
Chapter 4

Computation, Complexity, Conic
Programming

Source: most of the content of this chapter is described in Ben-Tal and Nemirowski’s book on
“Modern Convex Opitmization” [4]. An extensive treatment of the linear programming problem
is found in Schrijver’s book on linear programming [21]. Further reading include Bertsekas’s
book [5] and Boyd and Vandenberghe [6] (freely available) which content is a bit wider than our
interest here. An interesting discussion between complexity theory and mathematics is given by
[22]. Physical implications of complexity theory are given in [1]. Oracle complexity is extensively
discussed in [16] and a more recent treatment is given in [17].

4.1 Introduction

When considering high dimensional statistics, computation has to be taken into account because
the size of the problems to be adressed does not allow to ignore the computational cost of handling
them. In particular, one may prefer a less statistically accurate estimator if it can be computed
efficiently. Although very intuitive, the mathematical definition of “computation” is highly non
trivial and has very strong connections to logics, physics and phylosophy. We start with a brief
overview of theoretical computer science concepts which enlights computational properties of the
statistical estimators we considered.

The second part of this chapter presents an overview of convex optimization as developped
in the 90’s. This resulted in classification of families of tractable convex optimization problems
for which general purpose numerical solvers were developped. In the context of high dimensional
statistics, these elements are mostly interesting for historical purposes as prefered methods for
modern data analysis do not fall in the category of methods described in this chapter.

4.2 Models of computation

We first provide an overview of computation formalism. Most of this is borowed from Schrijver’s
book [21].

4.2.1 Computation over a finite alphabet and complexity over Q
Alphabet, words, size: We consider a finite set Σ (usually Σ = {0, 1}), which is called an
alphabet and its elements are called letters. An ordered finite sequence of elements in Σ is called
a word. The set of words is denoted by Σ∗. The size of a string is the number of its components.
The zero length string is the empty string ∅.

31



32 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Strings can be used to represent rational numbers, vectors, matrices, and combinatorial struc-
tures such as graphs and trees. There are standard ways to encode these objects over a finite
alphabet such as {0, 1}, depending on the chosen way this induces a concept of size for these
objects. For example if α = p/q (where p and q are relatively prime integers), c = (c1, . . . , cn) a
rational vector and A = (aij)i=1...m,j=1...n a rational matrix, we have

size(α) = 1 + �log2(p)�+ �log2(q)�

size(c) = n+
n�

i=1

size(ci)

size(A) = nm+

m�

i=1

n�

j=1

size(aij)

Size of linear inequalities, or equalities are defined in a similar way.

Problems: A (search) problem is a subset Π ⊂ Σ∗ ×Σ∗, the corresponding meta-mathematical
problem read as follows:

Given z ∈ Σ∗, find y ∈ Σ∗ such that (z, y) ∈ Π or decide that there exists no such y.

An example of a search problem is given a matrix A ∈ Qm×n and a vector b ∈ Qm, find x ∈ Qn such
that Ax ≤ b (where the inequality is understood elementwise). A decision problem is a problem
which output is either 0 or 1. For example, given A and b, is there an x such that Ax ≤ b? A
decision problem is often identified with L ⊂ Σ∗, the set of inputs such that the output is 1.

Algorithm and running time: An algorithm is a list of instruction to solve a problem. A
Turing machine is a thought experiment object which formalizes the notion of algorithm. The
Church-Turing thesis is a founding hypothesis of computer science stating that functions of natural
numbers computable by humans using pen and pencil, following an algorithm are precisely the
ones which can be computed by a Turing machine. One can view a Turing machine as a device
which performs pen and paper computation automatically and take it as a rigorous formalization
of what it means “to compute”. There exists equivalent formalizations such as recursive functions,
lambda calculus, circuits which lead to equivalent notions of computation all of them are called
Turing complete.

For a given input Σ∗, an algorithm for problem Π determines an output y such that (z, y) is
in Π, or stops without delivering an output if there exists no such y. An algorithm can have the
shape of a computer program, which is a finite string of symbols from a finite alphabet. Hence,
an algorithm can be defined as a finite string A of 0’s and 1’s. One says that A solves problem
Π, if for any instance z of Σ∗, when giving the string (A, z) to a universal Turing machine (a
Turing machine which could simulate any other Turing machine, in particular, a Turing machine
implementing A), the machine stops after a finite number of steps, and delivers y with (z, y) ∈ Π,
or no string in the case where such a string y does not exist.

The running time of an algorithm is number of elementary operations during the execution of
the algorithm. It depends on the precise implementation considered. One way to formalize this
is the number of moves of the head of a universal Turing machine before stoping given the input
(A, z). Formally, the runing time function of an algorithm f : N �→ N can be given by

f(σ) = max
size(z)≤σ

(running time of A for input z).

Polynomial algorithm and computation over Q An algorithm is called polynomial time, if
its time function is upper bounded by a polynomial. A problem is calle polynomially solvable if
there exists a polynomial time algorithm to solve it.

The elementary operations such as adding, substracting, multiplying, dividing, comparing num-
bers can be executed in polynomial time. Note that for computation over Q, we use the (polynomial



4.2. MODELS OF COMPUTATION 33

time) Euclidean algorithm to obtain a unique representation of these numbers. Therefore, in order
to show that a numerical algorithm is polynomial time, it suffices to show that it applies a number
of elementary operations which is polynomial in the size of the input and that the size of the
intermediate numbers to which these elementary operations are polynomially bounded by the size
of the input.

Note that any numerical software, such as the ones used for statistical estimation, actually
perform computation over Q as they implement finite precision arithmetic. This amounts to
consider choose a finite precision � ∈ Q, � > 0 and perform all numerical operations by rounding
over a discrete grid {n�}n∈Z ⊂ Q.

The classes P and NP and co −NP The class of decision problems solvable in polynomial
time is called P. The class NP is central in complexity analysis and corresponds to decisions
problems for which there is an easy to check verification, that is, which have a polynomial size
proof. More formaly a decision problem L ⊂ Σ∗ belongs to NP if there exists a polynomialy
solvable decision problem L� ⊂ Σ∗ × Σ∗ and a polynomial φ such that

z ∈ L ⇔ ∃y ∈ Σ∗, (z, y) ∈ L� and size(y) ≤ φ(size(z)).

The crucial point here is that it is not required that y is found in polynomial time, but if it was
given, the proof could be checked in polynomial time. The string y is called a certificate. Brute
force search over all possible strings of a given length provides an algorithm showing that for any
problem in NP there exists a polynomial ψ such that the solution for input z can be found in
time at most 2ψ(size(z)).

Example 4.2.1. Given a set of cities and distances between cities (in Q), the traveling salesman
problem is in NP:

Given d ∈ Q, decide if there is a path visiting all the cities of total length at most d.

Indeed, if such a path exists, it has the same length as the total number of cities so that checking
that it passes through all cities and that its length is less than d can be done in polynomial time.
Therefore, if the decision problem admits a solution, it has a polynomial time certificate.

Example 4.2.2. Given A ∈ Qn×d and b ∈ Qn, consider the problem of deciding if Ax ≤ b has a
solution over Qn. It can be shown (See Schiver’s book chapter 10) that if such a solution exists,
then there should be a solution which size is polynomially bounded by the size of A and b. Hence
this decision problem is in NP.

The class of decision problems L ⊂ Σ∗ which complement in Σ∗ is in NP is denoted by
co − NP. The class NP ∩ co − NP consists of those decision problems which answer (positive
or negative) have a polynomial length proof. We have P ⊂ NP and P ⊂ co −NP and it is not
known wether these inclusions are strict (there is a million dollars price on these questions).

The term NP comes from “Non deterministic Polynomial time”. This means that a lucky
algorithm which has the possibility to “guess” in polynomial time a good certificate over a set with
polynomial size can solve the corresponding decision problem.

Karp reduction and NP completeness A decision problem L ∈ Σ∗ is Karp reducible to a
decision problem L� ⊂ Σ∗ if there exists a polynomial time algorithm such that, for any input
string z ∈ Σ∗, A delivers a string x such that

z ∈ L ⇔ x ∈ L�

This can be denoted as L ≤ L� as an algorithm for solving L� would provide an algorithm for
solving L with an added computational cost which is at most polynomial.



34 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Example 4.2.3. For any boolean formula there is an equivalent formula over linearly more vari-
able in conjunctive normal form. The size of the new formula is at most linear in the size of the
original formula, using Tseytin transformation for example. We obtain a formula of the form

(a ∨ b ∨ c ∨ d) ∧ (ā ∨ e ∨ f ∨ ḡ ∨ d) . . .

Then any disjunction can be reduced to a conjunction of disjunctions of size at most 3 by adding
variables. For example

q ∨ r ∨ s ∨ t ∨ u

⇔ (q ∨ r ∨ a) ∧ (ā ∨ s ∨ b) ∧ (b̄ ∨ t ∨ u).

Thus if L denotes the boolean formula satisfiability problem (SAT) and L� denotes the satisfiability
problem of boolean formula in 3 conjunctive normal form (3-SAT), we have shown that L ≤ L�.

Similarly, if L� belongs to NP and L ≤ L�, then L also belongs to NP. A problem L is called
NP-hard, if each problem in NP is reducible to L and if furthermore, L is in NP , then L is called
NP-complete. As we have seen, we have an exponential time algorithm to solve problems in NP,
this is a brute force search algorithm. It is widely believed that for a given NP-complete problem,
this is the most efficient algorithm to solve all the possible instances. Indeed, a polynomial time
algorithm for any NP complete problem would provide a proof that P = NP which is widely
believed to be false. This is undelying the P �= NP conjecture. It is important to note that the
notion of NP-hardness is a worst case notion.

• NP-complete problems are considered to be hard as there si no known polynomial time
algorithm to solve them and it is believed that no such algorithm exists.

• This concept relies on Karp reduction which only underlines that some instances are hard,
not necessarily all of them.

• There is no notion of constant or exponent in these concepts so that an algorithm in P may
still be intractable in practice. The notion is mostly used to prove computational difficulty
of certain problems.

From optimization to decision An optimization problem is the minimization of an objective
function c over a finite set or over rational numbers. An efficient algorithm to solve an optimization
problem provide an algorithm to decide if there exists a sequence of input with cost less or equal
to α, for any α. For example given A ∈ Qn×d, b ∈ Qn, c ∈ Qd, computing

ρ = inf
Ax≤B

cTx

provides an algorithm to decide whether Ax ≤ b and cTx ≤ α has a solution for any α ∈ Q. As a
result, optimization objectives involving NP-complete problems are considered as hard.

Examples:

Example 4.2.4 (Cook’s Theorem). The boolean satisfiability problem (SAT) consists of decision
problem over boolean variables involving boolean formulas in conjunctive normal form: the variables
are augmented with their negations, and the formula consists of a conjunction of disjunctions (all
clauses made using “or” and are aggregated with an “and”). Example

(x1 and x2 and x6) or (x̄2 and x3 and x̄7) or . . .

This is the first problem proved to be NP-complete by Cook in 1971.
The idea of the proof is as follows. First the problem is clearly in NP as it suffices to exhibit a

an instance of boolean values which satisfy the formula. The problem is NP-hard because because



4.2. MODELS OF COMPUTATION 35

a polynomial time verifier implemented on a Turing machine can be shown to be equivalent to a
boolean formula (this is the technical bulk of the proof). Finaly there is a polynomial time reduction
from any boolean formula to a formula of the above form where each disjunction involves at most
3 variables.

This problem remains NP-complete if we restrict the disjunctions to involve at most 3 variables
(as in the example) by the 3-SAT reduction argument. This shows that 3-SAT is NP-complete.

Example 4.2.5. An important list of NP-complete problems can be found in the classic book,
Computers and Intractability: A Guide to the Theory of NP-Completeness.

Theorem 4.2.1. Consider the decision problem with input A ∈ Qm×n, b ∈ Qm, does there exist
x ∈ Qn such that Ax = b and �x�0 ≤ m/3. This problem is NP-hard.

Proof. We reproduce the proof given in [15]. First, the problem is clearly in NP. Completness is
shown by reduction is to “cover by 3 sets” which is an NP-complete problem:

Given a set S and a set C which elements consists of subsets of S of size 3. Decide if there is
Ĉ ⊂ C such that each elements of S occurs exactly once in Ĉ.

Assume that S = {s1, . . . , sm} and C = {c1, . . . , cn} and assume that m is a multiple of 3.
Set b = (1, . . . , 1)T ∈ Qm and A ∈ Rm×n which column i is zero except at the j, k, l where
(sj , sk, sl) = ci, i = 1, . . . , n. We show that there exists x ∈ Qn such that Ax = b with �x�0 ≤ m/3
if an only if the answer to the “cover by 3 set problem” is positive.

On the one hand given Ĉ, choosing xi = 1 if ci ∈ Ĉ and zero otherwise. We have Ax = b and
x has m/3 non zero entries. On the other hand if one finds x ∈ Qn with Ax = b and �x�0 ≤ m/3.
The entries of Ax must be in 1. Since x has at most m/3 non zero entries and each column has
at most 3 nonzero entries, it means that x has exactly m/3 nonzero entries. The nonzero entries
of x solves the “cover by 3 set” problem.

The theorem generalizes to real inputs and real variables in the computation model of infinite
precision RAM model or computation over the reals and approximate solutions �Ax− b�22 ≤ �, see
[15]. The implication of these results is that solving problems involving the � · �0 pseudonorm is
hard. For example computing θ̂�0 can be done by solving 2d unconstrained least squares problems,
and, unless P = NP, no algorithm can do significantly better on all possible instances for all
values of d. This underlines the value of the question P = NP? This kind of statement is very
common in computer science: if there is a reduction from a given problem to another problem
which is proved (or largely believed) to be hard, then the original problem must be hard.

4.2.2 Computation over the reals
The statistical estimators which are defined in previous chapters, are given over the real field and
we only mentioned computation over the rationals so far. The difference may look innocuous at
first sight but it actually has tremendous implications. Furthermore most of the optimization
theory which we are going to describe is given for algorithms over the reals, and therefore, it is
worth mentioning models of computation over the reals. The content of this section is mostly
theoretical since real arithmetic is not realisable in the physical word [1] (it would break well
accepted physical impossibility principles).

Computable number: Computer Algebra Systems use symbolic programing to perform op-
erations on algebraic objects. However the set of real numbers which can be described by such
systems is only denumerable and therefore, miss most of the reals. Another definition of com-
putable number concerns the possibility to approximate it up to an arbitrary precision.

Definition 4.2.1. A number a ∈ R is called computable if there is a terminating algorithm A
such that for any � ∈ Q, � > 0, |A(�)− a| ≤ �.

Intuitively, there are only countably many terminating algorithms and the set of computable
numbers is therefore only countable. Hence, most real numbers are not computable in this sense.



36 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Real machines: In 1989 Blum, Shub and Smale described a theoretical machine for real com-
putation. This is refered to as BSD machine or real RAM machine. Roughly speaking such a
machine manipulates real numbers instead of element of a finite alphabet and is able to perform
addition, multiplication, division and comparison over real numbers.

This is a canonical model for computation over the reals. Although not realisable in the
physiscal word, this constitutes an interesting thought experiment. For example, we will see that
the linear programming (LP) problem (4.7) is polynomially solvable over the rationals, but it is not
known if it is polynomialy solvable over the reals [22]. The main difference between computation
over Q and over R is that in the first case, the size of the input (number of bits required to decribe
it using standard encoding) provides a bound on the accuracy level required to obtain provably
correct rounding schemes. In the real case, the size of the input is only the number of entries. For
example the condition number of a matrix A depends on its size over Q while it does not depend
on its size over R.

Oracle complexity: The computational model underlying continuous optimization mixes real
computation and unknown primitives which are provided by an oracle. For example, if one wishes
to minimize a differentiable function f over Rd, one can construct an algorithm which is allowed
to querry sequentially the value of f and its gradient ∇f at different points in Rd. The running
time of an algorithm is given by the number of call to the oracle and the number of real arithmetic
operations performed by the algorithm. Complexity is then given by worst case bounds on the
number of operations required solve a specific problem and it usually depends on properties of
f such as conditioning. Depending on the oracle of choice, one may define different notions of
running time and complexity for optimization algorithms. Note that although this model is quite
intuitive, it is actually very far from what is performed in practice when using physical computers.
Nemirovski Yudin [16] introduced this notion of complexity as a systematic way to study continous
optimization algorithms, further comments and a more recent exposition can be found in the book
of Nesterov [17].

4.3 Recap on convexity
We limit ourselves to the finite dimensional setting which is sufficient for our purpose. Most
notions given here generalize to infinite dimensions [14, 3]. The content of this section is mostly
related to [4, 6].

Convex sets and functions
A subset of a vector space X is convex if it is closed under convex combinations.

Definition 4.3.1. Let X ⊂ Rd, we say that X is convex if for any x, y ∈ X , α ∈ [0, 1], αx +
(1 − α)y ∈ X . A function f : Rd → R is convex if its epigraph is convex in Rd+1. Recall that
epi(f) =

�
(x, z) ∈ Rd+1, z ≥ f(x)

�
. Equivalently, for any x, y ∈ Rd, and any α ∈ [0, 1], f(αx +

(1− α)y) ≤ αf(x) + (1− α)f(y).

Convex sets are closed under many set operations including, interior, closure, intersection,
(Minkowski) addition, affine mapping and inverse affine mapping. There is a well defined notion
of dimenision for convex set X , it is simply the dimension of the smallest affine set containing X .

Lemma 4.3.1. For any convex set X ⊂ Rd we have

• The closure of X is convex.

• The interior of X is convex.

• For any u ∈ int(X ) and v ∈ cl(X ), [u, v) ⊂ int(X ).

• If the interior of X is non empty, then cl(X ) = cl(int(X )).



4.3. RECAP ON CONVEXITY 37

• The interior of X is empty if and only if it is contained in a lower dimensional affine
subspace.

Characterization of convex functions

We have the following characterizations of convexity

Theorem 4.3.1. Let f : Rd → R:

1. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, f(y) ≥
f(x) +∇f(x)T (y − x).

2. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, (∇f(x)−
∇f(y))T (y − x) ≥ 0.

3. If f is twice continuously differentiable, then f is convex if and only if or any x ∈ Rd,
∇2f(x) is positive semidefinite.

One has the following consequence which is a central motivation for studying convex optimiza-
tion problems

Corollary 4.3.1. Let f : Rd → R be a convex continuously differentiable function, then the fol-
lowing are equivalent

• x is a global minimizer of f .

• ∇f(x) = 0.

Example 4.3.1. Consider the least squares linear regression estimate θ̂LS ∈ argminθ∈Rd �Xθ −
y�22. The hessian matrix of the objective is XTX which is positive semidefinite so that the objective
is convex and first order conditions are sufficient for optimality.

Separating hyperplane and supporting hyperplane

Theorem 4.3.2 (Separating hyperplane). Let X ,Y ⊂ Rd be two disjoint closed convex sets, then
there exists a vector v ∈ Rd, v �= 0 and a number c ∈ R such that xT v > c for all x ∈ X and
yT v < c for all y ∈ Y.

Proof. Set S = X − Y = {s = x− y, x ∈ X , y ∈ Y}, S is convex and closed. Since X and Y are
disjoint, 0 �∈ S. Let s̄ denote any minimal norm element of s. For any s ∈ S, and t ∈ [0, 1],

0 < �s̄�22 ≤ �s̄+ t(s− s̄)�22 = �s̄�22 + 2ts̄T (s− s̄) + t2�(s− s̄)�22.

The right hand side is differentiable for t ∈ R and the derivative at 0 must be non negative. Hence,
for any s ∈ S, sT s̄ ≥ �s̄�22 > 0. We deduce that

inf
x∈X

s̄Tx = �s̄�22 + sup
y∈Y

s̄T y

which shows that we can choose v = s̄ and any c ∈
�
infx∈X s̄Tx, supy∈Y s̄T y

�
where the interval is

non empty.

We deduce the following which is a weak finite dimensional form of the Hahn Banach theorem.

Theorem 4.3.3 (Supporting hyperplane). Let X ⊂ Rd be a convex sets such that 0 �∈ X , then
there exists a vector v ∈ Rd, v �= 0 such that vTx ≥ 0, for all x ∈ X .



38 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Proof. If 0 �∈ cl(X ) then the result follows immediately from the separating hyperplane theorem.
If 0 ∈ cl(X ), since 0 �∈ X , 0 �∈ int(X ), and 0 is on the boundary of X . Hence 0 is in the closure
of the complement of cl(X ) and there exists a sequence {zk}k∈N not in cl(X ). Which converges
to 0. Applying the separating hyperplane theorem to each element of the sequence ensures that
there exists a sequences {vk}k∈N non zero in Rd and {ck}k∈N in R, such that for all k ∈ N and all
x ∈ X ,

vTk zk
�vk�

<
ck

�vk�
<

vTk x

�vk�
.

Let v be any accumulation point of vk
�vk� , the left hand side of tends to 0 hence lim infk→∞

ck
�vk� ≥ 0

and vTx ≥ 0 for all x ∈ X .

If 0 ∈ cl(X ), the vector v defines a supporting hyperplane which provides a notion of tangent
to a set convex set.

Theorem 4.3.4 (Supporting hyperplane). Let X ⊂ Rd be a convex set such that 0 is on the
boundary of X , then there exists a vector v ∈ Rd, v �= 0 such that vTx ≥ 0, for all x ∈ X .

Proof. If 0 �∈ X then the result follows from Theorem 4.3.3, we assume that 0 ∈ X .
If the interior of X is empty, then, by Lemma 4.3.1, X is contained in a lower dimensional

affine space which turns out to be a linear subspace since 0 ∈ cl(X ) any vector orthogonal to this
subspace will work.

If int(X ) is not empty since it is convex by Lemma 4.3.1, we may apply Theorem 4.3.3 to 0
and int(X ) and obtain v ∈ Rp such that vTx ≥ 0 for all x ∈ int(X ). Lemma 4.3.1 ensures that
cl(int(X )) = cl(X ) so that vTx ≥ 0 for all x ∈ cl(X ) ⊃ X and the result follows.

More generally, a supporting hyperplane of X at x is a closed half space which contains X and
x on its boundary. There is a partial converse.

Theorem 4.3.5. Let X be a closed set with nonempty interior, such that for every point x on the
boundary of X admits a supporting hyperplane. Then X is convex.

Proof. X is contained in the set S consisting of intersection of all the half spaces given by all
the supporting hyperplanes at each point of the boundary of X . S is convex and closed as the
intersection of closed convex sets. Fix any s ∈ S, and assume that s �∈ X , choose x in the interior
of X , the line segment between s an x crosses the boundary of X at y ∈ X . The supporting
hyperplane at y provides an affine function A which is positive on X . Restriction of this affine
function to the line segment [x, s] is still affine with A(x) > 0, A(y) = 0 and y ∈ (x, s), and hence
A(s) < 0 which contradicts the fact that s ∈ S. Therefore, S = X .

There is a stronger notion of separating hyperplane.

Theorem 4.3.6 (Separating hyperplane). Let X ,Y ⊂ Rd be two disjoint convex sets, then there
exists a vector v ∈ Rd, v �= 0 and a number c ∈ R such that xT v ≥ c for all x ∈ X and yT v ≤ c
for all y ∈ Y.

Extreme points, polyhedra and polytopes
Definition 4.3.2. Let X ⊂ Rd be a convex set and x ∈ X . x is an extreme point of X if for any
x1, x2 ∈ X , x = (x1 + x2)/2 implies that x1 = x2 = x.

Any nonempty compact convex subset of Rd contains at least one extreme point (any point of
maximal norm). The convex hull of a set S is the set of all convex combinations of elements of S,
denoted by

conv(S) =

�
x, ∃n ∈ N∗, (xi)

n
i=1 ∈ Sn, (λi)

n
i=1 ∈ Rn

+,

n�

i=1

λi = 1, x =

n�

i=1

λixi

�
.



4.3. RECAP ON CONVEXITY 39

It is seen from the definition that the extreme points of conv(S) are contained in S. The interest
of extreme points is that linear optimization attains its optima at extreme points.

Lemma 4.3.2. Let X be a closed convex set, x ∈ X such that there exists c �= 0 and cTx =
infy∈X cT y. Then setting A =

�
y ∈ X , yT c = xT c

�
, any extreme point of A is an extreme point

of X .

Proof. Take p̃ to be one extreme point of A, and suppose that we have x1, x2 ∈ X such that
(x1 + x2)/2 = p̃. We have xT

1 c ≥ xT c, xT
2 c ≥ xT c and 1

2 (x1 + x2)
T c = p̃T c = xT c, the average of

two non negative numbers is 0 if and only if both are null and hence xT
1 c = xT

2 c = p̃T c and x1 ∈ A
and x2 ∈ A. Hence x1 = x2 = p̃.

Lemma 4.3.3. Let c ∈ Rd, c �= 0 and X be a convex and compact set. Then minx ∈ X cTx is
attained then the optimum is attained at an extreme point x̄ ∈ X .

Proof. If c = 0, any extreme point of X is a solution. If c �= 0, by the compactness of X , the
optimum of the problem is attained. Take x∗ to be one solution. The set {x ∈ Rd, xT c = (x∗)T c}
is compact and convex, it contains an extreme point which by Lemma 4.3.2 is an extreme point
of X .

Theorem 4.3.7 (Krein Millman). Let X be a compact convex set, then X ⊂ Rd is the convex hull
of its extreme points.

Proof. Let S denote the set of extreme points of X , we have conv(S) ⊂ X . Let x ∈ X , we show
that x is in conv(S). First, we may assume that X has non empty interior, by reducing the
ambiant space to the smallest affine subspace containing X . The proof is now by recursion on d.
For d = 0, the result is obvious, assume that the result holds for Rd−1, d ≥ 1. Consider any line
passing through x, the restriction of X to this line is compact convex set of dimension 1, that is
a segment of the form [a, b] where a ∈ X , b ∈ X . Both a and b are on the boundary of X . There
is a supporting hyperplane Ha at a and Hb at b. Both sets X ∩ Ha and X ∩ Hb are compact
convex sets of dimension d − 1. The induction hypothesis ensures that both a and b are convex
combinations extreme points of Ha and Hb which are extreme points of X by Lemma 4.3.2 and
the result follows because m is a convex combination of a and b.

Definition 4.3.3. A polyhedra is a set X ⊂ Rd which can be described by linear equalities: there
exists A ∈ Rm×d, b ∈ Rm such that X = x ∈ Rd, Ax ≤ b, where the inequality is understood
entry-wise. This representation is called canonical form.

Adding slack variables s ∈ Rm and considereing x+ and x− the entry-wise positive and negative
part of x, one may equivalently describe X = {(x+, x−, s) ∈ R2n+m, s = b − A(x+ − x−), s ≥
0, x+ ≥ 0, x− ≥ 0}. Hence, one may equivalently consider polyhedra expressed as X = {x ∈
Rd, Ax = b, x ≥ 0} for a matix A and a vector b which is called standard form.

Lemma 4.3.4. Let X =
�
x ∈ Rd, Ax = b, x ≥ 0

�
be non empty. Then X has at least one extreme

point and we have the following equivalence

• x is an extreme point of X

• the columns of A corresponding to non zero entries of x are independent.

Proof. The existence of extreme points follow from the characterization. If A = 0, then x = 0
is an extreme point. Suppose that A �= 0, for any x ∈ Rd, denote by Ax the matrix which
columns correspond to the non zero entries of x. For any x, x1, x2 ∈ X , if x = x1+x2

2 , then
supp(x1) ⊂ supp(x) and supp(x2) ⊂ supp(x) and Ax(x1 −x2) = 0 hence, if the columns of Ax are
independent, x1 = x2 and x is an extreme point. On the other hand, if the columns of Ax are not
independant, choosing d ∈ Rd such that supp(d) = supp(x) and Ad = 0, one has, for sufficiently
small alpha that x+ αd ∈ X and x− αd ∈ X so that x is not an extreme point of X .



40 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

As a result, polyhedra have only finitely many extreme points. A polytope is a compact
polyhedra. Krein-Millman theorem ensures that X is a polytope if and only if it is the convex hull
of finitely many points.

Example 4.3.2. The �1 ball used to define the �− 1 constrained least squares estimator:

θ̂LS
K ∈ arg min

�θ�1≤1
�Xθ − y�22

is a polytope which has 2d extreme points corresponding to plus or minus the elements of the
canonical basis. Linear fuction over the �1 ball attains their optimum at one of these extreme
points which have a support of size 1. This illustrates the sprasity promoting role of this constraint.

4.4 Conic programming

4.4.1 Conic hierarchy

Definition 4.4.1. K ⊂ Rd is a cone if it satisfies for any x ∈ K and α ≥ 0, αx ∈ K.

Given a closed convex cone K, one can define the corresponding conic program, for any A ∈
Rm×d, b ∈ Rm, c ∈ Rd,

p∗ = inf
x∈Rd

cTx s.t. Ax = b, x ∈ K. (P)

This gives rise to the following classes of optimization problems.

Linear programs: Choosing K = Rd
+, we obtain a linear program in standard form. The

problem of computing θ̂�1CS can be expressed as a linear program as

min
θ∈Rd

�θ�1 s.t. Xθ = y

= min
θ+∈Rd,θ−∈Rd

1T (θ+ + θ−) s.t. X(θ+ − θ−) = y, θ+ ∈ K, θ− ∈ K.

which is a linear program (LP).

Second order cone: The second order cone in Rd+1 is given by K =
�
(x, t) ∈ Rd+1, �x�2 ≤ t

�
.

This allows to express linear optimization over convex quadratic constraints such as balls or ellipses
and their intersection. Such a problem is called a second order cone program (SOCP).

Semidefinite cone: The set of symmetric positive semidefinite is called the semidefinite cone.
Given a symmetric matrix C ∈ Rd×d, a linear function A : Rd×d → Rm and b ∈ Rm a semidefinite
program has the form

min
X∈Rd×d

tr(CTX) s.t. A(X) = b, XT = X, X � 0.

Such programs are called semidefinite programs (SDP).

Hierarchy of conic programs These conic programs are standard optimization problems for
which there exists efficient algorithms allowing to solve numerically efficiently moderate size pro-
grams of this type. The term hierarchy refers to the fact that linear programs can be expressed
as second order cone programs and second order cone programs can be expressed as semidefinite
programs.



4.4. CONIC PROGRAMMING 41

4.4.2 Conic duality

Definition 4.4.2. Let K ⊂ Rd be a convex cone, the dual cone of K is denoted by

K∗ =
�
y ∈ Rd, xT y ≥ 0, ∀x ∈ K

�

If K = K∗, we say that K is self dual

All the cones given in the previous section are self-dual. The Lagrangian of problem (P) is
given for any x ∈ Rd, µ ∈ Rd, ν ∈ Rm, by

L(x, µ) = cTx+ µT (b−Ax) (4.1)

The dual problem to (P) is obtained by minimizing the Lagrangian over x ∈ K. If cT −ATµ �∈ K∗,
the infimum of the Lagrangian over x ∈ K is −∞. On the other hand, if c− ATµ ∈ K∗, then the
minimizer of the Lagrangian is µT b. Hence the dual problem has the form

d∗ = sup bTµ s.t. c−ATµ ∈ K∗. (D)

We have the following relation between primal (P) and dual problems (D).

Theorem 4.4.1. It holds that d∗ ≤ p∗. Furthermore, if rank(A) = m, and there exists x̄ such
that Ax̄ = b and x̄ is in the interior of K and p∗ > −∞, then p∗ = d∗ and the dual problem has
a solution. In this case, x is primal optimal if and only if it is primal feasible and there exists a
dual feasible µ such that

xT (c−ATµ) = 0 or xT c = bTµ.

Proof. If either the primal (P) or the dual problem (D) are not feasible, then the result is obvious
as p∗ = +∞ or d∗ = −∞.

Assuming that both are feasible, for any x feasible for (P) and µ feasible for (D), we have

cTx = cTx+ µT (b−Ax) = L(x, µ) = µT b+ (c−ATµ)Tx ≥ µT b (4.2)

where the first equality is from primal feasibility, and the last inequality is because x ∈ K and
c−ATµ ∈ K∗ so that the dot product is nonnegative. This implies that p∗ ≥ d∗

To obtain strong duality (not assuming dual feasibility), consider the sets

S1 =
�
(u− x), b−Ax, cTx+ t) ∈ Rd+m+1, x ∈ Rd, u ∈ K, t ≥ 0

�
S2 = {(0, 0, s), s < p∗}

It holds that both S1 and S2 are convex. Furthermore, they are disjoint since an element of the
intersection would provide a primal feasible x with cTx < p∗. Theorem 4.3.6 ensures that there
exists α1 ∈ Rd, α2 ∈ Rm, α3 ∈ R, not all equal to 0, and α4 ∈ R such that for all x ∈ Rd, u ∈ K,
t ≥ 0, s < p∗

αT
1 (u− x) + αT

2 (b−Ax) + α3(c
Tx+ t) ≥ α4 (4.3)

α3s ≤ α4

It must hold that α3 ≥ 0 and α1 ∈ K∗, otherwise, the left hand side of the first inequality is
unbounded from below. From the second inequality, we obtain α3p

∗ ≤ α4. We are going to show
that the strict feasibility condition ensures that α3 > 0. First note that if x ∈ int(K), then for
any nonzero µ ∈ K∗, we have xTµ > 0. Second assuming that α3 = 0, choosing x̄ as given in the
hypothesis and u = 0, one has

−αT
1 x̄ ≥ α3p

∗ = 0,



42 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

and since αT
1 �= 0 implies αT

1 x̄ > 0 we have α1 = 0. Furthermore, we have α2 �= 0 and αT
2 (b−Ax) ≥

0, for all x ∈ Rd. This is impossible as it would imply αT
2 A = 0 with α2 �= 0 which contradicts

the rank assumption on A.
Finally, α3 > 0 and we obtain from (4.3), for any x ∈ K

αT
2

α3
(b−Ax) + cTx ≥ p∗ +

αT
1

α3
x ≥ p∗,

where the last inequality follows because α1 ∈ K∗. This implies that c − ATα2/α3 ∈ K∗ as
otherwise, the right hand side would be unbounded from below. Hence µ = α2/α3 is dual feasible.
Minimizing over x, we obtain that bTµ ≥ p∗. Hence d∗ ≥ p∗ and by weak duality, d∗ = p∗ and µ
is dual optimal.

The last statement follows from the existence of a dual optimal µ and inequality (4.2).

4.4.3 Interior point methods
Interior point methods were discovered in the 80’s, Karmarkar polynomail time (and empirically
efficient) algorithm for linear programing was based on interior point methods. There has been
an important activity around interior point methods in the 90’s. We refer to [4] for a detailed
presentation. In this section, we will only briefly touch the topic and describe the main ideas on
a simple problem.

4.4.4 Strong convexity
This notion will be important to develop algorithmic ideas to solve the optimization problems
which we have seen.

Definition 4.4.3. A function f : Rd �→ R is µ strongly convex, if f − µ
2 � · � is convex. The

following provide sufficient conditions:

• If f is differentiable, f(y) ≥ f(x) + (y − x)T∇f(x) + µ
2 �y − x�22, for all x, y.

• If f is differentiable, (∇f(x)−∇f(y))
T
(y − x) ≥ µ�y − x�22 for all x, y.

• If f is twice differentiable, the matrix ∇2f(x)− µI is positive semidefinite for all x.

Exercise 4.4.1. Prove that the function f : x �→ − log(1−�x�2) is strongly convex (when restricted
to the unit Euclidean ball).

Newton’s method

Newton’s method is famously used to solve equations of the form g(x) = 0. In the context of
convex optimization, one actually solves f �(x) = 0. Application of this method to find a zero of
the gradient operator of a strongly convex function f : Rd �→ R, can be implemented as follows:
choose x0 and iterate for k ∈ N,

xk+1 = xk − α
�
∇2f(xk)

�−1 ∇f(xk). (4.4)

Where α is a positive stepsize, determined algorithmically. Note that this equation is well defined
since by strong convexity, the Hessian is always positive definite and invertible. One intuition about
this method is that it minimizes the second order Taylor expansion: f(y) � f(x) +∇f(x)T (y −
x) + (y − x)T∇2f(x)(y − x).

A detailed convergence rate analysis of Newton’s method can be found in [4, 5, 6]. We prove a
local quadratic convergence result which illustrate the fast asymptotic convergence of the method.
A more refined analysis is more involved and requires to analyse backtracking line search proce-
dures. We limit ourselves here to a local result stating that when initialized close to the optimum,
Newton’s method with unit step sizes is extremely fast.



4.4. CONIC PROGRAMMING 43

Theorem 4.4.2. Let f be µ-strongly convex, twice continuoulsy differentiable, with L-Lipschitz
Hessian (operator norm) and x̄ be the (unique) minimum of f . Newton’s method with unit step
size satisfy, for all k ∈ N,

L

2µ2
�∇f(xk)�2 ≤

�
L

2µ2
�∇f(x0)�2

�2k

,

In particular, if �∇f(x0)�2 < L
2µ2 , we obtain extremely fast convergence for Newton’s method with

unit step size.

Proof. Fix k ∈ N. From the Newton iterate, we have ∇2f(xk)(xk+1 − xk) = −∇f(xk). Hence
integrating along the segment [xk+1, xk], we have

∇f(xk+1) = ∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

=

� 1

t=0

�
∇2f(xk + t(xk+1 − xk))−∇2f(xk)

�
(xk+1 − xk)dt

Using the Lipschitz assumption, we obtain

�∇f(xk+1)�2 ≤ L

2
�xk+1 − xk�22 =

L

2
�∇2f(xk)

−1∇f(xk)�22 ≤ L

2µ2
�∇f(xk)�22

By a simple recursion, we have

L

2µ2
�∇f(xk+1)�2 ≤

�
L

2µ2
�∇f(xk)�2

�2

≤
�

L

2µ2
�∇f(x0)�2

�2k

Interior point method

We refer to [4] for a more detailed overview. We illustrate the idea of interior point methods for
the follwing toy problem, for a given a ∈ Rd, b ∈ R, and f : Rd �→ R, convex differentiable

f∗ = min
x∈Rd

f(x) s.t. �x�2 ≤ 1, aTx ≤ b (4.5)

We only use this problem to illustrate the main idea of interior point methods. The main idea
of interior points methods is to replace this problem by an unconstrained problem using a barier
function, for any t ≥ 0,

min
x∈Rd

tf(x)− log(1− �x�22)− log(b− aTx) (4.6)

Note that we need to restrict the domain of definition of the objetctive, since the logarithms
explode on the boundary of the feasible set. By example 4.4.1, the objective in (4.6) is 2 strongly
convex. Denoting by xt the minimal value of (4.6) for a given t ≥ 0, this defines the notion of
central path, a quick argument shows that

f(xt) →
t→∞

f∗

and furthermore for each t, xt can be computed efficiently using Newton’s method. This provides
an algorithm to solve problem (4.6). A detailled complexity analysis of these types of methods is
found for example in [18]. Let us mention that the optimality conditions for (4.6), ensure that

t∇f(xt) + 2xt
1

1− �xt�2
+ a

1

b− aTxt



44 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

so that xt minimizes also

x �→ tf(x) +
1

1− �xt�2
�
�x�22 − 1

�
+

1

b− aTxt

�
aTx− b

�

This entails that for any feasible x, we have

tf(xt)− 2 ≤ tf(x) +
1

1− �xt�2
�
�x�22 − 1

�
+

1

b− aTxt

�
aTx− b

�
≤ f(x),

so that f(xt) ≤ f∗ + 2
t and an � suboptimal solution for (4.5) can be found by choosing t = 2/�.

General purpose solvers

One of the most important topics in Optimization during the 90’s was interior point methods.
These developments led to theoretical and practical results which materialize in the existence of
efficient numerical solvers for the classes of conic problems which were discussed in this section.

4.4.5 Polynomial time LP solvers over Q
Algorithms to solve the LP problem date back to Fourier, Kantorovitch and Dantzig who proposed
the simplex method still used in many numerical solvers.

Theorem 4.4.3 (Khachiyan,Karmarkar). Given inputs A ∈ Qn×d, b ∈ Qn and c ∈ Qd consider
the problem of computing

ρ = inf
x∈Qd

cTx s.t. Ax ≤ b. (4.7)

This problem is in P.

Proof sketch. We only sketch the main ideas, a full detailed proof is very tedious. We refer to
Schiver’s book [21] for more details.

• First if the infimum is not attained, either the original problem or its dual are unfeasible
and there polynomial time certificates for this can be found in polynomial time.

• If the problem attains its optimum, then it must attain its optimum at one of the vertices
of the polyhedra described by the linear inequalities. There are only finitely many of them.

• There are only polynomially many candidate optimal values for ρ. This is because we have
finitely many candidate solutions and the size of the input allows to estimate size of largest
common denominators and condition numbers of A.

• Local search methods such as ellipsoid method (for Khachiyan’s algorithm) or interior point
methods (for Karmarkar’s algorithm) converge exponentially fast to ρ (see interior point
methods).

• Carefully controling the magnitude of accumulated errors allong the local search path and
the degree of approximation required to dicriminate between any two candidate optimal
values allow to conclude.

Historically, the ellipsoid method was the first polynomial time algorithm for linear program-
ming, it has been studied by various authors in the 70’s including Shor, Yudin and Nemirovski.
It was proved to be polynomial time by Khachiyan [13] but is quite inefficient in practice. Kar-
markar proposed the first polynomial time algorithm which was efficient empirically, based on
interior point methods [12].



4.4. CONIC PROGRAMMING 45

Corollary 4.4.1. Assuming the model 3.10 holds and θ∗ ∈ Qd, θ̂�1CS in (3.12) is computable
exactly using a number of operations which is at most polynomial in n, d and the number of bits
required to encode X and Xθ∗.

Remark 4.4.1. Such a result cannot hold for second order cone programs and semidefinite pro-
grams. This is because the solution of such programs may not be in Q eventhough the data is in
Q. For example

min
x

�x�2 s.t. x1 ≥ 1, x2 ≥ 2

= min
x,t

t s.t. x1 ≥ 1, x2 ≥ 2, t ≥ �x�2

is a second order cone program which value is attained only for x1 = x2 = 1 and t =
√
2. Hence

the solution of this program cannot be found over Q and one must switch to computation over
R, in particular, the program cannot be solved exactly by finite precision numerical methods. As
we have seen, computation over R has different formulations and connections with practice on
physical computers is sometimes a bit far fetched. Hence when one talks about polynomial time
solvability of general convex program, this is not in the classical Church-Turing thesis sense but in
a different sense such as: polynomial time approximation to a any fixed precision, or polynomial
time computation over real machines (which do not exist in the physical world).

Another remark of the same kind goes as follows, the matrix
�

1 y
y x

�

being semidefinite positive implies that x ≥ y2 and pilling up k such equalities allows to express
numbers of the order 22

k

which bit representation size is exponential in k. Hence such a number
cannot be approximated in time polynomial in k using standard numerical integer encoding.

Remark 4.4.2. In the context of linear programing (LP), since the number of candidate solution is
finite (extreme points of the undelying polyhedra), and we have explicit description of these points
(lemma 4.3.4), one could try to build an algorithm for finding an optimal extreme point. This is
the basis for the Simplex method proposed by Dantzig in 1947 and still used in many numerical
softwares. We do not describe it here, but mention that it is an efficient method in practice.
However there do not exist polynomial time worst case bounds for these types of algorithm. There
exist polynomial time bounds for average instances of linear programs and the simplex method is
one of the candidate polynomial time algorithm to solve linear programing over the reals. It also
motivate many questions about the geometry of polyhedra such as the Hirsh conjecture.



46 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Exercises
Exercise 4.4.2. Prove that Lemma 4.3.1, for any convex set X ⊂ Rd we have

• The closure of X is convex.

• The interior of X is convex.

• For any u ∈ int(X ) and v ∈ cl(X ), [u, v) ⊂ int(X ).

• If the interior of X is non empty, then cl(X ) = cl(int(X )).

• The interior of X is empty if and only if it is contained in a lower dimensional affine
subspace.

Exercise 4.4.3. Prove Theorem 4.3.1, et f : Rd → R:

1. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, f(y) ≥
f(x) +∇f(x)T (y − x).

2. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, (∇f(x)−
∇f(y))T (y − x) ≥ 0.

3. If f is twice continuously differentiable, then f is convex if and only if or any x ∈ Rd,
∇2f(x) is positive semidefinite.

Exercise 4.4.4. Prove Theroem 4.3.6, let X ,Y ⊂ Rd be two disjoint convex sets, then there exists
a vector v ∈ Rd, v �= 0 and a number c ∈ R such that xT v ≥ c for all x ∈ X and yT v ≤ c for all
y ∈ Y.

Exercise 4.4.5. Prove that the different conditions for strong convexity are indeed equivalent to
f − µ� · �22:

• If f is differentiable, f(y) ≥ f(x) + (y − x)T∇f(x) + µ
2 �y − x�22, for all x, y.

• If f is differentiable, (∇f(x)−∇f(y))
T
(y − x) ≥ µ�y − x�22 for all x, y.

• If f is twice differentiable, the matrix ∇2f(x)− µI is positive semidefinite for all x.

Exercise 4.4.6. Prove that the function f : x �→ − log(1−�x�2) is strongly convex (when restricted
to the unit Euclidean ball).

Exercise 4.4.7. Let S+
d denote the cone of positive semidefinite matrices in Rd×d. We consider

the function h : S �→ log (det (S)) over S++
d the cone of positive definite matrices.

• Compute the gradient of det over S++
d (Hint: use the relation between S−1, det(S) and C

the adjugate matrix of S).

• Compute the gradient of h.

• Show that h is convex.

• Explain how h could be used as a barrier function for interior point methods in semi-definite
programming.


