
Chapter 2

Sub Gaussian random variables

Sources for this chapter, Philippe Rigollet and Jan-Christian Hütter lectures notes on high di-
mensional statistics (Chapter 1). Sudeep Kamath’s course on concentration of measure at CIRM
(2016). Subgaussian random variables: An expository note from Omar Rivasplata.

2.1 Introduction and characterization

2.1.1 Gaussian concentration

The centered Gaussian random variable X on R with variance σ2 > 0 has density given by

p(x) =
1√
2πσ2

exp

(
−x2

2σ2

)
.

It plays a central role in statistics due to the central limit theorem. It also has a central position
in statistical and signal processing estimation problems. Important properties of this distribution
is closure under addition of iid replicates and concentration (Mill’s inequality), if X is N

(
0, σ2

)
,

we have, for any t > 0, P (|X| ≥ t) ≤ σ
√
2

t
√
π
exp

(
−t2
2σ2

)
.

Proof.

P (|X| ≥ t) ≤ 2P (X ≥ t) (symmetry and union bound)

=

√
2√
πσ2

∫ +∞

t

exp

(
−x2

2σ2

)
dx

≤ σ2
√
2√

πσ2

∫ +∞

t

x

σ2t
exp

(
−x2

2σ2

)
dx

=
σ
√
2

t
√
π

∫ +∞

t

− ∂

∂x
exp

(
−x2

2σ2

)
dx

=
σ
√
2

t
√
π
exp

(
−t2

2σ2

)
.

Sub Gaussian random variables are constrained to concentrate in a similar way which is suffi-
cient for many purposes.
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2.1.2 Equivalent definitions

The following provides equivalent definitions for sub Gaussianity with variance proxy σ2 > 0 (up
to multiplicative constants).

Theorem 2.1.1. Let X be a centered random variable on R, each statement bellow implies the
next (we take σ2 > 0 in the first definition as a variance proxy).

• Laplace transform: for any s ∈ R, E [exp(sX)] ≤ exp
(
σ2s2

2

)
.

• Concentration: for any t > 0, max{P (X ≥ t) , P (X ≤ −t)} ≤ exp
(
−t2
2σ2

)
.

• Moment condition: for any q ∈ N∗, E
[
X2q

]
≤ q!(4σ2)q.

• Orlicz condition: E
[
exp

(
X2

8σ2

)]
≤ 2.

• Laplace transform: for any t ∈ R, E [exp(tX)] ≤ exp
(

24σ2t2

2

)
.

Proof. The first implication is through Chernov’s bound which is a consequence of Markov’s
inequality, for any s > 0, t > 0:

P(X > t) = P (exp (sX) > exp (st))

≤ E [exp (sX)]

exp (st)

≤ exp

(
σ2s2

2
− st

)
,

where the last inequalitie uses the Laplace transform condition. The result follows from the fact
that mins>0

σ2s2

2 − st = −t2
2σ2 attained for s = t/σ2. For the second implication, we have, for any

q ∈ N,

E
[
X2q

]
=

∫ +∞

0

P
(
Z2q > u

)
du

=

∫ +∞

0

P
(
|Z| > u1/2q

)
du

≤ 2

∫ +∞

0

exp

(
−u1/q

2σ2

)
du

=
(
2σ2
)q

2q

∫ +∞

0

exp (−v) vq−1dv v =
u1/q

2σ2

=
(
2σ2
)q

2qq!

≤
(
4σ2
)q
q! 2q ≤ 2q

The next implication follows from the monotone convergence theorem. We obtain

E
[
exp

(
X2

8σ2

)]
= E

[ ∞∑
k=0

X2k

(4σ2)
k
k!

1

2k

]
≤
∞∑
k=0

1

2k
= 2

Getting back to the first item is done as follows, for any s ∈ R, using the fact that X is centered,



for any t ∈ R,

E [exp (tX)] = E

[
+∞∑
k=0

(tX)k

k!

]

= 1 + E

[
+∞∑
k=2

(tX)k

k!

]
E[X] = 0

≤ 1 +
t2

2
E
[
X2 exp (|tX|)

] (tX)k

k!
≤ t2X2

2

|tX|k−2

(k − 2)!
, k ≥ 2

≤ 1 +
t2

2
exp

(
4σ2t2

)
E
[
X2 exp

(
X2

16σ2

)]
inf
a

{
t2

2a
+
aX2

2

}
= t|X|, a =

1

8σ2

≤ 1 + 4σ2t2 exp
(
4σ2t2

)
E
[
exp

(
X2

8σ2

)]
z ≤ exp

(z
2

)
≤
(
1 + 8σ2t2

)
exp

(
4σ2t2

)
≤ exp

(
24σ2t2

2

)
(1 + 2z) ≤ e2z

2.1.3 Examples
Sub Gaussian random variables exist, for example the Gaussian random variable is subgaussian.
Hoeffding’s Lemma (1963) asserts that bounded random variables are also sub Gaussian.

Lemma 2.1.1. Let X be a real centered random variable such that X ∈ [a, b] almost surely. Then
E[exp (sX)] ≤ exp

(
s2 (b−a)2

8

)
for any s ∈ R, or X is sub Gaussian with variance proxy (b−a)2

4 .

Proof. Consider the cumulent generating function ψ : s 7→ log (E [exp (sX)]), we have

ψ′(s) =
E [X exp (sX)]

E[exp (sX)]
ψ′′(s) =

E
[
X2 exp (sX)

]
E[exp (sX)]

−
(
E [X exp (sX)]

E[exp (sX)]

)2

and ψ′′ is the variance under the law of X reweighted by exp(sX)
E[exp(sX)] . For any random variable

Z in [a, b], we have var [Z] = var
[
Z − a+b

2

]
≤ (b−a)2

4 . We can integrate two times using ψ(0) =
log(1) = 0 and ψ′(0) = E [X] = 0.

2.1.4 Sub Gaussian vectors
The definition extends similarly as for the Gaussian case.

Definition 2.1.1. A random vector X ∈ Rd is said to be sub Gaussian with variance proxy σ2 if
it is centered and for any u ∈ Rd such that ‖u‖ = 1, the real random variable uTX is subgaussian
with variance proxy σ2. We write X ∼ subG(σ2).

There exists such random vectors, for example

Theorem 2.1.2. Let X1, . . . , Xp be independant subG(σ2) real random variables then the random
vector X ∈ Rp which i-th coordinates is Xi, is subG(σ2).

Proof. For any u ∈ Rp such that ‖u‖ = 1, we have for any s ∈ R,

E
[
exp

(
suTX

)]
=

p∏
i=1

E [exp (suiXi)] ≤
p∏
i=1

exp

(
σ2s2u2i

2

)
= exp

(
σ2s2‖u‖2

2

)
= exp

(
σ2s2

2

)

This allows to obtain various concentration results for sub Gaussian random variables.



2.2 Maximal inequalities
We first provide tail bounds for maximum of a finite number of subgaussian random variables and
then over polytopes and Euclidean ball.

Theorem 2.2.1. Let X1, . . . , XN be N real random variables with Xi ∼ subG(σ2), i = 1, . . . , N ,
not necessarily independant. Then

E
[

max
i=1,...,N

Xi

]
≤ σ

√
2 log(N) and E

[
max

i=1,...,N
|Xi|

]
≤ σ

√
2 log(2N)

and for any t > 0

P
[

max
i=1,...,N

Xi > t

]
≤ N exp

(
−t2

2σ2

)
and P

[
max

i=1,...,N
|Xi| > t

]
≤ 2N exp

(
−t2

2σ2

)
Proof. For any s > 0

E
[

max
i=1,...,N

Xi

]
=

1

s
E
[
log

(
exp

(
s max
i=1,...,N

Xi

))]
≤ 1

s
log

(
E
[
exp

(
s max
i=1,...,N

Xi

)])
(Jensen)

=
1

s
log

(
E
[

max
i=1,...,N

exp (sXi)

])
≤ 1

s
log

(
E

[
N∑
i=1

exp (sXi)

])

≤ 1

s
log

(
N∑
i=1

exp

(
s2σ2

2

))

=
log(N)

s
+
s2σ2

2
.

The result follows by taking s =
√

2 log(N)/σ2. The result on the deviation probability is a simple
union bound and the results on the absolute value follows by applying the two previous results to
the 2N random variables X1, . . . , XN ,−X1, . . . ,−XN .

Remark 2.2.1. For any δ > 0, by taking t = σ
√
2 log(2N/δ), it holds with probability at least

1− δ,

max
i=1...N

|Xi| ≤ σ
√

2 log(2N/δ).

We will conclude this chapter by providing a bound for the maximum over an L2 ball: if
X ∈ Rp is subG(σ2), can we control max‖c‖≤1 c

TX? We begin with a Lemma.

Lemma 2.2.1. For any ε ∈ (0, 1), it is possible to cover the Euclidean unit ball in Rp by at most
(3/ε)p Euclidean balls of radius ε.

Proof. Build a covering iteratively, start with the unit ball of radius ε centered at 0, S = {0} and
while there exists x, ‖x‖ ≤ 1 and dist(x,S) > ε, add such an x to S. After N iterations, call
x1, . . . , xN the elements of S.

We clearly have that the balls of radius ε/2 centered at the points in S are disjoint and contained
in the euclidean ball of radius 1 + ε/2. Computing volumes, we obtain

N
( ε
2

)p
≤
(
1 +

ε

2

)p
.

Hence the process must stop after at most
(
2
ε + 1

)p ≤ ( 3ε )p iterations at which point we obtain a
cover.



This allows to prove the following result

Theorem 2.2.2. Let X ∼ subG(σ2) be a p dimensional random vector. Then

E
[
max
‖c‖≤1

cTX

]
= E

[
max
‖c‖≤1

|cTX|
]
≤ 4σ

√
d

and for any t > 0

P
[
max
‖c‖≤1

|cTX| > t

]
= P

[
max
‖c‖≤1

cTX > t

]
≤ 6d exp

(
−t2

8σ2

)
.

Proof. Consider a covering of the unit Euclidean ball with at most 6d balls of radius 1/2, denote
by x1, . . . , x6d the centers of these balls. For any c such that ‖c‖ ≤ 1, there exists i such that
‖c− xi‖ ≤ 1

2 . Hence we have

max
‖c‖≤1

cTX ≤ max
i=1,...,6d

xTi X + max
‖c‖≤1/2

cTX = max
i=1,...,6d

xTi X +
1

2
max
‖c‖≤1

cTX

and hence max‖c‖≤1 c
TX ≤ maxi=1,...,6d 2x

T
i X and the result follows from Theorem 2.2.1 because

2xTi X ∼ subG(4σ2) and log(6) ≤ 2.

Remark 2.2.2. For any δ > 0, taking t =
√

8 log(6)σ
√
d + 2σ

√
2 log(1/δ), we obtain that with

probability 1− δ, it holds that

max
‖c‖≤1

cTX = max
‖c‖≤1

|cTX| ≤ 4σ
√
d+ 2σ

√
2 log(1/δ) = 4σ

√
d

(
1 +

√
log(1/δ)

2d

)
.

Theorem 2.2.3. Let P be a polytope, the convex hull of N points, v(1), . . . , v(N) in Rd. Let
X ∈ Rd be a random variable such that for all i = 1, . . . , n, [v(i)]TX ∼ subG(σ2), then the
conclusion of Theorem 2.2.1 holds

E
[
max
θ∈P

θTX

]
≤ σ

√
2 log(N) and E

[
max
θ∈P
|θTX|

]
≤ σ

√
2 log(2N)

and for any t > 0

P
[
max
θ∈P

θTX > t

]
≤ N exp

(
−t2

2σ2

)
and P

[
max
θ∈P
|θTX| > t

]
≤ 2N exp

(
−t2

2σ2

)



Exercises
Exercise 2.2.1. Under the setting of Theorem 2.1.2, show that for any t > 0, we have

P

[
1

p

p∑
i=1

Xi ≥ t

]
≤ exp

(
−t2p
2σ2

)
.

Exercise 2.2.2. Let Z be a real random variable with probability measure Pz on R such that Z ≥ 0
almost surely. Show that

E [Z] =

∫ +∞

0

P(Z > u)du.

(Hint: use Funini’s theorem. Beware: we did not assume that E[Z] is finite).

Exercise 2.2.3. For X ∈ Rn×d and Y ∈ Rn, the least squares estimator is written as

θ̂LS ∈ arg min
θ∈Rd

‖Xθ − Y ‖22. (2.1)

We have XTXθ̂LS = XTY and one solution is given by θ̂LS = (XTX)†XTY , where † denotes the
Moore-Penrose pseusdo inverse. (Hint: First assume that XTX is invertible, the pseudo inverse is
then the usual matrix inverse. If you are familiar with convex analysis, the result can be deduced
from convexity of the ojective, solving the first order conditions)

Recall that if D is diagonal, then its pseudo inverse is obtained by inverting the non zero
diagonal elements (leaving the others unchainged). Pseudo inverse of real symmetric matrices are
defined in the same way after diagonalization.

Exercise 2.2.4. Let X be N
(
0, σ2

)
, prove that for any t > 0, P (|X| ≥ t) ≤ σ

√
2

t
√
π
exp

(
−t2
2σ2

)
. This

is called Mill’s inequality.

Exercise 2.2.5. Let v(1), . . . , v(N) ∈ Rd and set

P = conv(v(1), . . . , v(N)) =

{
N∑
i=1

λiv
(i), λi ≥ 0, i = 1, . . . , N,

N∑
i=1

λi = 1

}

Show that for any c ∈ Rd, the problem supθ∈P c
T θ is attained at v(i) for some i ∈ {1, . . . , N}.

Prove Theorem 2.2.3.

Exercise 2.2.6. Let X ∼ subG(σ2) be a d-dimensional random vector, show that, for any δ > 0,
with probability 1− δ,

sup
‖θ‖1≤1

|θTX| ≤ σ
√
2 log(2d/δ).

Exercise 2.2.7. Let A ∈ Rn×m be a random matrix which entries are iid subgaussian with vari-
ance proxy σ2. The operator norm of A is given by ‖A‖op = supx∈Rm ‖Ax‖2/‖x‖2. Show that
E [‖A‖op] ≤ cσ

√
m+ n for a constant c to be determined.

Exercise 2.2.8. Prove Jensen’s inequality, if D ⊂ R is an interval and φ : D 7→ R is concave
continuous, if X is a real random variable such that X ∈ D with probability 1, then E [φ(X)] ≤
φ (E [X]).


