Chapter 6-7: stochastic algorithms for large scale problems
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Different estimators

X € R™9, Y € R" (random).
0carg ming cpa || X0 — Y3
0 cargming pa|X0— Y3, st [0 <1
0 cargmingepa||X0 — Y3, st |00 < k
0 € argmingcpa||X6 — Y3 + \[10]|o
0 € argmingepa X0 — Y3 + A||0]Ix
0 € argmingpal]l1, s.t. X0=Y.

@ How to deal with large values of n (possibly infinite)?

@ Can we reduce the cost of treating large d.
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Where have we been so far.

|| - lo: hard to handle computationally.

£1 norm estimators are solutions to conic programs.

General purpose solvers (interior point methods), hardly apply to large instances.

@ Dedicacted first order methods, cheap iterations.

Plan for today: stochastic algorithms to treat large n or large d.

@ Stochastic approximation and Robbins-Monro algorithm.

@ Prototype algorithm, ODE method, convergence rate analysis.
o Block coordinate methods, convergence rate analysis.
°

General conclusion, | expect your feedback.

Sources are diverse, see the lecture notes.
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Plan

1. Introduction to stochastic approximation
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Motivation for large n

The Lasso estimator is given as follows:

. 1
6" in —[|X0 — Y||> + \||6
€ arg min o || 17+ Allell

n

A .1 1.7 2
6" =3 TS0 = yi)? + M6,
€ arg min 2 5 i 0= yi)” + Allfllx

General model

x€ERP

1 n
i F(x) == fi . 1
min  F(x):= — ; (x) +&(x) (1)
where f; and g are convex lower semicontinuous convex functions.
Sum rule: 9F =) | Ofi + Og

Redundancy: if fi = f for all i = 1,...,n, the sum is not needed, only one term.
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Redundancy and estimation of the mean

min F(x) := % Z(x — x,-)2

xER

0‘0‘0

Q) KX /o

T T T
-2 -1 0 1
X
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Intuition for stochastic approximation

Let / be uniform over {1,...,n}
F: x = E[fi(x)] + g(x),

Stochastic approximation: main algorithmic step, for any x € R?,
@ Sample i uniformly at random in {1,..., n}.

@ Perform an algorithmic step using only the value of fi(x) and Vfi(x) or eventually
v € 0f(x)

Unbiased estimates of the (sub)gradient.

o If for each value of /, f; is C*, we have for any x € R,
E[Vfi(x)] = VE[fi(x)] = VF(x)
o Let v; be a random variable such that v; € 9fi(x) almost surely, F is convex and

E[v] € 8E[fi(x)] = 9F(x).

7/31



Plan

2. Robbins-Monro algorithm
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Robbins-Monro algorithm

Let h: R — RRP be Lipschitz, we seek a zero of h, noisy unbiased estimates of h.

Robins-Monro: (Xi)«en is a sequence of random variables such that for any k € N

Xier1 = Xie + ak (h(Xk) + Mit1) (2)
where

® (au),ep is a sequence of positive step sizes satisfying

n n
Zak = 400 Z ai < 400
i=1 i=1

o (Mi)ken, martingale difference sequence with respect to the increasing o-fields
Fi = 0(Xom, M, m < k) = o(Xo, My, ..., My).
E [Mk41|Fk] = 0, for all k € N.

@ In addition, we assume that there exists a positive constant C such that

supE [ M 317 < €.
keN
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Martingale convergence theorem: > /% E [ || Mis1 || Fi] is finite. Hence

K
E o Micia
k=0

is a zero mean martingale with square summable increments. It converges to a square
integrable random varible M in R?, almost surely and in L? (Durret Section 5.4).

Vanishing step size: In addition to wash out noise, we obtain trajectories close to the
ODE

x = h(x)
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Plan

3. Convergence analysis
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The ODE method

Choose h = —V F(x) assuming that F has Lispchitz gradient. The following result is due
to Michel Benaim.

Theorem

Conditioning on boundedness of { Xk}, .y, almost surely, the (random) set of
accumulation point of the sequence is compact connected and invariant by the flow
generated by the continuous time limit:

Xx = h(x).

Consequence: let X be an accumulation point, the unique solution x: t — R” to
x = =V F(x), x(0) = X remains bounded for all t € R.

Corollary

If F is convex, C* with Lipschitz gradient, and attains its minimum, setting h = —VF,
conditioning on the event that sup,y || Xk|| is finite, almost surely, all the accumulation
points of Xy are critical points of F.
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Non asymptotic rates for stochastic subgradient

Proposition

Consider the problem

x€ER

min F(x) = %Zﬁ(x),

where each f; is convex and L-Lipschitz. Choose xg € R and a sequence of random
variables (i), independently identically distributed uniformly on {1,...,n} and a
sequence of positive step sizes (ax),cy- Consider the recursion

Xk+1 = Xk — Ok Vk (3)
vk € Of, (xx) (4)
Then forall K e N, K > 1
X — x*II3 + L* 5o 0k

BF() — F < 2 S

K
Zk:o Qe X

where Xx = S oo
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Consequences

Corollary
Under the same hypotheses, we have the following

o If ax = « is constant, we have

* 112 2
E[F(x) — Fr]< le=x", Lo

2k +)a = 2
o In particular, choosing cvj = % we have
[xo — x™||L

= * |
E[F(%) - F1< =7==

o Choosing ax = ||xo — x*||/(LV/k) for all k, we obtain for all k

E[F(%) ~ F']=0 (”X" = X*”zf/(g - '°g(k))> .
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Exercise

For the last point, what can you say if F is strongly convex?
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Non asymptotic rates for stochastic proximal gradient

Proposition
Consider the problem

n

min F(x) := %Zﬁ(x)—!—g(x)

d
B3 i=1

where each f; is convex with L-Lipschitz gradient and g is convex. Choose xo € R and a
sequence of random variables (ix), .y independently identically distributed uniformly on
{1,...,n} and a sequence of positive step sizes (c),cy- Consider the recursion

Xk+1 = ProX,, g1 (X — cuc/LV (xk)) - (5)

Assume the following
e 0<ax <1, forall k e N.
o fi and g are G-Lipschitz for all i =1,...,n;
K
Then for all K € N, K > 1, setting Xk = &;07"?
k=0 &
Lllxo — X* 2 + g K7 a2
]E[F()_(K) _ F*] S || 0 H2 l L Zk_() k
23 o
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Consequences

Corollary

o If ax = « is constant, we have for all k > 1

Lxo — x*|? G«

F(x)— F* < —_—
(%) =2kt e T L
@ In particular, choosing aj = \/ﬁ fori =1...,k, for some k € N, we have
L U2 iz
Fize) - Fr < o= X+

- V2k +2
o Choosing auc = 1/+/2k + 2 for all k, we obtain for all k

Lixo — x*[3 + < log()
V2k +2 ’

Flx) — F* = o(
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Optimality of these rates

O(1/Vk) are optimal rates for optimization based on stochastic oracles.

Smoothness does not improve.
@ Strong convexity leads to O(1/k).

@ Linear rates can be achieved using variance reduction techniques for finite sums
under strong convexity.
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Minimizing the population risk

Minimize functions of the form
x = Ez[f(x, Z)]

where x are model parameters and Z is a population random variable.

Example: input output pair (X, Y) of a regression problem, minimize over a parametric
regression function class F.

R(F) = E[(F0) ~ v)] = [ () = )Pl o)

Single pass: given (x;, yi)_;, one pass of a stochastic algorithm, amount to perform n
steps of the same algorithm on the population risk.
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Plan

4. Block coordinate algorithms
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Motivation for large d

N 1
6" in — X6 — Y[ + A||0]]1.
€ arg min o | I+ All6]ls
The cost of one proximal gradient step is of the order of d?.

Idea: Update only subsets of the coordinates to reduce the cost.
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@ For smooth convex functions?
@ For nonsmooth convex functions?

@ For the Lasso problem?
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Block proximal gradient algorithm

We consider optimization problems of the form

min F(x +Zg, Xi)

xeRP

where f: R? — R has L-Lipschitz gradient and g;: R — R are convex lower
semicontinuous univariate functions.

Let e, ..., e, be the elements of the canonical basis. Given a sequence of coordinate
indices (ik) ey, Starting at xo € R”

. L
Xt = argmin,_y oo F(xk) + (VF(x),y = x) + 5lly = xll2 + gi(y)
Assumption (Coercivity)

The sublevelset {y € RP, F(y) < F(xo)} is compact, for any y € RP such that
F(y) < F(x), [ly =x"[l2 < R.
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Technical Lemma

Lemma

Let (Ax),cn be a sequence of positive real numbers and v > 0 be such that
Ax = Axr > AL

—1
then for all k € N, Ay < (Aio + fyk) .
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Random block gradient descent

Proposition (Nesterov 2012)

Consider the problem

min f(x)

XERP

where f: RP — R is convex differentiable with L-Lipschitz gradient. Choose xo € R and a
sequence of random variables (ix),y independently identically distributed uniformly on

{1,...,p} and a sequence of positive step sizes. Consider the recursion
1
Xi41 = Xk — ZVik f(xk) (6)

Then for all k e N, k > 1

E[f(x¢) — ] < 2piR
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Random block proximal gradient descent

Proposition (Richtarik, Takac 2014)
Consider the problem

min F(x) = f(x)—|—Zg,-(x)

x€R

where f: R? — R is convex differentiable with L-Lipschitz gradient, each g; : RP — R is
convex and lower semicontinuous and only depends on coordinate i. Choose xo € R and
a sequence of random variables (ix),cy independently identically distributed uniformly on

{1,...,p} and a sequence of positive step sizes. Consider the recursion
. L
X1 = arg min, f(xi) + (Vi F(xi), y = xi) + 5 lly = X2 + & () (7)
1
= prOXgik/L (Xk — ZV,-k f(Xk)> o (8)

Set C = max{LRz, F(xo) — F*}, we have, for all k > 1,

2pC

E[F(x)—F]< £
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Deterministic block gradient descent

Proposition

Consider the problem

min f(x)

x€ERY

where f: RP — R is convex differentiable with L-Lipschitz gradient. Choose xo € R, and
consider the recursion

1
Xk+1 = Xk — ZV,-k f(Xk) (9)
where i is the largest block of Vf(xk) in Euclidean norm. Then for all k € N, k > 1

2
Flx) — F* < 2”iR :

Similar for proximal variant.
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Exercise

In the same setting as the block gradient descent method, consider the update
Xkt1 € argmin f(y), s.t. y =xk+tej,, t €R.

Can you prove a convergence rate for this method?
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Comment on complexity for quadratic losses

Lasso estimator

N 1
o4 in —|IX0 — YI||? + A0
€ arg min oL [I” + AllO]]2

o Full proximal gradient step costs O(d?).

e Given 0 € R and 8 = X7 (X6 — Y), choosing # such that ||§ — d]|o, computing
XT(X0 — Y) given 8 costs only O(d).

Consequences:

@ d steps of random block method have roughly the same cost as one step of the full
method.

@ The computational overhead for deterministic rules is affordable.
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Conclusion for randomized methods

o Stochastic Gradient Descent (SGD) is at the heart of machine learning methods
beyond convex optimization (deep learning .. .).

@ Block decomposition methods can be beneficial even for small d.

@ Most state of the art method used randomized algorithms.
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Conclusion

Sparse least squares problem, a running example to illustrate:
o Statistical efficiency issues in high dimension and their resolution
o Computational complexity barriers in high dimensional estimation.
o All purpose solvers for conic programming
o First order methods and composite optimization
o Randomized methods to treat high dimensionality issues from a computational view
point.

Lecture notes: available at
https://www.math.univ-toulouse.fr/~epauwels/M2RI/index.html

Feedback form: please rate the course.
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