fik has
L/αk Lipschitz gradient,

fik(x
∗) + g(x∗) +

L

2αk
�x∗ − xk�22 −

L

2αk
�xk+1 − x∗�22

≥ fik(xk+1) + g(xk+1)

≥ fik(xk) + g(xk)− 2G�xk+1 − xk�2
≥ fik(xk) + g(xk)− 4G2αk

L
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And

αk

L
(fik(xk) + g(xk)− F ∗) ≤ 1

2
�x∗ − xk�22 −

1

2
�xk+1 − x∗�22 + 4G2α

2
k

L2

We have, considering tower expectation, with respect to ik first and the remaining randomness in
a second step

E
�αk

L
(fik(xk) + g(xk)− F ∗)

�
= E

�
E
�αk

L
(fik(xk) + g(xk)− F ∗)|xk

��

= E
�
E
�αk

L
(F (xk)− F ∗)|xk

��

= E
�αk

L
(F (xk)− F ∗)

�

≤ E
�
1

2
�x∗ − xk�22

�
− E

�
1

2
�xk+1 − x∗�22

�
+ 4G2α

2
k

L2

By summing, we obtain, for any K ∈ N

E
��K

k=0 αk(F (xk)− F ∗)
�

�K
k=0 αk

≤ L�x0 − x∗�22 + 2G2

L

�K
k=0 α

2
k

2
�K

k=0 αk

and the result follows by Jensen’s inequality.

Corollary 6.4.2. Under the hypotheses of Proposition 7.4.1.

• If αk = α is constant, we have for all k ≥ 1

F (x̄k)− F ∗ ≤ L�x0 − x∗�2
2(k + 1)α

+
G2α

L
.

• In particular, choosing αi =
1√

2k+2
, for i = 1 . . . , k, for some k ∈ N, we have

F (x̄k)− F ∗ ≤ L�x0 − x∗�22 + G2

L√
2k + 2

.

• Choosing αk = 1/
√
2k + 2 for all k, we obtain for all k

F (xk)− F ∗ = O

�
L�x0 − x∗�22 + G2

L log(k)√
2k + 2

�
.

6.5 Minimizing the population risk
The methods which we have seen can be used to minimize functions of the form

x �→ EZ [f(x, Z)]

where x denotes some model parameters and Z denotes a random variable describing our popula-
tion. In this case, Z could the input output pair (X,Y ) of a regression problem, for which we try
to minimize the exepected prediction error over a certain parametric regression function class F .

R(f) = E
�
(f(X)− Y )2

�
=

�

X×Y
(f(x)− y))2P (dx, dy).
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This can be done by replacing the finite sum by an expectation and sampling of independant
indices by iis samples of the random variable Z. The results are exactly the same.

Such a procedure are usually called “single pass” procedure: given a dataset (xi, yi)
n
i=1 for a

regression problem, performing one pass of a stochastic algorithm, looking at each data point only
once amount to perform n step of the same stochastic algorithm on the population risk.

This illustrates a strong relation between stochastic optimization and statistics. We have seen
that in the linear regression setting, there is no hope to obtain estimators with statistical rates
much faster than 1/n in terms of mean squared error. Similarly, the rates which we obtained for
stochastic algorithms are of the order of 1/

√
k. This is also optimal in a precise sense. These

algorithms provide estimator with statistical efficiency of the order of 1/
√
n.

The gap stands because we considered regression problems with squared loss, a very special
structure, while here the convex functions which we considered are arbitrary. For strongly convex
functions, stochastic optimization algorithms may show faster convergence rate of the order 1/k.
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Chapter 7

Block coordinate methods

Block decomposition methods appeared as alternatives to solve optimization problems involving
large number of dimensions. The idea is to reduce the complexity of a single iteration by updating
only a few coordinates at a time. The use of such methods was advocated by Nesterov [44],
extensions such as [50] appeared in the continuity of these works. The survey [64] is a good entry
point to the litterature.

7.1 Motivation, large d

The Lasso estimator is given as follows:

θ̂�1 ∈ arg min
θ∈Rd

1

2n
�Xθ − Y �2 + λ�θ�1.

We have seen that the optimization problem has a favorable structure which allow to devise
efficient algorithms. The cost of each iteration is depends on the dimension (here d2) which for
some problems may be limiting. A possible alternative is to update coordinates independantly,
reducing the cost of each iteration.

In general, this approach is not convergent for nonsmooth functions (can you see why?), how-
ever, the Lasso problem, despite being nonsmooth, fits coordinate descent methods because the
nonsmooth part is separable. We shall see two variations of such algorithms, deterministic and
random, with convergence rate estimates in both cases. A good introduction to the topic cand be
found in [64] and a pioneering work in optimization is described in [44]. The litterature on the
subject has completely exploded in the past years.

7.2 Description of the algorithm
We consider optimization problems of the form

min
x∈Rp

F (x) = f(x) +

p�

i=1

gi(xi),

where f : Rp �→ R has L-Lipschitz gradient and gi : R �→ R are convex lower semicontinuous
univariate functions. We denote by e1, . . . , ep the elements of the canonical basis. Block coordinate
descent algorithms are given a sequence of coordinate indices (ik)k∈N, and, starting at x0 ∈ Rp

updates coordinates one by one at each iteration. For example

xk+1 = argminy=xk+teik
f(xk) + �∇f(xk), y − xk�+

L

2
�y − xk�22 + gik(y)

xk+1 = argminy=xk+teik
f(y) + gik(y).
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The first option corresponds to a block proximal gradient algorithm, the second option corresponds
to exact block minimization. Block coordinate descent algorithms are usualy analysed under
coercvity assumptions:

Assumption 7.2.1. The sublevelset {y ∈ Rp, F (y) ≤ F (x0)} is compact, for any y ∈ Rp such
that F (y) ≤ F (x0), �y − x∗�2 ≤ R.

7.3 Convergence rate analysis using random blocks

7.3.1 Smooth setting
The following technical Lemma is classical.

Lemma 7.3.1. Let (Ak)k∈N be a sequence of positive real numbers and γ > 0 be such that

Ak −Ak+1 ≥ γA2
k

then for all k ∈ N, k ≥ 1, Ak ≤ (γk)−1.

Proof. We have for all k ∈ N,

1

Ak+1
− 1

Ak
=

Ak −Ak+1

AkAk+1
≥ γ

A2
k

Ak+1Ak
= γ

Ak

Ak+1
≥ γ.

Hence for all k ∈ N,

1

Ak
≥ 1

A0
+ γk ≥ kγ.

Proposition 7.3.1. Consider the problem

min
x∈Rp

f(x)

where f : Rp �→ R is convex differentiable with L-Lipschitz gradient. Choose x0 ∈ R and a sequence
of random variables (ik)k∈N independently identically distributed uniformly on {1, . . . , p} and a
sequence of positive step sizes. Consider the recursion

xk+1 = xk − 1

L
∇ikf(xk) (7.1)

Then for all k ∈ N, k ≥ 1

E [f(xk)− f∗] ≤ 2pLR2

k
.

Proof. Fix, k ∈ N, and condition on xk and i0, . . . , ik so that xk+1 is deterministic. We remark
that t �→ f(xk+teik) is convex with L-Lipschitz gradient. Applying Lemma 7.3.1 with x = z = xk,
y = xk+1,

f(xk) ≥ f(xk+1) +
L

2
�xk+1 − xk�22 = f(xk+1) +

1

2L
�∇if(xk)�22,

and in particular f is decreasing along the sequence. Taking expectation with respect to ik, we
obtain

E [f(xk+1)|xk] ≤ f(xk)−
1

2pL
�∇f(xk)�22 (7.2)
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From convexity, we have f∗ ≥ f(x) − �∇f(x)��x − x∗� and using the fact that f is decreasing
along the sequence, �xk − x∗� remains bounded. We have

�∇f(x)�22 ≥ (f(xk)− f∗)2

R2

and

E [f(xk+1)|xk]− f∗ ≤ f(xk)− f∗ − 1

2pL
�∇f(xk)�22

f(xk)− f∗ − (f(xk)− f∗)2

2pLR2

Taking expectation with respect to xk and using the fact that E
�
Z2

�
≥ E [Z]

2, we obtain

E [f(xk+1)− f∗] ≤ E [f(xk)− f∗]− E [f(xk)− f∗]2

2pLR2
.

Applying Lemma 7.3.1, we obtain for all k ∈ N, k ≥ 1,

E [f(xk)− f∗] ≤ 2pLR2

k
.

7.3.2 Extension to the nonsmooth setting

The following is a simplification of the arguments given in [50].

Proposition 7.3.2. Consider the problem

min
x∈Rd

F (x) := f(x) +

p�

i=1

gi(x)

where f : Rp �→ R is convex differentiable with L-Lipschitz gradient, each gi : Rp �→ R is convex and
lower semicontinuous and only depends on coordinate i. Choose x0 ∈ R and a sequence of random
variables (ik)k∈N independently identically distributed uniformly on {1, . . . , p} and a sequence of
positive step sizes. Consider the recursion

xk+1 = argminyf(xk) + �∇ikf(xk), y − xk�+
L

2
�y − xk�22 + gik(y) (7.3)

= proxgik/L

�
xk − 1

L
∇ikf(xk)

�
. (7.4)

Set C = max
�
R2, F (x0)− F ∗�, where R is given in Assumption 7.2.1, we have, for all k ≥ 1,

E [F (xk)− F ∗] ≤ 2pC

k
.

Proof. Fix, k ∈ N, and condition on xk and i0, . . . , ik so that xk+1 is deterministic. We remark
that t �→ f(xk+teik) is convex with L-Lipschitz gradient. Noting that the iteration actually solves
a univariate problem, applying Lemma 7.3.1 with x = z = xk, y = xk+1,

f(xk) + gik(xk) ≥ f(xk+1) + gik(xk+1) +
L

2
�xk+1 − xk�22.
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By assumption, gi depends only on coordinate i so that, gi(xk) = gi(xk+1) for i �= ik.

F (xk) ≥ F (xk+1) +
L

2
�xk+1 − xk�22,

So that F is non increasing along the sequence and for any k ∈ N, �xk − x∗�22 ≤ C, almost surely.
We write g =

�p
i=1 gi. From the definition of the proximity operator, we have

f(xk+1) + gik(xk+1) ≤ f(xk) + �∇ikf(xk), xk+1 − xk�+
L

2
�xk+1 − xk�22 + gik(xk+1)

F (xk+1) ≤ f(xk) + �∇ikf(xk), xk+1 − xk�+
L

2
�xk+1 − xk�22 + gik(xk+1) +

�

i�=ik

gi(xk).

Since each gi only depends on coordinate i, proxg can be computed coordinate by coordinate.
Taking expectation with respect to ik and setting zk = proxg/L

�
xk − 1

L∇f(xk)
�
, we obtain

E [F (xk+1)|xk] ≤
1

p

�
f(xk) + �∇f(xk), zk − xk�+

L

2
�zk − xk�22 + g(zk)

�

+
p− 1

p
F (xk). (7.5)

By definition of the proximity operator, we have for any y ∈ Rp,

f(xk) + �∇f(xk), zk − xk�+
L

2
�zk − xk�22 + g(zk)

≤ f(xk) + �∇f(xk), y − xk�+
L

2
�y − xk�22 + g(y)

≤ F (y) +
L

2
�y − xk�22

In particular, for any α ∈ [0, 1],

f(xk) + �∇f(xk), zk − xk�+
L

2
�zk − xk�22 + g(zk)

≤ F (αx∗ + (1− α)xk) +
α2L

2
�x∗ − xk�22

≤ αF (x∗) + (1− α)F (xk) +
α2L

2
C

The minimum is attained for α = (F (xk)− F ∗)/C ≤ 1 so that

f(xk) + �∇f(xk), zk − xk�+
L

2
�zk − xk�22 + g(zk)− F ∗

≤
�
1− F (xk)− F ∗

C

�
(F (xk)− F ∗)

Pluging this in (7.5), we obtain

E [F (xk+1)|xk]− F ∗ ≤ F (xk)− F ∗

p

�
1− F (xk)− F ∗

2C

�

+
p− 1

p
(F (xk)− F ∗)

= (F (xk)− F ∗)

�
1− F (xk)− F ∗

2pC

�
(7.6)

Taking expectation with respect to xk and using the fact that E[Z2] ≥ E[Z]2, we have

E [F (xk+1)− F ∗] ≤ E[F (xk)− F ∗]− 1

2pC
E[F (xk)− F ∗]2. (7.7)

The result follows from Lemma 7.3.1.
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7.4 Convergence rates using deterministic blocks
Deterministic block selection may lead to similar theoretical guaranties, there is some computa-
tional overhead, but as we should see, this is affordable for Lasso instances. A broader discussion
on this aspect is found in [48].

Proposition 7.4.1. Consider the problem

min
x∈Rd

f(x)

where f : Rp �→ R is convex differentiable with L-Lipschitz gradient. Choose x0 ∈ R, and consider
the recursion

xk+1 = xk − 1

L
∇ikf(xk) (7.8)

where ik is the largest block of ∇f(xk) in Euclidean norm. Then for all k ∈ N, k ≥ 1

f(xk)− f∗ ≤ 2pLR2

k
.

Proof. The proof is essentially the same as in Proposition 7.3.1, we have for any k ∈ N,

�∇f(xk)�22 ≤ p�∇if(xk)�22
and one obtain using the same arguments as in (7.2)

f(xk+1) ≤ f(xk)−
1

2pL
�∇f(xk)�22 (7.9)

and the rest of the analysis is the same.

Using similar ideas, one obtains the same behaviour for deterministic block proximal gradient
algorithm.

Proposition 7.4.2. Consider the problem

min
x∈Rd

F (x) := f(x) +

p�

i=1

gi(x)

where f : Rp �→ R is convex differentiable with L-Lipschitz gradient, each gi : Rp �→ R is convex
and lower semicontinuous and only depends on coordinate i. Choose x0 ∈ R and consider the
recursion

xk+1 = argminyf(xk) + �∇ikf(xk), y − xk�+
L

2
�y − xk�22 + gik(y) (7.10)

= proxgik/L

�
xk − 1

L
∇if(xk)

�
. (7.11)

where ik is given by

argmini

�
�y − xk,∇if(xk)�+

L

2
�y − xk�22 + g(y)− gi(xk), y = proxgi/L

�
xk − 1

L
∇if(xk)

��

Set C = max
�
R2, F (x0)− F ∗�, where R is given in Assumption 7.2.1, we have, for all k ≥ 1,

F (xk)− F ∗ ≤ 2pC

k
.
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Proof. Using the same arguments as in the proof of Proposition 7.3.2, we obtain for any k ∈ N,

F (xk+1) ≤ f(xk) + �∇ikf(xk), xk+1 − xk�+
L

2
�xk+1 − xk�22 + gik(xk+1) +

�

i�=ik

gi(xk)

= F (xk) + �∇ikf(xk), xk+1 − xk�+
L

2
�xk+1 − xk�22 + gik(xk+1)− gik(xk).

Since each gi only depends on coordinate i, proxg can be computed coordinate by coordinate.
Setting zk = proxg/L

�
xk − 1

L∇f(xk)
�
, and g =

�
i gi, we deduce from the definition of ik,

F (xk+1) ≤ F (xk) +
1

p

�
�∇f(xk), xk+1 − xk�+

L

2
�zk − xk�22 + g(zk+1)− g(xk)

�

= F (xk) +
1

p

�
f(xk) + �∇f(xk), zk − xk�+

L

2
�zk − xk�22 + g(zk)− g(xk)− f(xk)

�

=
p− 1

p
F (xk) +

1

p

�
f(xk) + �∇f(xk), zk − xk�+

L

2
�zk − xk�22 + g(zk)

�

This is similar to (7.5) and the result follows from the same arguments.

7.5 Comments on complexity for quadratic problems
The Lasso problem is a special case for block descent methods since the objective is quadratic.
This leads to the following remark

• Computing the gradient of the Lasso problem costs a matrix vector product which complexity
is of the order of d2.

• Given θ ∈ Rd and β = XT (Xθ − Y ), choosing θ̃ differing from θ in at most one coordinate,
computing XT (Xθ̃ − Y ) given β costs only of the order of d operations by only considering
the corresponding column of XTX.

As a consequence the cost of performing one iteration of full proximal gradient for the Lasso
problem is roughly equivalent to the cost of performing d iterations of random block proximal
gradient.

Given the value of the gradient, the added complexity of computing the deterministic block
is of the order of d as it requires only one path through the coordinates of the gradient and the
current estimate θ. Hence the deterministic rule has similar complexity per iteratation as the
random block rules.


