
Chapter 3

Linear regression

This chapter is mostly based on [7, Chapter 2]. Further reading include [7, Chapter 3,4], [10, 9,
1, 3, 2, 5].

3.1 Introduction

We consider a generative model of the following form Yi = f∗(Xi) + �i, i = 1 . . . , n, where
� = (�1, . . . , �n)

T ∼ subG(σ2) and E [�] = 0. The regression function f∗ : x �→ E [Y |X = x] is
assumed to be of the form f∗ : x �→ xT θ∗ for an unknown θ∗ ∈ Rd. This generative model is
assumed to hold true throughout the chapter.

Design points:

The sample points X1, . . . , Xn are called design points. Depending on the nature of these points
one may consider different ways to measure the quality of an estimate.

Random design: The design points are random, given Dn and a new observation Xn+1, one
would like to build a predictor f̂n for Yn+1. In this case R(f̂n) is a relevant measure.

Fixed design: If the design points are not random, one talks about fixed design and we denote
the design points by x1, . . . , xn. In this situation, there is not much interest in talking about risk
or expected prediction errror, since there is no expectation to consider. In this situation, we will
consider for any g the mean squared error:

MSE(g) =
1

n

n�

i=1

(g(xi)− f∗(xi))
2

We denote by X ∈ Rn×d the design matrix for which each row is one of the design points. Our
model can then be expressed as follows:

Y = Xθ∗ + � (LM)

where Y = (Y1, . . . , Yn)
T and � = (�1, . . . , �n)

T . In the sequel, we will focus on fixed designs. In
this case, the mean squared error is given for any θ ∈ Rd, by

MSE(θ) =
1

n
�X (θ − θ∗) �22.

17
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3.2 Least squares and constrained least squares with fixed
design

Least squares estimator
The least squares estimator is given by

θ̂LS ∈ arg min
θ∈Rd

�Xθ − Y �22 (3.1)

where we use the Euclidean norm. We start with an algebraic expression for θ̂LS .

Lemma 3.2.1. We have

XTXθ̂LS = XTY

and one solution is given by θ̂LS = (XTX)†XTY , where † denotes the Moore-Menrose pseusdo
inverse.

Proof. The matrix XTX is positive semidefinite so that the objective in (3.1) is a convex quadratic
function of θ. A necessary and sufficient condition for global optimality is that the gradient
vanishes. This is the first claim and the second one follows from properties of the pseudoinverse.

3.2.1 Constrained least squares estimator
Let K denote a closed subset of Rd, the K constrained least squares estimator is given by

θ̂LS
K ∈ argmin

θ∈K
�Xθ − Y �22 (3.2)

where we use the Euclidean norm. The following lemma will be useful to prove finite sample
bounds for θ̂LS

K . The difficulty in bounding mean squared errors comes from the randomness of
θ̂LS , here we bound the MSE by a product of the noise and a quantity which can be controled
uniformly. The question of how to compute constrained least squares estimates will be the topic
of further chapters.

3.3 Finite sample bounds for least squares
We start with a general Lemma for constrained least squares estimators.

Lemma 3.3.1. Assume that model (LM) holds and that θ∗ ∈ K, then, almost surely

�X(θ̂LS
K − θ∗)�22 ≤ 2�TX(θ̂LS

K − θ∗)

Proof. Since θ∗ ∈ K and we have by definition of θ̂LS
K ,

�Xθ̂LS
K − Y �22 ≤ �Xθ∗ − Y �22 = ���22.

Furthermore, it holds that

�Xθ̂LS
K − Y �22 = �Xθ̂LS

K − Xθ∗ − ��22
= �Xθ̂LS

K − Xθ∗�22 − 2�TX(θ̂LS
K − θ∗) + ���22

So that

�X(θ̂LS
K − θ∗)�22 = �Xθ̂LS

K − Y �22 − ���22 + 2�TX(θ̂LS
K − θ∗)

≤ 2�TX(θ̂LS
K − θ∗)
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Unconstrained least squares
The following result provides mean squared error estimates for the least squares estimator.

Theorem 3.3.1. Assume that (LM) holds with � ∼ subG(σ2), then

E
�
MSE(θ̂LS)

�
≤ 16σ2 r

n

where r = rank(XTX), furthermore, for any δ > 0, with probability at least 1− δ,

MSE(θ̂LS) ≤ 64σ2 (2r + log(1/δ))

n

Proof. Denote by Φ ∈ Rn×r a matrix which column constitute an orthonormal basis of the column
span of X. One may write X

�
θ̂LS − θ∗

�
= Φν where ν ∈ Rr. We have

�TX(θ̂LS − θ∗)

�X(θ̂LS − θ∗)�2
=

�TΦν

Φν
=

�
�TΦ

� ν

�ν�2
≤ �ΦT ��2.

Applying Lemma 3.3.1, with K = Rd, we have

�X(θ̂LS − θ∗)�22 ≤ 4

�
�TX(θ̂LS − θ∗)

�X(θ̂LS − θ∗)�2

�2

≤ 4�ΦT ��22 = 4

r�

i=1

(ΦT
i �)

2,

where Φi denotes the i-th column of Φ, i = 1, . . . , n. Note that ΦT
i � ∼ subG(σ2) by orthonormality

of the Columns of Φ and Theorem 2.1.2 for i = 1 . . . , r and hence using Theorem 2.1.1, we have

E
�
MSE(θ̂LS)

�
≤ 4

n

r�

i=1

(ΦT
i �)

2 ≤ 16rσ2

n
.

This concludes the bound in expectation. For the bound in probability, we remakr that �ΦT ��2 =
max�u�≤1 u

TΦT � where ΦT � ∼ subG(σ2). Theorem 2.2.2 and Remark 2.2.2 entails for any δ > 0,
with probability at least 1− δ,

MSE(θ̂LS) ≤ 4

n

�
4σ

√
r + 2σ

�
2 log(1/δ)

�2

≤ 64σ2 (2r + log(1/δ))

n

Optimality and high dimensional setting
A natural question arising about Theorem 3.3.1 is “could we do better?”. If d is the number of
variables an X has full possible rank, then r = min(n, d) = d assuming n ≥ d. We obtain a rate of
the order of σ2d/n. In this case, we have

MSE(θ̂LS) = (θ̂LS − θ∗)T
XTX
n

(θ̂LS − θ∗) ≥ λmin

�
XTX
n

�
�θ̂LS − θ∗�22.

It turns out that this rate is optimal in a precise minimax sense.

Theorem 3.3.2. Suppose that Y = ξ + θ where θ ∈ Rd and ξi ∼ N (0,σ2/n), i = 1, . . . , d. Then,
for any α ∈ (0, 1/4):

inf
θ̂

sup
θ∈Rd

Pθ

�
�θ̂ − θ�22 ≥ α

256

σ2d

n

�
≥ 1

2
− 2α

where the infimum is taken over all measurable functions of Y .
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The proof of this statement, can be done by reduction to statistical hypothesis testing and use
known impossibility results to discriminate between two close hyptheses (See Chapter 4 of Philippe
Rigollet’s notes). Note that in the specific Gaussian sequence model proposed in the Theorem,
the order of decay predicted by Theorem 3.3.1 is precisely σ2d/n. The theorem essentially says
that for any estimator, there is a statistical setting for which this rate is attained. This type of
result is called minimax. The conclusion is that the least squares estimator is optimal among all
estimators without any prior knowledge.

In the high dimensional setting, we have d ≥ n and in this case, the bound of Theorem 3.3.1
remains bounded away from zero. Since this bound is optimal, it seems that there is no hope to
solve high dimensional statistical problems. This is in fact not true, if one has for example prior
knowledge that θ∗ is in a certain ball of radius δ, then imposing that our estimaor θ̂ is in the
same ball allows to estimate θ∗ such that �θ̂− θ∗�2 ≤ δ2. If δ is small, this may improve over the
estimate of Theorem 3.3.1.

How is this compatible with Theorem 3.3.2? In the inf sup expression, the sup is taken over
Rd and considering smaller subsets of Rd would reduce the right hand side.

�1 constrained least squares

We let B1 denote the unit ball of the �1 norm in Rd,

B1 =

�
x ∈ Rd,

d�

i=1

|xi| ≤ 1

�
.

This is a polytope with 2d vertices given by the elements of the canonical basis and their oposite.
The following result shows that under prior knowledge on θ∗, one can hope for better rates.

Theorem 3.3.3. Let K = B1 and d ≥ 2. Assume that model (LM) holds with � ∼ subG(σ2) and
θ∗ ∈ K. Assume also that the columns of X are normalized such that �Xj� ≤ √

n, j =, 1 . . . , d.
Then, it holds that

E
�
MSE(θ̂LS

K )
�
≤ 4σ√

n

�
2 log(2d)

and for any δ > 0, with probability at least 1− δ, it holds that

MSE(θ̂LS
K ) ≤ σ

�
32 log (2d/δ)

n
.

Proof. Invoking Lemma 3.3.1, we have

�X(θ̂LS
K − θ∗)�22 ≤ 2�TX(θ̂LS

K − θ∗).

Note that since �θ̂LS
K �1 ≤ 1 and �θ∗�1 ≤ 1, we have �θ̂LS

K − θ∗�1 ≤ 2 so that

�X(θ̂LS
K − θ∗)�22 ≤ 2 sup

�v�1≤2

�TXv = 4 sup
�v�1≤1

�TXv = 4 sup
u∈XK

�Tu.

Now XK by linearity if v is not an extreme point of K then Xv is not an extreme point of XK.
Hence XK is a polytope with at most 2d vertices which are taken among the columns of X. The
normalization of the columns of X ensures that on each of these vertices, XT

j � ∼ subG(σ2n).
Applying Theorem 2.2.3, we have

E
�
MSE(θ̂LS

K )
�
≤ 4

n

√
nσ

�
2 log(2d) =

4σ√
n

�
2 log(2d).
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Furthermore, for any t > 0, we have

P
�
MSE(θ̂LS

K ) ≥ t
�
≤ P

�
sup

u∈XK
�Tu ≥ nt

4

�
≤ 2de−

nt2

32σ2 .

Given any δ ≥ 0, one has

2de−
nt2

32σ2 ≤ δ ⇔ t2 ≥ 32σ2

n
log

�
2d

δ

�
,

and the conclusion follows.

�0 constrained least squares

We refer to the �0 norm as the cardinality of the set of non zero coordinates of a vector θ ∈ Rd.
Note that this is an abuse of notations since this is not a norm. For any θ ∈ Rd,

�θ�0 =

d�

i=1

I(θj �= 0).

A vector with small �0 norm is called sparse. The support of a vector is the set of indices of its
nonzero coordinates:

supp(θ) = {j ∈ {1, . . . , d} , θj �= 0} ,

so that �θ�0 = card(supp(θ)). By extension, for any k = 1, . . . , d, we denote by B0(k) the set of
k-sparse vectors.

Theorem 3.3.4. For any k ∈ N∗, k ≤ d/2, let K = B0(k) and assume that model (LM) holds
with � ∼ subG(σ2) and θ∗ ∈ K. Then, for any δ > 0, with probability 1− δ, it holds

MSE(θ̂LS
K ) ≤ 32σ2

n

�
log

��
d

2k

��
+ 2k log(6) + log(1/δ)

�
.

Furthermore, we have

E
�
MSE(θ̂LS

K )
�
≤ 32σ2

n

�
1 + log

��
d

2k

��
+ 2k log(6)

�

Proof. Using Lemma 3.3.1, we have

�X(θ̂LS
K − θ∗)�22 ≤ 4

�
�TX(θ̂LS

K − θ∗)
�2

�X(θ̂LS
K − θ∗)�22

.

We have �θ̂LS
K − θ∗�0 ≤ 2k and we set Ŝ = supp

�
θ̂LS
K − θ∗

�
, we have |Ŝ| ≤ 2k. We repeat similar

steps as for the unconstrained least squares. For any S ⊂ {1, . . . , d}, denote by XS ∈ Rn×|S|

the matrix composed of the columns of X indexed by S, by rS the rank of XS and by ΦS an
orthonormal basis of the span of the collumns of X. There exists ν ∈ RrŜ , such that

�TX(θ̂LS
K − θ∗)

�X(θ̂LS
K − θ∗)�2

=
�ΦŜν

�ν� ≤ max
|S|=2k

max
u∈RrS ,�u�2≤1

uTΦT
S �.
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Using Theorem 2.1.2, for any S, ΦT
S � ∼ subG(σ2). Using a union bound, and Theorem 2.2.2, for

any t > 0, we have

P
�
�X(θ̂LS

K − θ∗)�22 ≥ 4t
�
≤ P

�
max
|S|=2k

max
u∈RrS ,�u�2≤1

�
uTΦT

S �
�2

> t

�

≤ P
�
max
|S|=2k

max
u∈RrS ,�u�2≤1

��uTΦT
S �

�� >
√
t

�

≤
�

|S|=2k

P
�

max
u∈RrS ,�u�2≤1

|uTΦT
S �| >

√
t

�

≤
�

|S|=2k

6|S|e
−t

8σ2

≤
�

d

2k

�
62ke

−t

8σ2 .

We deduce that

P
�
MSE(θ̂LS) ≥ 4t

n

�
≤

�
d

2k

�
62ke

−t

8σ2

and we choose t such that the right hand side is bounded by δ, that is

t ≥ 8σ2

�
log

��
d

2k

��
+ 2k log(6) + log(1/δ)

�

and the bound in probability follows. The expectation is deduced from the bound in probability.
We have, for any H ≥ 0, using

E
�
MSE(θ̂LS

K )
�
=

� +∞

0

P
�
MSE(θ̂LS

K ) > u
�
du

≤ H +

� +∞

0

P
�
MSE(θ̂LS

K ) ≥ (u+H)
�
du

≤ H +

�
d

2k

�
62k

� +∞

0

e
−n(u+H)

32σ2 du

= H +

�
d

2k

�
62ke

−nH

32σ2
32σ2

n
.

Inverting the relation
�

d

2k

�
62ke

−nH

32σ2 = 1,

we obtain

H =
32σ2

n

�
log

��
d

2k

��
+ 2k log(6)

�

and the result follows.

Lemma 3.3.2. For any 1 ≤ k ≤ n, it holds
�
n

k

�
≤

�en
k

�k

Proof. This is a simple recursion.

As a consequence, the order of the bounds which we obtain is σ2k
n log

�
ed
2k

�
. This also turns out

to be minimax optimal for sparse estimation.


