Chapter 6-7: stochastic algorithms for large scale problems

Edouard Pauwels

Statistics and optimization in high dimensions
M2RI, Toulouse 3 Paul Sabatier

Different estimators

$\mathbb{X} \in \mathbb{R}^{n \times d}, Y \in \mathbb{R}^{n}$ (random).

$$
\begin{aligned}
& \hat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\mathbb{X} \theta-Y\|_{2}^{2} \\
& \hat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\mathbb{X} \theta-Y\|_{2}^{2}, \quad \text { s.t. } \quad\|\theta\|_{1} \leq 1 \\
& \hat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\mathbb{X} \theta-Y\|_{2}^{2}, \quad \text { s.t. } \quad\|\theta\|_{0} \leq k \\
& \hat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\mathbb{X} \theta-Y\|_{2}^{2}+\lambda\|\theta\|_{0} \\
& \hat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\mathbb{X} \theta-Y\|_{2}^{2}+\lambda\|\theta\|_{1} \\
& \hat{\theta} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\theta\|_{1}, \quad \text { s.t. } \quad \mathbb{X} \theta=Y .
\end{aligned}
$$

- How to deal with large values of n (possibly infinite)?
- Can we reduce the cost of treating large d.

Where have we been so far.

- $\|\cdot\|_{0}$: hard to handle computationally.
- ℓ_{1} norm estimators are solutions to conic programs.
- General purpose solvers (interior point methods), hardly apply to large instances.
- Dedicacted first order methods, cheap iterations.

Plan for today: stochastic algorithms to treat large n or large d.

- Stochastic approximation and Robbins-Monro algorithm.
- Prototype algorithm, ODE method, convergence rate analysis.
- Block coordinate methods, convergence rate analysis.
- General conclusion, I expect your feedback.

Sources are diverse, see the lecture notes.

Plan

1. Introduction to stochastic approximation
2. Robbins-Monro algorithm
3. Convergence analysis
4. Block coordinate algorithms

Motivation for large n

The Lasso estimator is given as follows:

$$
\begin{aligned}
& \hat{\theta}^{\ell_{1}} \in \arg \min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|\mathbb{X} \theta-Y\|^{2}+\lambda\|\theta\|_{1} \\
& \hat{\theta}^{\ell_{1}} \in \arg \min _{\theta \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(x_{i}^{T} \theta-y_{i}\right)^{2}+\lambda\|\theta\|_{1}
\end{aligned}
$$

General model

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} F(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+g(x) \tag{1}
\end{equation*}
$$

where f_{i} and g are convex lower semicontinuous convex functions.

Sum rule: $\partial F=\sum_{i=1}^{n} \partial f_{i}+\partial g$

Redundancy: if $f_{i}=f$ for all $i=1, \ldots, n$, the sum is not needed, only one term.

Redundancy and estimation of the mean

$$
\min _{x \in \mathbb{R}} F(x):=\frac{1}{n} \sum_{i=1}^{n}\left(x-x_{i}\right)^{2}
$$

Intuition for stochastic approximation

Let $/$ be uniform over $\{1, \ldots, n\}$

$$
F: x \mapsto \mathbb{E}\left[f_{l}(x)\right]+g(x),
$$

Stochastic approximation: main algorithmic step, for any $x \in \mathbb{R}^{d}$,

- Sample i uniformly at random in $\{1, \ldots, n\}$.
- Perform an algorithmic step using only the value of $f_{i}(x)$ and $\nabla f_{i}(x)$ or eventually $v \in \partial f_{i}(x)$

Unbiased estimates of the (sub)gradient.

- If for each value of I, f_{l} is \mathcal{C}^{1}, we have for any $x \in \mathbb{R}^{d}$,

$$
\mathbb{E}\left[\nabla f_{l}(x)\right]=\nabla \mathbb{E}\left[f_{l}(x)\right]=\nabla F(x)
$$

- Let v_{l} be a random variable such that $v_{l} \in \partial f_{l}(x)$ almost surely, F is convex and

$$
\mathbb{E}\left[v_{l}\right] \in \partial \mathbb{E}\left[f_{l}(x)\right]=\partial F(x) .
$$

Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm
3. Convergence analysis
4. Block coordinate algorithms

Robbins-Monro algorithm

Let $h: \mathbb{R}^{p} \mapsto \mathbb{R}^{p}$ be Lipschitz, we seek a zero of h, noisy unbiased estimates of h.

Robins-Monro: $\left(X_{k}\right)_{k \in \mathbb{N}}$ is a sequence of random variables such that for any $k \in \mathbb{N}$

$$
\begin{equation*}
X_{k+1}=X_{k}+\alpha_{k}\left(h\left(X_{k}\right)+M_{k+1}\right) \tag{2}
\end{equation*}
$$

where

- $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ is a sequence of positive step sizes satisfying

$$
\sum_{i=1}^{n} \alpha_{k}=+\infty \quad \sum_{i=1}^{n} \alpha_{k}^{2}<+\infty
$$

- $\left(M_{k}\right)_{k \in \mathbb{N}}$, martingale difference sequence with respect to the increasing σ-fields

$$
\mathcal{F}_{k}=\sigma\left(X_{m}, M_{m}, m \leq k\right)=\sigma\left(X_{0}, M_{1}, \ldots, M_{k}\right)
$$

$\mathbb{E}\left[M_{k+1} \mid \mathcal{F}_{k}\right]=0$, for all $k \in \mathbb{N}$.

- In addition, we assume that there exists a positive constant C such that

$$
\sup _{k \in \mathbb{N}} \mathbb{E}\left[\left\|M_{k+1}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \leq C
$$

More intuition

Martingale convergence theorem: $\sum_{k=0}^{+\infty} \mathbb{E}\left[\alpha_{k}^{2}\left\|M_{k+1}\right\|^{2} \mid \mathcal{F}_{k}\right]$ is finite. Hence

$$
\sum_{k=0}^{K} \alpha_{k} M_{k+1}
$$

is a zero mean martingale with square summable increments. It converges to a square integrable random varible M in \mathbb{R}^{p}, almost surely and in L^{2} (Durret Section 5.4).

Vanishing step size: In addition to wash out noise, we obtain trajectories close to the ODE

$$
\dot{x}=h(x)
$$

Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm
3. Convergence analysis
4. Block coordinate algorithms

The ODE method

Choose $h=-\nabla F(x)$ assuming that F has Lispchitz gradient. The following result is due to Michel Benaim.

Theorem

Conditioning on boundedness of $\left\{X_{k}\right\}_{k \in \mathbb{N}}$, almost surely, the (random) set of accumulation point of the sequence is compact connected and invariant by the flow generated by the continuous time limit:

$$
\dot{x}=h(x) .
$$

Consequence: let \bar{x} be an accumulation point, the unique solution $x: t \mapsto \mathbb{R}^{p}$ to $\dot{x}=-\nabla F(x), x(0)=\bar{x}$ remains bounded for all $t \in \mathbb{R}$.

Corollary

If F is convex, \mathcal{C}^{1} with Lipschitz gradient, and attains its minimum, setting $h=-\nabla F$, conditioning on the event that $\sup _{k \in \mathbb{N}}\left\|X_{k}\right\|$ is finite, almost surely, all the accumulation points of X_{k} are critical points of F.

Non asymptotic rates for stochastic subgradient

Proposition

Consider the problem

$$
\min _{x \in \mathbb{R}^{d}} F(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x),
$$

where each f_{i} is convex and L-Lipschitz. Choose $x_{0} \in \mathbb{R}$ and a sequence of random variables $\left(i_{k}\right)_{k \in \mathbb{N}}$ independently identically distributed uniformly on $\{1, \ldots, n\}$ and a sequence of positive step sizes $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$. Consider the recursion

$$
\begin{align*}
x_{k+1} & =x_{k}-\alpha_{k} v_{k} \tag{3}\\
v_{k} & \in \partial f_{i_{k}}\left(x_{k}\right) \tag{4}
\end{align*}
$$

Then for all $K \in \mathbb{N}, K \geq 1$

$$
\mathbb{E}\left[F\left(\bar{x}_{K}\right)-F^{*}\right] \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}+L^{2} \sum_{k=0}^{K} \alpha_{k}^{2}}{2 \sum_{k=0}^{K} \alpha_{k}}
$$

where $\bar{x}_{K}=\frac{\sum_{k=0}^{K} \alpha_{k} x_{k}}{\sum_{k=0}^{K} \alpha_{k}}$.

Consequences

Corollary

Under the same hypotheses, we have the following

- If $\alpha_{k}=\alpha$ is constant, we have

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F^{*}\right] \leq \frac{\left\|x_{0}-x^{*}\right\|^{2}}{2(k+1) \alpha}+\frac{L^{2} \alpha}{2} .
$$

- In particular, choosing $\alpha_{i}=\frac{\left\|x_{0}-x^{*}\right\| / L}{\sqrt{k+1}}$, we have

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F^{*}\right] \leq \frac{\left\|x_{0}-x^{*}\right\| L}{\sqrt{k+1}}
$$

- Choosing $\alpha_{k}=\left\|x_{0}-x^{*}\right\| /(L \sqrt{k})$ for all k, we obtain for all k

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F^{*}\right]=O\left(\frac{\left\|x_{0}-x^{*}\right\|_{2} L(1+\log (k))}{\sqrt{k}}\right) .
$$

Exercise

For the last point, what can you say if F is strongly convex?

Non asymptotic rates for stochastic proximal gradient

Proposition

Consider the problem

$$
\min _{x \in \mathbb{R}^{d}} F(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+g(x)
$$

where each f_{i} is convex with L-Lipschitz gradient and g is convex. Choose $x_{0} \in \mathbb{R}$ and a sequence of random variables $\left(i_{k}\right)_{k \in \mathbb{N}}$ independently identically distributed uniformly on $\{1, \ldots, n\}$ and a sequence of positive step sizes $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$. Consider the recursion

$$
\begin{equation*}
x_{k+1}=\operatorname{prox}_{\alpha_{k} g / L}\left(x_{k}-\alpha_{k} / L \nabla f_{i_{k}}\left(x_{k}\right)\right) \tag{5}
\end{equation*}
$$

Assume the following

- $0<\alpha_{k} \leq 1$, for all $k \in \mathbb{N}$.
- f_{i} and g are G-Lipschitz for all $i=1, \ldots, n$;

Then for all $K \in \mathbb{N}, K \geq 1$, setting $\bar{x}_{K}=\frac{\sum_{k=0}^{K} \alpha_{k} x_{k}}{\sum_{k=0}^{K} \alpha_{k}}$.

$$
\mathbb{E}\left[F\left(\bar{x}_{K}\right)-F^{*}\right] \leq \frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}+\frac{2 G^{2}}{L} \sum_{k=0}^{K} \alpha_{k}^{2}}{2 \sum_{k=0}^{K} \alpha_{k}}
$$

Consequences

Corollary

- If $\alpha_{k}=\alpha$ is constant, we have for all $k \geq 1$

$$
F\left(\bar{x}_{k}\right)-F^{*} \leq \frac{L\left\|x_{0}-x^{*}\right\|^{2}}{2(k+1) \alpha}+\frac{G^{2} \alpha}{L} .
$$

- In particular, choosing $\alpha_{i}=\frac{1}{\sqrt{2 k+2}}$, for $i=1 \ldots, k$, for some $k \in \mathbb{N}$, we have

$$
F\left(\bar{x}_{k}\right)-F^{*} \leq \frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}+\frac{G^{2}}{L}}{\sqrt{2 k+2}}
$$

- Choosing $\alpha_{k}=1 / \sqrt{2 k+2}$ for all k, we obtain for all k

$$
F\left(x_{k}\right)-F^{*}=O\left(\frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}+\frac{G^{2}}{L} \log (k)}{\sqrt{2 k+2}}\right) .
$$

Optimality of these rates

- $O(1 / \sqrt{k})$ are optimal rates for optimization based on stochastic oracles.
- Smoothness does not improve.
- Strong convexity leads to $O(1 / k)$.
- Linear rates can be achieved using variance reduction techniques for finite sums under strong convexity.

Minimizing the population risk

Minimize functions of the form

$$
x \mapsto \mathbb{E}_{z}[f(x, Z)]
$$

where x are model parameters and Z is a population random variable.
Example: input output pair (X, Y) of a regression problem, minimize over a parametric regression function class \mathcal{F}.

$$
\left.R(f)=\mathbb{E}\left[(f(X)-Y)^{2}\right]=\int_{\mathcal{X} \times \mathcal{Y}}(f(x)-y)\right)^{2} P(d x, d y) .
$$

Single pass: given $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, one pass of a stochastic algorithm, amount to perform n steps of the same algorithm on the population risk.

Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm
3. Convergence analysis
4. Block coordinate algorithms

Motivation for large d

$$
\hat{\theta}^{\ell_{1}} \in \arg \min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|\mathbb{X} \theta-Y\|^{2}+\lambda\|\theta\|_{1}
$$

The cost of one proximal gradient step is of the order of d^{2}.

Idea: Update only subsets of the coordinates to reduce the cost.

Does this work

- For smooth convex functions?
- For nonsmooth convex functions?
- For the Lasso problem?

Block proximal gradient algorithm

We consider optimization problems of the form

$$
\min _{x \in \mathbb{R}^{p}} F(x)=f(x)+\sum_{i=1}^{p} g_{i}\left(x_{i}\right)
$$

where $f: \mathbb{R}^{p} \mapsto \mathbb{R}$ has L-Lipschitz gradient and $g_{i}: \mathbb{R} \mapsto \mathbb{R}$ are convex lower semicontinuous univariate functions.

Let e_{1}, \ldots, e_{p} be the elements of the canonical basis. Given a sequence of coordinate indices $\left(i_{k}\right)_{k \in \mathbb{N}}$, starting at $x_{0} \in \mathbb{R}^{p}$

$$
x_{k+1}=\arg \min _{y=x_{k}+t e_{i_{k}}} f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), y-x_{k}\right\rangle+\frac{L}{2}\left\|y-x_{k}\right\|_{2}^{2}+g_{i_{k}}(y)
$$

Assumption (Coercivity)

The sublevelset $\left\{y \in \mathbb{R}^{p}, F(y) \leq F\left(x_{0}\right)\right\}$ is compact, for any $y \in \mathbb{R}^{p}$ such that $F(y) \leq F\left(x_{0}\right),\left\|y-x^{*}\right\|_{2} \leq R$.

Technical Lemma

Lemma

Let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be a sequence of positive real numbers and $\gamma>0$ be such that

$$
A_{k}-A_{k+1} \geq \gamma A_{k}^{2}
$$

then for all $k \in \mathbb{N}, A_{k} \leq\left(\frac{1}{A_{0}}+\gamma k\right)^{-1}$.

Random block gradient descent

Proposition (Nesterov 2012)

Consider the problem

$$
\min _{x \in \mathbb{R}^{p}} f(x)
$$

where $f: \mathbb{R}^{p} \mapsto \mathbb{R}$ is convex differentiable with L-Lipschitz gradient. Choose $x_{0} \in \mathbb{R}$ and a sequence of random variables $\left(i_{k}\right)_{k \in \mathbb{N}}$ independently identically distributed uniformly on $\{1, \ldots, p\}$ and a sequence of positive step sizes. Consider the recursion

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{L} \nabla_{i_{k}} f\left(x_{k}\right) \tag{6}
\end{equation*}
$$

Then for all $k \in \mathbb{N}, k \geq 1$

$$
\mathbb{E}\left[f\left(x_{k}\right)-f^{*}\right] \leq \frac{2 p L R^{2}}{k}
$$

Random block proximal gradient descent

Proposition (Richtárik, Takác 2014)

Consider the problem

$$
\min _{x \in \mathbb{R}^{d}} F(x):=f(x)+\sum_{i=1}^{p} g_{i}(x)
$$

where $f: \mathbb{R}^{p} \mapsto \mathbb{R}$ is convex differentiable with L-Lipschitz gradient, each $g_{i}: \mathbb{R}^{p} \mapsto \mathbb{R}$ is convex and lower semicontinuous and only depends on coordinate i. Choose $x_{0} \in \mathbb{R}$ and a sequence of random variables $\left(i_{k}\right)_{k \in \mathbb{N}}$ independently identically distributed uniformly on $\{1, \ldots, p\}$ and a sequence of positive step sizes. Consider the recursion

$$
\begin{align*}
x_{k+1} & =\arg \min _{y} f\left(x_{k}\right)+\left\langle\nabla_{i_{k}} f\left(x_{k}\right), y-x_{k}\right\rangle+\frac{L}{2}\left\|y-x_{k}\right\|_{2}^{2}+g_{i_{k}}(y) \tag{7}\\
& =\operatorname{prox}_{g_{i_{k}} / L}\left(x_{k}-\frac{1}{L} \nabla_{i_{k}} f\left(x_{k}\right)\right) \tag{8}
\end{align*}
$$

Set $C=\max \left\{L R^{2}, F\left(x_{0}\right)-F^{*}\right\}$, we have, for all $k \geq 1$,

$$
\mathbb{E}\left[F\left(x_{k}\right)-F^{*}\right] \leq \frac{2 p C}{k}
$$

Deterministic block gradient descent

Proposition

Consider the problem

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

where $f: \mathbb{R}^{p} \mapsto \mathbb{R}$ is convex differentiable with L-Lipschitz gradient. Choose $x_{0} \in \mathbb{R}$, and consider the recursion

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{1}{L} \nabla_{i_{k}} f\left(x_{k}\right) \tag{9}
\end{equation*}
$$

where i_{k} is the largest block of $\nabla f\left(x_{k}\right)$ in Euclidean norm. Then for all $k \in \mathbb{N}, k \geq 1$

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 p L R^{2}}{k}
$$

Similar for proximal variant.

Exercise

In the same setting as the block gradient descent method, consider the update

$$
x_{k+1} \in \arg \min \quad f(y), \quad \text { s.t. } \quad y=x_{k}+t e_{i_{k}}, t \in \mathbb{R} .
$$

Can you prove a convergence rate for this method?

Comment on complexity for quadratic losses

Lasso estimator

$$
\hat{\theta}^{\ell_{1}} \in \arg \min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|\mathbb{X} \theta-Y\|^{2}+\lambda\|\theta\|_{1}
$$

- Full proximal gradient step costs $O\left(d^{2}\right)$.
- Given $\theta \in \mathbb{R}^{d}$ and $\beta=\mathbb{X}^{T}(\mathbb{X} \theta-Y)$, choosing $\tilde{\theta}$ such that $\|\theta-\tilde{\theta}\|_{0}$, computing $\mathbb{X}^{T}(\mathbb{X} \tilde{\theta}-Y)$ given β costs only $O(d)$.

Consequences:

- d steps of random block method have roughly the same cost as one step of the full method.
- The computational overhead for deterministic rules is affordable.

Conclusion for randomized methods

- Stochastic Gradient Descent (SGD) is at the heart of machine learning methods beyond convex optimization (deep learning ...).
- Block decomposition methods can be beneficial even for small d.
- Most state of the art method used randomized algorithms.

Conclusion

Sparse least squares problem, a running example to illustrate:

- Statistical efficiency issues in high dimension and their resolution
- Computational complexity barriers in high dimensional estimation.
- All purpose solvers for conic programming
- First order methods and composite optimization
- Randomized methods to treat high dimensionality issues from a computational view point.
Lecture notes: available at
https://www.math.univ-toulouse.fr/~epauwels/M2RI/index.html
Feedback form: please rate the course.

