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3.4 Penalized estimators

Adaptivity

Theorem 3.3.3 and 3.3.4 are very attractive since they provide fast decrease of the mean squared
error in high dimensional settings. However, they require the knowledge of properties of the
unknown θ∗. It is possible to produce adaptive estimators which do not require such knowledge.

Consider the sub-gaussian sequence model: y = θ∗ + ξ ∈ Rd, where ξ ∼ subG(σ2/n). This
allows to capture the intuition about penalization. Using Theorem 2.2.1 and Remark 2.2.1, we
have for any δ > 0, with probability at least 1− δ

max
1≤i≤d

|ξi| ≤ σ

�
2 log(2d/δ)

n
= τ.

If |yj | � τ for some j, then it must correspond to θ∗j �= 0. On the other hand, if |yj | ≤ τ , then
|θ∗j | ≤ |yj | + |ξj | ≤ 2τ with high probability. This motivates the use of the following estimator,
called the hard-thresholding estimator:

θ̂HT
j = yjI(|yj | ≥ 2τ), j = 1, . . . , d.

Indeed, conditioning on the event:

A =
�
max

i
|ξi| ≤ τ

�
,

we have for all j, |yj | ≥ 2τ ⇒ |θ∗j | ≥ τ and |yj | ≤ 2τ ⇒ |θ∗j | ≤ 3τ and

�θ̂RT − θ∗�2 =

d�

i=1

(|yi − θ∗i |I(|yi| ≥ 2τ) + |θ∗i |I(|yi| < 2τ))
2

≤
d�

i=1

(τI(|θ∗i | ≥ τ) + (θ∗i )I(|θ∗i | < 3τ))
2

≤
d�

i=1

�
4min

�
|θ∗j |2, τ

��2 ≤ 16�θ∗�0τ2 =
32�θ�0σ2 log(2d/δ)

n
.

Furthermore, if minj∈supp(θ∗) |θ∗j | ≥ 3τ , then supp(θ̂HT ) = supp(θ∗).
It turns out that θ̂HT is obtained by penalization using �0 pseudo norm ball:

θ̂HT = arg min
θ∈Rd

�y − θ�2 + 4τ2�θ�0.

This is easily seen as if |yi| < 2τ for some j, then 4τ2I(θj �= 0) > y2j . This motivates the use of
penalized estimators which are more adaptative to unknown properties of θ∗.

Under model (LM), we set, for any λ ≥ 0,

θ̂�0 ∈ arg min
θ∈Rd

1

2n
�Xθ − Y �2 + λ�θ�0

θ̂�1 ∈ arg min
θ∈Rd

1

2n
�Xθ − Y �2 + λ�θ�1

The second estimator is commonly called the Lasso estimator.
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�0 penalized least squares
Theorem 3.4.1. Assume that model (LM) holds with � ∼ subG(σ2) then choosing λ = 8 log(6)σ2/n+
16σ2 log(ed)/n, we have for any δ > 0 with probability at least 1− δ,

MSE(θ̂�0) ≤ 32σ2 (2�θ∗�0 (log(6) + log(ed)) + log(1/δ) + log(2))

n

Proof. We have by definition

1

2n
�Xθ̂�0 − Y �2 + λ�θ̂�0�0 ≤ 1

2n
�Xθ∗ − Y �2 + λ�θ∗�0.

Similarly as in Lemma 3.3.2, we have

�Xθ̂�0 − Xθ∗�2 ≤ 2�TX
�
θ̂�0 − θ∗

�
+ 2nλ(�θ∗�0 − �θ̂�0�0).

For any a, b ∈ Rd, we have

2aT b = 2aT
b

�b�2
�b�2 ≤ 2

�
aT

b

�b�2

�2

+
1

2
�b�22,

and hence

�Xθ̂�0 − Xθ∗�2 ≤ 4




�TX
�
θ̂�0 − θ∗

�

���X
�
θ̂�0 − θ∗

����
2

2




2

+ 4nλ(�θ∗�0 − �θ̂�0�0). (3.3)

Setting U(θ̂�0 − θ∗) = X
�
θ̂�0 − θ∗

�
/
���X
�
θ̂�0 − θ∗

����
2
, we have

�
�TU(θ̂�0 − θ∗)

�2
− nλ�θ̂�0�0 ≤ sup

θ∈Rd

�
�TU(θ − θ∗)

�2 − nλ�θ�0

≤ max
1≤k≤d

max
|S|=k

sup
supp(θ)=S

�
�TU(θ − θ∗)

�2 − nλk

≤ max
1≤k≤d

max
|S|=k

sup
u∈RrS∗ ,�u�2≤1

�
�TΦS∗u

�2 − nλk

where ΦS∗ ∈ Rn×rS∗ denotes an orthonormal basis of the span of the columns of X indexed by
S ∪ supp(θ∗), and rS∗ ≤ |S|+ �θ∗�0. For any t > 0, k and S with |S| = k, we have using Theorem
2.2.2.

P

�
4 sup
u∈RrS∗ ,�u�2≤1

�
�TΦS∗u

�2 − 4nλk > t

�
= P

�
sup

u∈RrS∗ ,�u�2≤1

���TΦS∗u
�� >

�
t

4
+ nλk

�

≤ 2 · 6rS∗ exp

�
−

t
4 + nλk

8σ2

�

≤ 2 exp

�
− t

32σ2
− nλk

8σ2
+ (k + �θ∗�0) log(6)

�
. (3.4)

Using the definition of λ, we have

−nλk

8σ2
+ (k + �θ∗�0) log(6) = −k log(6)− 2k log(ed) + (k + �θ∗�0) log(6)

= −2k log(ed) + �θ∗�0 log(6).
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Using a union bound with (3.3) and (3.4), we obtain, for any t > 0,

P
�
�Xθ̂�0 − θ∗�22 ≥ 4nλ�θ∗�0 + t

�

≤
d�

k=1

�

|S|=k

2 exp

�
− t

32σ2
− 2k log(ed) + �θ∗�0 log(6)

�

≤ 2

d�

k=1

�
d

k

�
exp

�
− t

32σ2
− 2k log(ed) + �θ∗�0 log(6)

�

≤ 2

d�

k=1

exp

�
− t

32σ2
− k log(ed) + �θ∗�0 log(6)

�
Lemma 3.3.2

≤ 2
d�

k=1

(ed)−k exp

�
− t

32σ2
+ �θ∗�0 log(6)

�

≤ 2 exp

�
− t

32σ2
+ �θ∗�0 log(6)

�

Choosing t = 32σ2 (log(1/δ) + �θ∗�0 log(6) + log(2)), the right hand side is equal to δ and we
obtain that with probability 1− δ,

�Xθ̂�0 − Xθ∗�22 ≤ 4nλ�θ∗�0 + t

= 32σ2 (�θ∗�0 (log(6) + 2 log(ed)) + (log(1/δ) + �θ∗�0 log(6) + log(2)))

= 32σ2 (2�θ∗�0 (log(6) + log(ed)) + log(1/δ) + log(2))

This is a very strong result as it provides an estimator which completely adapts to unknwon
support, including its size.

�1 penalized least squares
Theorem 3.4.2. Assume that model (LM) holds with � ∼ subG(σ2). Moreover assume that the
columns of X have norm at most

√
n. Then, for any δ > 0, choosing λ = 2σ/

√
n
��

2 log(2d) +
�
2 log(1/δ)

�
,

we have for any δ > 0 with probability at least 1− δ,

MSE(θ̂�1) ≤ 4�θ∗�1σ√
n

��
2 log(2d) +

�
2 log(1/δ)

�
.

Proof. We have by definition

1

2n
�Xθ̂�1 − Y �2 + λ�θ̂�1�1 ≤ 1

2n
�Xθ∗ − Y �2 + λ�θ∗�1.

Similarly as in Lemma 3.3.2, we have

�Xθ̂�1 − Xθ∗�2 ≤ 2�TX
�
θ̂�1 − θ∗

�
+ 2nλ(�θ∗�1 − �θ̂�1�1).

Hölder’s inequality states that for any a, b ∈ Rd, we have aT b ≤ �a�∞�b�1, and hence

�Xθ̂�1 − Xθ∗�22 ≤ 2��TX�∞
�
�θ̂�1�1 + �θ∗�1

�
+ 2nλ(�θ∗�1 − �θ̂�1�1) (3.5)

= �θ̂�1�1(2��TX�∞ − λn) + �θ∗�1(2��TX�∞ + λn). (3.6)
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Now for any t > 0, and any column Xj of X, we have that XT
j � ∼ subG(σ2n) and from Theorem

3.4.2

P
�
�XT ��∞ > t

�
≤ 2de−

t2

2nσ2 .

Taking t = σ(
�
2n log(2d) +

�
2n log(1/δ)) = nλ/2, we obtain using (3.6), that with probability

1− δ,

�Xθ̂�1 − Xθ∗�22 ≤ 2nλ�θ∗�1.

3.5 Incoherence and fast rates for Lasso

Incoherence, random matrices and cone condition
Definition 3.5.1. A matrix X ∈ Rn×d is said to have incoherence k ∈ N∗, if

����
XTX
n

− Id

����
∞

≤ 1

32k
,

where � · �∞ denotes the largest absolute value of a matrix.

For k → ∞ this entails that X is orthonormal and prevents situations where d > n. However,
finite values of k, amount to relax this constraint and allow for much larger d.

Proposition 3.5.1. Let A ∈ Rn×d be a random matrix which entries are independent Rademacher
variables (±1 with probability 1/2). Then, for any δ > 0, if n ≥ 211k2 log(1/δ)+213k2 log(d), with
probability 1− δ over the random draw of its entries, A has incoherence k.

Proof. The diagonal entries of ATA are equal to n and the off-diagonal elements are sum of
n independant Rademacher random variables. From Hoeffding’s lemma (2.1.1), Rademarcher
random variables are sub gaussian with variance proxy 1 and using Theorem 2.1.2, their sum is
subG(n). Using a union bound, we have, for any t ≥ 0, using Theorem 2.1.1 and summing over
the d2 entries of ATA,

P
�����

XTX
n

− Id

����
∞

> t

�
≤ 2d2e

−nt2

2 .

Choosing t = 1/(32k), we have

P
�����

XTX
n

− Id

����
∞

>
1

32k

�
≤ elog(2)+2 log(d)− n

211k2 ≤ δ,

for the choice of n which has been made.

The k2 term can actually be improved to k. For any θ ∈ Rd, S ⊂ {1, . . . , d}, we denote
by θS , the vector which support is S and which entries agree with those of θ on S. We have
�θ�1 = �θS�1 + �θSc�1.

Lemma 3.5.1. For any k ≤ d and X having incoherence k, any S with |S| ≤ k and any θ ∈ Rd

satisfying the cone condition:

�θSc�1 ≤ 3�θS�1,

we have �θ�22 ≤ 2
�Xθ�2

2

n .
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Proof. We have θ = θS + θSc , and hence

�Xθ�22 = �XθS�22 + �XθSc�22 + 2θSXTXθSc .

From the incoherence condition, since �θS�0 ≤ k, we have

�XθS�22 = n�θS�22 + nθTS

�
XTX
n

− Id

�
θS ≥ n�θS�22 − n

�θS�21
32k

.

This also holds for θSc and using the cone condition, we obtain

�XθSc�22 ≥ n�θSc�22 − n
�θSc�21
32

≥ n�θSc�22 − 9n
�θS�21
32k

.

Using the incoherence property again as well as Hölder’s inequality, we obtain

2
��θTSXTXθSc

�� ≤ 2

32k
�θS�1�θSc�1 ≤ 6

32k
�θS�21.

Finnally, from Cauchy-Schwartz inequality, one has �θS�21 ≤ |S|�θS�22 ≤ k�θS�22 and

�Xθ�22
n

≥ �θS�22 + �θSc�22 −
16|S|�θS�22

32k
≥ �θS�22

2
.

Fast rate for the Lasso estimator
Theorem 3.5.1. For n �= 2, assume that model LM holds with � ∼ subG(σ2). Assume that
�θ0�0 ≤ k and that X has incoherence k. Then, for any δ > 0, the Lasso estimator θ̂�1 with
λ = 8σ/n(

�
log(2d) +

�
log(1/δ)) satisfies with probability 1− δ

MSE(θ̂�1) ≤ (212)
kσ2 log(2d/δ)

n

�θ̂�1 − θ∗�22 ≤ (213)
kσ2 log(2d/δ)

n

Proof. We have by definition

1

2n
�Xθ̂�1 − Y �2 ≤ 1

2n
�Xθ∗ − Y �2 + λ(�θ∗�1 − �θ̂�1�1).

and similarly as in Lemma 3.3.1,

�Xθ̂�1 − Y �2 + nλ�θ̂�1 − θ∗�1 ≤ 2�TX(θ̂�1 − θ∗) + nλ�θ̂�1 − θ∗�1 + 2nλ(�θ∗�1 − �θ̂�1�1).

Similarly as in the proof of Theorem 3.4.2, X has columns satisfying �Xj�22 ≤ n+ 1
32k ≤ 2n from

the incoherence condition. Hence, for any t > 0,

P
�
�XT ��∞ > t

�
≤ 2de−

t2

4nσ2 .

Taking t = 2σ(
�
n log(2d) +

�
n log(1/δ)) = nλ

4 , the right hand side is smaller than δ, and we
obtain that with probability 1− δ,

�TX(θ̂�1 − θ∗) ≤ �XT ��∞�θ̂�1 − θ∗�1

≤ nλ

4
�θ̂�1 − θ∗�1.



26 CHAPTER 3. LINEAR REGRESSION

Setting S the support of θ∗ and noting that �θ̂�1 −θ∗�1−�θ̂�1�1 = �θ̂�1S −θ∗�1−�θ̂�1S �1, we obtain,
with probability 1− δ

�Xθ̂�1 − Y �2 + nλ�θ̂�1 − θ∗�1 ≤ 2nλ�θ̂�1 − θ∗�1 + 2nλ(�θ∗�1 − �θ̂�1�1) (3.7)

≤ 2nλ�θ̂�1S − θ∗�1 + 2nλ(�θ∗�1 − �θ̂�1S �1) (3.8)

≤ 4nλ�θ̂�1S − θ∗�1. (3.9)

In particular, we have

�θ̂�1Sc − θ∗Sc�1 ≤ 3�θ̂�1S − θ∗�1

which is the cone condition of Lemma 3.5.1. Using this and Cauchy-Schwartz inequality, we obtain

�θ̂�1S − θ∗�1 ≤
�
|S|�θ̂�1S − θ∗�2 ≤

�
|S|�θ̂�1 − θ∗�2 ≤

�
2k

n

���X
�
θ̂�1 − θ∗

����
2
.

Combining with (3.9), we have
���X
�
θ̂�1 − θ∗

����
2

2
≤ 32nkλ2 ≤ (212)kσ2 log(2d/δ).

The secon inequality follows because from Lemma 3.5.1, we have �θ̂�1 − θ∗�22 ≤ 2MSE(θ̂�1).

For the proof, we only used Lemma 3.5.1 and more precisely

inf
|S|≤k

inf
θ∈CS

�Xθ�22
n�θ�22

≥ 1

2
,

where CS is the cone defined by �θSc�1 ≤ 3�θS�1. This condition is called restricted eigenvalue
condition. It can be seen as a lower bound on the eigenvalues of X when restricted to sparse
eigen vectors. In particular it implies that the smallest singular value of XS is at least n/2 for
all |S| ≤ k. To summarize, Proposition 3.5.1 and Theorem 3.5.1 en sure that there exists design
matrices X such that the Lasso estimators has a fast convergence rate in high dimensions.

3.6 Compressed sensing
High dimentional statistics have an important intersection with compressed sensing [5, 3] in signal
processing. Traditional approaches separate signal aquisition and signal compression which is
performed on a signal which is fully characterized in the memory of a device (or at least very
accurately described). The field of compressed sensing emerge as different approach for this
problem based on two observations.

• Natural signals such as speach, sounds, images, are not generic or completely random and
they have a strong intrinsic strucutre.

• If this structure was known it should be possible to take advantage in a signal aquisition /
compression scheme.

Compressed sensing emerged as a development of the preceeding observation based on two ideas.

• the undelying structure of natural signals is captured by sparsity patterns in a certain basis.

• if a signal is sparse in a given basis, one could probably mix the aquisition and compression
phase by aquiring only a very limited number of measurements.

We describe a signal recovery result from random measurements relying on linear programming.
Further readings on the topic include [2, 3, 4].
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Signal recovery
Althouth the notations will be the same as in the high dimensional statistics context, the viewpoint
is a bit different. The signal to be recovered is θ∗ ∈ Rd∗ which is unknown and assumed to be
sparse, that is �θ∗�0 = k < d. The operator has the possibility to choose a sensing matrix
X ∈ Rn×d which will result in the following measurements:

Xθ∗ = y (3.10)

The goal of compressed sensing is to establish methods and conditions ensuring large classes of
values of θ∗ can be infered accuratly only from the knowledge of y and X. Other questions of
interest include robustness to noise and exact recovery of supp(θ∗). For simplicity we will only
touch the noiseless setting in (3.10). We will deduce compressed sensing type results from MSE
estimates of the previous sections.

Exact recovery using �0 minimization
We introduce the estimator

θ̂�0CS ∈ min
θ∈Rd

�θ�0 s.t. Xθ = y. (3.11)

under mild assumption on the sensing matrix X, this estimator deterministically recovers the
unknown signal θ∗.

Proposition 3.6.1. Given k ∈ N, k ≤ d, and assume that for any S, |S| ≤ 2k, that XS has full
column rank. Then, the solution of (3.11) is unique and is equal to θ∗.

Proof. Assume that θ̂�0CS �= θ∗. We have �θ̂�0CS�0 ≤ �θ∗�0 = k. Set S = supp(θ∗ − θ̂�0CS). We have
|S| ≤ 2k and X(θ∗ − θ̂�0CS) = 0 and hence θ∗ = θ̂�0CS .

Exact recovery from random measurements with �1 minimization
Intuitively if one is interested in signal recovery over large classes of signals using �1 norm, the
sensing matrix in (3.10) should not have structure fooling the �1 norm. This happens if X is generic
in some sense. One way to achieve this is to use random measurements. This amounts to choose a
random X in (3.10) such as the one described in Proposition 3.5.1 for example. Furthermore, since
there is no noise, in the measurements, the least squares approach does not really make sense. We
introduce an estimator.

θ̂�1CS ∈ min
θ∈Rd

�θ�1 s.t. Xθ = y. (3.12)

Corollary 3.6.1. Given k ∈ N, k ≤ d, and δ > 0, assume that X is a Rademacher matrix with
n ≥ 211k2 log(1/δ) + 213k2 log(d). Assume furthermore that �θ∗�0 ≤ k in (3.10). Then with
probability 1− δ over the random draw of X, the solution of (3.12) is unique and is equal to θ∗.

Proof. Assume that θ̂�1CS �= θ∗ and set d = θ̂�1CS − θ∗. We have �θ̂�1CS�1 ≤ �θ∗�1 and Xd = 0. Set
S = supp(θ∗), we have

�θ∗�1 ≥ �θ̂�1CS�1 = �dSc�1 + �dS + θ∗�1 ≥ �dSc�1 + �θ∗�1 − �dS�1.

As a result, we have �dS�1 ≥ �dSc�1 and Xd = 0. Lemma 3.5.1 implies that d = 0.

This result shows that it is possible to recover θ∗ with high probability only from the order of
O(k2 log(d)) measurements provided that �θ∗�0 ≤ k. The k2 term can be improved further. In
the context of noisy measurements, conditioning both on the realization of X and the realization
of the noise, one can obtain results similar to Theorem 3.5.1 for signal processing.
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Exercises
Exercise 3.6.1. Given x ∈ Rd and λ > 0, show that the solution to the problem

min
y∈Rp

1

2
�y − x�22 + λ�y�1

is given by coordinatwise application of pλ : R �→ R to x, where, for any s ∈ R

pλ(s) =





s− λ, if s > λ

0, if |s| ≤ λ

s+ λ, if s < λ

.

This is the soft-thresholding operation and the result is called the proximity operator of the function
λ�·�1. Give a graphical representation of pλ and compare it to the hard-thresholding operator given
by t �→ tI(|t| ≥ λ).

Exercise 3.6.2. Let X = (1, Z, . . . , Zd)T ∈ Rd+1 be a random vector where Z is a real random
variable. Show that E

�
XXT

�
∈ Rd+1×d+1 is positive definite when Z admits a density with respect

to Lebesgue measure on R. Provide a counter example for which E
�
XXT

�
is singular.

Exercise 3.6.3. Under the linear model (LM),

• Assuming that XTX is invertible and E[�] = 0, show that E[θLS ] = θ∗.

• Assuming in addition that � ∼ subG(σ2), show that θLS − θ∗ ∼ subG
�

σ2

λ2
min

�
where λmin

denotes the smallest eigenvalue of XTX. Propose a generalization of the result when the
invertibility assumption is dropped.

• If XTX is not invertible, show that θLS = argminθ �θ�2, such that XTXθ = XTY .

Exercise 3.6.4. We consider the model (LM), and define the ridge regression estimator, for any
λ > 0

θ̂�2 = arg min
θ∈Rd

1

2n
�Xθ − Y �2 + λ�θ�22.

• Show that θ̂�2 is indeed uniquely defined and propose a closed form expression for it.

• Compute the bias: E
�
θ̂�2 − θ∗

�
and show that it is bounded by �θ∗�22.

• Show that θ̂�2 − E
�
θ̂�2
�
∼ subG

�
σ2

λ2

�
.

• Show the bias variance decomposition identity:

E
�
�θ̂�2 − θ∗�22

�
= E

����θ̂�2 − E
�
θ̂�2
����

2

2

�
+
���E
�
θ̂�2 − θ∗

����
2

2
.

• Using the previous exercise, suggest as situation for which

E
�
�θ̂�2 − θ∗�22

�
< E

�
�θ̂LS − θ∗�22

�


