Chapter 5

First order methods

The preceeding chapter was the occasion to describe one of the a fundamental difference between
statistical estimation problems which can or cannot be solved in polynomial time. Efficient nu-
merical solvers exist for A/P-hard problems and their use in high dimensional statistics is explored
[8]. Nontheless, we will focus on algorithms which are less computationally demanding, and better
scale in very large dimensions.

We have seen that large families of convex optimization problems can be solved via generic
purpose solvers which have efficient implementations. These solvers have the following properties,
in dimension d:

e The cost of a single iteration is of the order of d*
e They lead to fast converging sequences allowing to obtain very accurate solutions.

In very large dimensions d® may be too big to be considered as reasonable and we need cheaper
algorithms. This observation motivated the rise of first order methods as efficient alternatives in
high dimensional statistics and signal processing. These methods have a long history in applied
mathematics and the recent trends in data analysis bolstered new developments

Sources for this chapter include the classic book of Rockafellar [29], the book of Nesterov [23] as
well as elements presented in Sébastien Bubeck’s book [10]. Good references on this topic include
the surveys [14, 2] which is very close to the statistical matters presented in these notes.

5.1 Gradient descent

In this section f denotes a continuously differentiable function. The gradient descent algorithm
can be described as follows, choose zo € R% and iterate for k € N:

Tpr1 = Tk — Sk V [ (Tk) (5.1)

Each iteration costs a call to the gradient with a vector addtion which. A vector addition costs of
the order of d operations. Hence it is much cheaper than the d® operations required to run interior
point methods. For example, if one is given a computational budget of the order of d?, then one
can implement d steps of gradient descent while Newton step simply cannot be considered. We
review basic theoretical results known for the gradient method for convex optimization.

5.1.1 Dynamical systems intuition

The minimizing properties of gradient descent are easily seen in continuous time.
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Proposition 5.1.1. Let f: RP — R be twice differentiable such with compact sublevel sets. Con-
sider the differential equation, for xg € RP,

#(t) = =V f(x(t)) (5.2)
z(0) = xo. 5.3

Then, there exists a solution to the initial value problem defined for all t > 0.
o [NV F(@(t)]3dt < +00 and liminf, o |V f(z(t))] = 0.
o Any accumulation point T of the trajectory satisfies V f(z) = 0.

o If in addition f is convezx, set f* = inf,cre f(x) and assume that it is attained at *, we
have for anyt € R, t > 0,

fla) - g < o2l

And x(t) 7 where T is a global minimizer of f.

Proof. First note that V f is continuous and locally Lipschitz so that there is a unique maximal
solution to the initial value problem (Cauchy-Lipschitz). By differentiation, we obtain, for any ¢
in the interval of definition of the solution,

d .

o (F@) = #()TV f(x(t) = =V f(z®)]3-

We deduce that f(z(t)) < f (zo) and by compacity the trajectory remains bounded and is defined
for all t > 0 (sortie de tout compact). Integrating between 0 and T > 0, we obtain f(z(T)) =

f(z(0))— fOT |V £(z(t))||3dt. The function f is decreasing allong the trajectory and bounded below
by compacity. This proves the first point
The second point is left as an exercise.
For the third point, using convexity of f, we obain
d * * *
g lle) —2 3 = —2(Vf(x(t),x(t) — ") < 2(f(z*) - f(z(t))) <O.

Integrading between 0 and ¢ > 0, we obtain

()= 1) < [ 1) = s < Fa(0) o'

where the first inequality follows because f is decreasing allong the trajectory. For the convergence
of z(t), we have
2
—||T
dt
so that ||z(t) — z*||3 is decreasing and the trajectory remains bounded. Since z(¢) has at least one

accumulation point which attains the minimum of f, x(¢) must converge to this point (Opial’s
Lemma). O

(t) = 2*[3 < 2(f(2") = f(x(1)) <0,

5.1.2 Convergence of gradient descent
We start with the following Lemma which proof is left as an exercise.

Lemma 5.1.1. Let f: RP — R be continuously differentiable with L-Lipschitz gradient (L > 0),
then for any x,y € RP,

7) ~ £(@) — (V7 @)y~ 2} | < 5y~ ol
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Proof. Using the fundamental theorem of calculus, we have, for any z,y
f6) = 1) = [ (OH( =00+ ty)y o)
te[0,1]
— [ O+ ) - Vi) + )y - o)
t€(0,1]
—(Vi@y-a)+ [ (T ) - Ty - o) .

t€0,1]

We deduce that

If(y) = f(@) = (Vf(x),y—x)| =

/tE[O 1) (VA(A =)z +ty) = Vf(z),y —z)dt
<[ HTHO =00 ) = Vi), y ) de
t€[0,1]

< [ U= 0w ) = V@) < Ly~ ol
te[0,1]

g/ tL x |y — x||*dt
t€0,1]

L
= Sy~ 2l
which proves the result. O

The gradient descent algorithm can be seen as an explicit discretisation of the differential
equation (5.3). It preserves the same qualitative properties as seen in the following proposition.

Proposition 5.1.2. Let f: RP — R be continuously differentiable with L-Lipschitz gradient and
such that inf cgp f(x) > —00. Consider the algorithm, for xo € RP and

1
Tyl = T — va(iﬂk) (5.4)
Then
o limy oo ||V f(zk)|| =0, (any accumulation point T of the trajectory satisfies V f(Z) =0).

o If in addition [ is convex, set f* = infiere f(x) and assume that it is attained at x*, we
have for any k € N, k > 0,

Lz -l

flaw) = < o
Furthermore xy, converges to T a global minimum of f

o [fin addition f is u-strongly convez, then we have for any k € N

fan) = 1< (1= F) (Flaw) = ).

Proof. The ideas are the same, first, the descent Lemma ensures that for any k£ € N

Flaien) < Jee) + V@), ier — 26) + llwies — a3

= (on) - 57 IV (55)
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Note that that f is decreasing allong the iterates of the algorithm. We have
. L
Trpr = arg min f(ax) + (VF ),y —zn) + 5 lly — 23, (5.6)

so that for all y € R,

L
f(xk)Jr<Vf(l‘k)7y—$k>+§||y—$k\|§ (5.7)
L o, L 2
= Fw) + (V). e — ) + Sl — el Sy - 6:5)
We obtain
* L *
£ + Sl -l
> flag) + (Vf(xg), 2" —xk) + EHJC — |3 convexity
L 2 L * (|12
= flar) +(Vf(z), ther = z6) + Sllzre = 2ellz + 5o =2 (5.8)
L *12
> f(zr+1) + Eka-&-l — "3, (5.5)

By summing up, we obtain for any K € N, K > 1,
I K
Sl —woll3 = Y flaw) = f* = K(flex) = ).
k=1

For the last point we have by strong convexity for any = € R?,

f@®) =z f(2) + (Vf(z),2" —x) + g\lx* —zl3 > f(z) - i\lvf(z)llg
IVF(@)I5 > 2u(f(z) — f*)
We have for all k£ € N,

Pl = I* < Fa) — §* = 5= VT3 < (Pl - £ (1- ).

5.2 Recap on nonsmooth analysis

The following content is treated in greater generality in [29]. In what follows f denotes a lower
semi-continuous convex function on R? which is finite at least at one point. Lower semi-continuity
refers to the fact that the epigraph is closed:

epi; = {(z,2) e R"", 2 > f(a)}.
which is expressed equivalently as for any x € RP

lim inf f(y) > f(2).

y—
The function f is allowed to take value +o00, we denote its domain by
domy = {z € R?, f(z) < +o0},
which is a convex set.

Exercise 5.2.1. Show that a convez function is continuous on the interior of its domain.
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5.2.1 Notion of subgradient
Definition 5.2.1. For any x € domy, the subgradient of f denotes the set

Of (@) ={veR” fly) = f(z) + (v,y —x), Vy ER"}.
For x ¢ domy, Of(x) is set to be empty.
We deduce from the definition the generalization of Fermat rule
Theorem 5.2.1. z* € argmin, f(z) if and only if 0 € df (z™*).

Proposition 5.2.1. For any x € RP, 0f(x) is a closed convex set. Furthermore, at any x €
int(domy), 9f(z) is non empty and bounded

Proof. Closedness and convexity follow from the definition. Take x € R? and assume that z is in
the interior of the domain of f this means that f is finite around z. The set epi; is convex in
RPTL and (z, f(z)) belongs to the boundary of epiy. Consider a suporting hyperplane of epi; at
(z, f(x)) as given by Theorem 4.3.4, this provides a vector v € RP and a number a € R such that
for all y € domy

az+v'y >af(z)+o"x, V2> f(y).

If @ = 0 then v is different from 0 and this provides a supporting hyperplane to domy at x which
contradicts the fact that f is finite around x. Hence a # 0. It must holda that a > 0 and =¢
provides a subgradient for f. Boundedness follows because for any v € 9f(x),

f( NE |s/2) > f(w) + o3>,

if the set of such v was unbounded, the left hand side should remain finite while the right hand
side should diverge to +oc. O

Exercise 5.2.2. Let f: RP — R be a convex function, show that Of is sequencialy closed in the
sence that, for any T

{veRp7ﬂ(xk,vk)keN,xk—>x vy = v, flzg) = f(& }CBf

Exercise 5.2.3. Let f: R? — R, show that f is L-Lipschitz if and only if Sup ers veof(s) V]2 <
L.

Theorem 5.2.2. Let f be convexr and lower semicontinuous and finite at least at one point, then
f is the supremum of all its affine minorants: for any r € RP

f(x)= sup r4+o’z s.t. f(y) >r+ovly, Yy e RP,
reR,veRP

Proof. epi; is a closed set in RP*T!. Reducing the dimension if necessary and restricting to
affine subspaces, we may consider that int(domy) # (. Fix (z,u) ¢ epi;, this means that
p < min{f(x),+o00}. From the separating hyperplane theorem, there exists, v € R?, § € R
and a € R such that

vTy+B2-a<0 Vy € domy, z > f(y)
vTx + B —a > 0.

If 5 = 0, this means that ¢ domy. Consider z € int(domy) and ¥ € 0f(z) (non empty by
Proposition 5.2.1), for any A > 0 and any y € domj

ATy —a) + 0" (y — 2) + £(2) < f(y),
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So that we have a family of affine minorants of f parametrized by A > 0. Furthermore, A(v?x —
a) 4+ 97 (z — z) + f(2) can be chosen arbitrarily big as A — oo and the supremum is 4oo.
Assume that 3 # 0, then 8 < 0 and we have for any y € domy

1
— Ty —a) < f(y)
-8
and furthermore }ﬁ( T2 —a) > p. We obtain
L7
TB(U y+z—a) < f(y), Vy € domy
1
< jﬁ(vTa: + 2z —a) < min{f(z), +oo}
since p is arbitrary, if f(z) is finite, the supremum over all affine lower bounds is f(z), if it is not
finite, the supremum is +oo. O

The following is due to Moreau and Rockafellar

Theorem 5.2.3. For any x € int(domy) and any h € RP,

Duf(z)= sup {v.h).
vedf(x)

where Dy, denotes the directional derivative of f,

Dot — tim L@ 1)

t>0,t—0 t

Proof. By convexity of f, t — (f(x +th) — f(x))/t is an increasing function of ¢ > 0. Indeed, for
any s > t,

Flo+th) = f ((1—Z>x+i($+sh)) < (1—2) F@) + fa+ sh),

so that
Jlatth) — f(@) _ fa+sh) — f(2)

t - s ’

Using the Definition 5.2.1, we have for any v € 9f(x), any h € R? and ¢t > 0,

flz +th) — f(z)
t

> (v, h)

which shows by letting ¢ — 0 and taking the supremum on v that

Dpf(x) > sup (v,h).
veDf(z)

Hence Dy, f(x) is well defined for all h and we have one inequality. The function g: h — Dy, f(z)
is convex, has full domain and is positively homogeneous. By Theorem 5.2.2, we have for any h

Dnf(x)=sup r+vlh st Dy(z) >7r+o"HW, Vh € RP.

v
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From positive homogeneity of g, the constraint enforce that for any ¢ > 0, D f(x) = tDp >
r+tvTh', Vh' € RP and Dy, f(x) > vTh, letting t — oo, so that r may be chosen to be 0. We
deduce that

Dnf(x)=sup v'h  st.  Dpf(z)>v'n', Vi € RP.

v

We notice that if Dy f(z) > vTh’, VA’ € RP, then f(x + h') — f(z) > vTh for all i’ € RP so that
v is a subgradient of f at x. We obtain

Dnf(z) =sup o'h st Dy f(x) > vTh | Vh € RP

< sup vTh.
vedf(x)

O

We deduce from this result that f is differentiable at = € int(domy) if and only if df(z) =

{V/f(2)}-

5.2.2 Legendre transform

Definition 5.2.2. Given f convex, the Fenchel-Legendre transform of f is given as follows

iz suﬂ%{) zTy—f(y)
yERP

Theorem 5.2.4. For any f convex, f* is convex and for any x,z € RP
f@)+ f () 2 2"

and the preceeding inequality holds if and only if z € Of(x). This is called Fenchel-Young’s
inequality. Furthermore, if f is lower semicontinuous if and only if (f*)* = f.

Proof. Convexity follows because f* is the pointwise supremum of affine functions which are convex
and convexity is preserved by pointwise suprema. If we have equality, this means that z attains
the minimum of the convex function y — f(y) — y* z and we must have zero in the subdifferential
of this function at x.

From Fenchel-Young’s inequality, we have that f(x) > 27x — f*(z) for all z so that taking
the supremum over z, we obtain f(z) > (f*)*(x) to get equality, we use Theorem 5.2.2. For any
xz € RP

(f*)*(z) = sup v'w — f*(v)

vERP
= sup v’z — sup v"y — f(y)
vERP yERP
T : T
= sup v* r + inf —v
sup Jnf f(w) y
= sup vz +supr, s.t. fy) —vTy>r, VyeRP
vERP reR
= sup vlz+r, s.t. fy) >r+oly, VyecRP
v,rERP

Hence f** is the supremum of all affine lower bounds of f. As such it is always lower-semicontinuous
since its graph is an intersection of closed sets which is closed. Furthermore, when f is lower-
semicontinuous, we obtain f** = f. O

Example 5.2.1. Let f: x — max; z;, compute the subgradient of this function.
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5.3 Subgradient descent

Subgradient descent generalizes gradient descent to nonsmooth functions.

Proposition 5.3.1. Let f: RP — R be a convex function which attains its infimum and has full
domain. Consider the algorithm, for xo € RP, a sequence of positive numbers ap > 0, k € N,
iterate

T+1 — Tk — QUL (59)
v € af(l‘k) (5.10)

Then for any global minimizer x*, setting, Yy = Zf:o ox; ) (Zf:o oz,»)

k 9 5
. SUo—:E*Q—i— a2,
'=r{11nkf(a:k) —f* < I I kzz_o illvill3
o 2%y
k
o) — < o =212+ 3oig ol

k
2 Zi:O Q;

Proof. We have for any k € N
1 * 1 *
sllzeen =I5 = Sk — aox = 273
1 N N ol
= Sllai — o1 + anof (2 ) + 2 o3

1 N N a?
< Sllow = 7 I3 + ar(f (@) = Flan)) + SEllon3

By summing up, we obtain

k k
2izo @i(f(xi) = f7) _ |lzo —zl? + g af lluill3
S g B 25 o
=0 =0

and the result follows from convexity of f. O

Corollary 5.3.1. If f is L-Lipschitz, we have the following convergence result for subgradient
method.

o If ap = a is constant, we have

lzo —a*|?* | L«

min f(zg) = f* <

i=1,..k ~ 2(k+ ) 2
; ; _ llmo—a*|l/L
e In particular, choosing «; TErL o we have
o llwo — =" L

e Choosing ay, = ||vo — x*||/(LVk) for all k, we obtain for all k

o (o= L vlegh)

min flzg) = 7=

i=1,...,
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5.4 Composite optimization

The subgradient method is slow in practice. Furthermore, convergence depends a lot on step size
tuning. In favorable situations there exists better suited algorithms. Good introduction to the
topic of proximal algorithms with connection to statistics and signal processing are found in [14, 2].

5.4.1 Motivation

The Lasso estimator is given by
G < arg min — X0 — Y% + A||6]]1.
feR? 2n

This is the solution of a nonsmooth convex optimization problem. The subgradient method can be
used to solve this problem as it can be used to solve any continuous convex optimization problem
for which subgradients are available. However, this method is slow and hard to tune in practice.
It turns out that the objective function has additional structure which can be leveraged to devise
more powerful and easier to implements algorithms. Indeed the objective function is of the form
f -+ g where f is a smooth (quadratic) convex function and g is the ¢; norm, a nonsmooth convex
function. Objective functions falling in this classe are sometimes called “composite objectives”.
Under additional restriction on g (easily computable proximity operator), there exists numerical
algorithm which efficiency is comparable to the that of gradient descent for smooth optimization.

5.4.2 Proximity operator

The construction of the following object is due to Jean-Jacques Moreau [20].

Definition 5.4.1. Given a closed convex function, f: R? — R, the proximity operator of f is
defined as follows

. 1 2
TOX ¢: 2 — arg min + = — 2||5.
prox; g min f(y) + 5 lly - 2[2

By strong convexity, the minimum is attained and is strict.

Note that we have x = prox;(z) if and only if 2 = 0f(z) + = and the proximity operator is
someties denoted (9f + 1)~ 1.

Exercise 5.4.1. Describe the prox applications for the following functions:

o A constant

A linear function

The indicator of a closed convex set C':

6:95»—){ 0ifzeC

+00 otherwise

The function x — %|z|]3

The function x — ||x||2
e The function x — ||z||1

Exercise 5.4.2. Let f and g be convex. Show that O(f + g)(x) D df(x) + dg(x) for every x such
that Of(x) and dg(x) are non empty.
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Lemma 5.4.1. Let f: RP — R be convexr continuously differentiable with L-Lipschitz gradient
and g be convexr lower semicontinuous. Fix any x € RP and set

1
Y = Proxyp, <3: - LVf(x)) .
Then, for any z € R?,

F(&)+ 0+ Dl — 213 > £w) + 0(0) + Sy —=I3

Proof. First, the descent Lemma ensures that for any k € N

F(w) < F@) + (T (@)y — ) + 2y — al}

(5.11)
We have
. L
y = arg min f(z) + (Vf(@),y =) + Sy = 2l + 9(v), (5.12)
so that by strong convexity, for all z € R?,
L
f(@) + (Vf(),z = 2) + S llz = 2ll3 + 9(2)
L L
> f@) + (Vf@)y =)+ Slly—zllz + 9(y) + Sl =yl (5.13)
Combining (5.11) and (5.13), we obtain
L 2
F(2) +9(2) + 5 llz = 2ll2
L
2f(m)—|—<Vf(x),z—x)+§||Z—a:H§—|—g(z) convexity
L 2 L 2
2 f(@) +(Vf(2),y —2) + Slly —zlla + 9(v) + S lly — 2ll2 (5.13)
L
> fy) +9(v) + S lly — 2113, (5.11)
O

Proposition 5.4.1. Let f: RP — R be convex continuously differentiable with L-Lipschitz gradient
and g be convex lower semicontinuous such that p = inf .cre f(x) + g(x) > —00 is attained at x*.
Consider the algorithm, for xq € RP and

1
Tk41 = ProX,,p, <xk - LVf(xk)) . (5.14)

Then xy converges to a global minimum and we have for any k € N, k > 0,

Llzo — =*|3
2k '

If in addition f + g is p-strongly convezr, we have in addition

flzr) +g(xr) —p <

L
[@rs1 — 23 < m\\xk —z*|)3.
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Proof. From Lemma 5.4.1 with = z;, = 2z and y = x;1 we read that f + g is decreasing along
the sequence. From Lemma 5.4.1 with z =z} 2* and y = x; 1 we read that for any £k € N

* * L * L *
F@) +9(@") + Slan =273 = flaren) + 9(@nrn) + S e —27|l3.

By summing up, we obtain for any K € N, K > 1,

K

glIw* —aoly 2 ) flaw) +glan) = p 2 K(f(ex) + g(ex) = p).
k=1

We also have that ||z — x*||3 is decreasing and the convergence follows (this is Opial’s Lemma).
For the last statement, Lemma 5.4.1 with y = 2441, 2 = 2* and © = z; combined with p-strong
convexity gives

* * L * L *
F@) + (@) + Slae =273 = flansn) + 9(@nn) + Sllzes —27lI3

+p
2

* * L *
> [(@") +g(=") + k1 — 213,

which is the desired result. O

5.5 Acceleration

We have obtained 1/k convergence rates for the gradient algorithm and the proximal gradient
algorithm. Could we do better?

5.5.1 A lower bound

This is taken from Bubeck’s book and originally due to Nesterov. Such lower bounds first appeared
in the book of Nemirowski.

Definition 5.5.1. A first order method to minimize a smooth convex function f when initiated
at x9 = 0, produces a sequence of points (x;);cy such that for any k € N,

Zp41 € span (Vf(zo),...,Vf(zr)).

Theorem 5.5.1. Let k < (d —1)/2, L > 0. There exists a convex function f with L-Lipschitz
gradient over RY, such that for any first order method satisfying definition (5.5.1),

. oy o 3L |z —2*|
— > - - 0
lrgslgkf(‘xS) f(x ) — 32 (k + 1)2

Proof. In this proof for h : R? — R we denote h* = inf cpa h(z). For k < d let Aj, € R™¥9 be the
symmetric and tridiagonal matrix defined by

(Ap)ij=14 -1, jefi-Li+1}i<hkj#k+1

0, otherwise.

We verify that 0 < A < 41 since

k—1 k—1

k
! Az =2 Zx(z)2 - QZx(z)x(z +1) =2(1)* + z(k)* + Z(x(z) —z(i+1))%

=1 i=1
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We consider now the following convex function:

L L
flx) = —a:TAnga: — Zxle.
8 4
For any s =1,...,k, zs must lie in the linear span of e1,...,es_1 (because of our assumption on
the black-box procedure). In particular for s < k we necessarily have z4(i) =0 for i = s,...,n,
which implies xIAngxS = a:;'—Akacs. In other words, if we denote
L
T T
)= —x Apr — —1 ey,
filw) = ST A = JaTen

We proved that, for all s < k

f(-rs) —fr= fk(l’s) - f;k-i-l > flz - f2*k-+1~

Thus it simply remains to compute the minimizer xj of fi, its norm, and the corresponding
function value f.

The point z} is the unique solution in the span of ej,...,er of Ayx = e;. One can verify
(Exercise) that it is defined by (i) = 1 — k+r1 fori=1,...,k. Thus we have:

T S(k) Kk 4(k) “ S(xk) “ 8<1 k+1>'
Furthermore note that

k . 2 . 2
x 2: —_ L = v <u
Ikl Z(l k+1> Z<k+1> =T3

i=1 =1

B T\ r L 2%k +2) T 32 (k+1)2)

Thus one obtains:

5.5.2 Accelerated algorithm

The previous lower bound shows that there is a gap between the convergence speed of gradient
descent for smooth convex functions and the and the lower bound. It remained an open question
if the gap was due to gradient descent or if it was due to the fact that the lower bound is loose
until Nesterov published in 1983 an algorithm which achieves 1/k? rate [25]. We extend bellow
the original proof of Nesterov. An extension to the proximal setting has been developped by Beck
and Teboulle in [5].

Theorem 5.5.2. Let f: RP — R be convex continuously differentiable with L-Lipschitz gradient
inferr f(x) > —00. Consider the algorithm, for x_1 € RP, set yo = x_1, t1 = 1 and for k € N,

1
Tk = Yk — va(yk)

1+ +/1+48
2

tht1 =
tr—1
Yk+1 = T + ( k ) (2 — Tp—1)- (5.15)
trt1
Then for any k € N
. _ ALllzo — 2*|)3
f(mk)_f < || 0 H2

(k+2)?
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Proof. We introduce the following notation which is taken from the original proof, for any k € N,

Pk = (tk - 1)(:Ek_1 — $k) so that Ykt1 = Tk — Dk
tht1
First, we have for any & > 1
1+4/483_ +1 1 k k
tp, > —F——— >t — >t — =1+ —-. 5.16
k> 5 >tg_1+ 5 = to + 5 + 5 (5.16)
() — tire) = £2. (5.17)

The main argument of the proof is the following. The sequence {zj }ren defined as

_2%

I (f(zk) = %) + Ik — z + 2|7, (5.18)

2kt
is non-increasing and zp < 2||zg — z*||>. The result can be deduced by combining (5.16) and

(5.18).
We have a series of three inequalities.

tri1
Dht+1 — Th1 = Pk — Tk + TJer(ykﬂ)

Pht1 — Thp1 = (b1 — 1) (Th — Thg1) — Thr
= (thp1 — )T — tep1Zp41

1
= (tk+1 — Dk — i (yk+1 - LVf(yk+1)>
t
= (thp1 — D — tpprzr — (b — 1) (@p — 23—1) — %Vf(ykﬂ)
t
=pr — Tk + Lgl Vf(Yr+1)
This implies

lpt1 «
[P+ — T + 2[5 = [lp — @ + 7 V(1) + 2 [

tx
=+ 2B+ 2 (- o B2V )

t2
+ 5 IV F )13

Pk

Ykt1 = Ty — ——
The+1

« tht1 B Dk « tet1

Pk —2p + 2", —=Vf(Yrs1) ) =Pk — Y41 — —— + 2", ——V [ (Yr+1)
L tii1 L
tror — 1 t .
Ut 2 G ) + B g, V(i)
(th1 — 1)

lprs1 = @rsr + 2|3 = llpk — 2x + 27|13 + 2 (Pr, Vf (Y1)

L

tk " t2
+ 2T+1 (@ = yri1, VI (Yrt1)) + %va(yk+l)”§

From the Lipschitz gradient assumption, we obtain

1

f@rg) = < flyprr) — f* — ﬁ”vf(yml)ﬂg <AV (Wr+1)s Yry1 — 7)) — i“vf(ylwrl)”%

IV I < flonen) = fewn) < Fw) = Foi) = —— (o V)
k+1
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Using the last three identities, we obtain

1Pe+1 — Trpr + 2|3 — llpk — 2 + 2*]|3

o 2
ol = G ) + 255 o e V) + IV S )3
<2t D (1) — fonn) = 19 )1

t . 1 t
TR <f — f(@r1) — 2L||Vf(yk+1)||§> + L5 IV ) 3

=2 P (1) - b 7 fae) 4255 (0 Fan)

_Qti * 2ti+1 *
=2k (flan) - £7) = 25 (flapss - 1)

where we used (5.16) for the last step. This proves that the sequence (zj)ren is non increasing.
It remains to compute zg,

20 = 7 (f(zo) = f*) + ll2* — ol* < 2]z — 2™3.

e

Putting things together

20 _ 4AL||lxo — x*||3
2t2 (k+2)2

5.6 Non convex problems

Most algorithm described in this chapter have extensions to nonconvex problems. In this set-
ting, the only hope is to find first order critical points instead of global minima. The notion of
subgradient in this case has to be treated with a lot of care. A reference on the topic is [28].
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Exercises

Exercise 5.6.1. Show that if f: R? +— R is C? then any accumulation point of the system & =
—Vf(x) is a critical point of f.

Exercise 5.6.2. Let f: RP — R be a convex function,
e Show that Of is sequencialy closed in the sence that, for any T

{v € RP, 3 (op, V) pen > Tk — T, v — v, f(2h) = f(i)} C af(z)

o Let f: RP — R, show that f is L-Lipschitz if and only if Sup,epe veof(x) Ivll2 < L.
Exercise 5.6.3.

o Let f: R— R be convex (with full domain), show that for any s < t < u,

f&) = f(s) o flw) = f(s) _ f(u) = f(t)

t—s - uU—3S8 - u—t

e Deduce that f is continuous on R.
Exercise 5.6.4.

o Let f: RP s R be convex (with full domain), show that for any x € R? and h € R%, with
|h]]1 < 1, we have

fla+h) < (= A0S @) + Bl max [ +e)

where e; are elements of the canonical basis.
e Deduce that f is continuous at x.

e What can you say about an extended valued convex function which domain has nonempty
interior?

Exercise 5.6.5. Let || - || be a norm, it is then convex. Its dual norm is defined by
lz||lx = sup 27z such that lz]| < 1.

Consider the function f: x — ||z||, compute the Legendre transform of f.

Exercise 5.6.6. Let f;: R = R be convex and differentiable on R?® fori =1...n. Set F: x
max; fi(z). Show that

OF(x) = conv ({V fi(x), fi(z) = F(x)}).
How does this result extend to non differentiable convex functions?

Exercise 5.6.7. Let f: R — R be convex with full domain. Show that f is upper bounded if and
only if f is constant.

Exercise 5.6.8. Describe the prox applications for the following functions: a constant, a linear
function, the indicator of a closed convex set C':

(5::1:H{ 0ifzeC

+o00 otherwise

The function x — %||z|3, the function x — ||z|2, the function z s ||z||;

Exercise 5.6.9. Let f and g be convex. Show that O(f + g)(x) D df(x) + dg(x) for every x such
that Of(z) and dg(x) are non empty. What do you think about the reverse inclusion?



