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Different estimators

X ∈ Rn×d , Y ∈ Rn (random).

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22
θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22, s.t. ‖θ‖1 ≤ 1

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22, s.t. ‖θ‖0 ≤ k

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22 + λ‖θ‖0
θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22 + λ‖θ‖1
θ̂ ∈ arg minθ∈Rd ‖θ‖1, s.t. Xθ = Y .

How to deal with large values of n (possibly infinite)?

Can we reduce the cost of treating large d .
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Where have we been so far.

‖ · ‖0: hard to handle computationally.

`1 norm estimators are solutions to conic programs.

General purpose solvers (interior point methods), hardly apply to large instances.

Dedicacted first order methods, cheap iterations.

Plan for today: stochastic algorithms to treat large n or large d .

Stochastic approximation and Robbins-Monro algorithm.

Prototype algorithm, ODE method, convergence rate analysis.

Block coordinate methods, convergence rate analysis.

General conclusion, I expect your feedback.

Sources are diverse, see the lecture notes.

3 / 31



Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm

3. Convergence analysis

4. Block coordinate algorithms
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Motivation for large n

The Lasso estimator is given as follows:

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1

θ̂`1 ∈ arg min
θ∈Rd

1

n

n∑
i=1

1

2
(xT

i θ − yi )
2 + λ‖θ‖1,

General model

min
x∈Rp

F (x) :=
1

n

n∑
i=1

fi (x) + g(x). (1)

where fi and g are convex lower semicontinuous convex functions.

Sum rule: ∂F =
∑n

i=1 ∂fi + ∂g

Redundancy: if fi = f for all i = 1, . . . , n, the sum is not needed, only one term.
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Redundancy and estimation of the mean

min
x∈R

F (x) :=
1

n

n∑
i=1

(x − xi )
2
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Intuition for stochastic approximation

Let I be uniform over {1, . . . , n}

F : x 7→ E [fI (x)] + g(x),

Stochastic approximation: main algorithmic step, for any x ∈ Rd ,

Sample i uniformly at random in {1, . . . , n}.
Perform an algorithmic step using only the value of fi (x) and ∇fi (x) or eventually
v ∈ ∂fi (x)

Unbiased estimates of the (sub)gradient.

If for each value of I , fI is C1, we have for any x ∈ Rd ,

E [∇fI (x)] = ∇E [fI (x)] = ∇F (x)

Let vI be a random variable such that vI ∈ ∂fI (x) almost surely, F is convex and

E [vI ] ∈ ∂E [fI (x)] = ∂F (x).
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Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm

3. Convergence analysis

4. Block coordinate algorithms
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Robbins-Monro algorithm

Let h : Rp 7→ Rp be Lipschitz, we seek a zero of h, noisy unbiased estimates of h.

Robins-Monro: (Xk)k∈N is a sequence of random variables such that for any k ∈ N

Xk+1 = Xk + αk (h(Xk) + Mk+1) (2)

where

(αk)k∈N is a sequence of positive step sizes satisfying

n∑
i=1

αk = +∞
n∑

i=1

α2
k < +∞

(Mk)k∈N, martingale difference sequence with respect to the increasing σ-fields

Fk = σ(Xm,Mm,m ≤ k) = σ(X0,M1, . . . ,Mk).

E [Mk+1|Fk ] = 0, for all k ∈ N.

In addition, we assume that there exists a positive constant C such that

sup
k∈N

E
[
‖Mk+1‖22|Fk

]
≤ C .
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More intuition

Martingale convergence theorem:
∑+∞

k=0 E
[
α2
k‖Mk+1‖2|Fk

]
is finite. Hence

K∑
k=0

αkMk+1

is a zero mean martingale with square summable increments. It converges to a square
integrable random varible M in Rp, almost surely and in L2 (Durret Section 5.4).

Vanishing step size: In addition to wash out noise, we obtain trajectories close to the
ODE

ẋ = h(x)
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Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm

3. Convergence analysis

4. Block coordinate algorithms
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The ODE method

Choose h = −∇F (x) assuming that F has Lispchitz gradient. The following result is due
to Michel Benaim.

Theorem

Conditioning on boundedness of {Xk}k∈N, almost surely, the (random) set of
accumulation point of the sequence is compact connected and invariant by the flow
generated by the continuous time limit:

ẋ = h(x).

Consequence: let x̄ be an accumulation point, the unique solution x : t 7→ Rp to
ẋ = −∇F (x), x(0) = x̄ remains bounded for all t ∈ R.

Corollary

If F is convex, C1 with Lipschitz gradient, and attains its minimum, setting h = −∇F ,
conditioning on the event that supk∈N ‖Xk‖ is finite, almost surely, all the accumulation
points of Xk are critical points of F .
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Non asymptotic rates for stochastic subgradient

Proposition

Consider the problem

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi (x),

where each fi is convex and L-Lipschitz. Choose x0 ∈ R and a sequence of random
variables (ik)k∈N independently identically distributed uniformly on {1, . . . , n} and a
sequence of positive step sizes (αk)k∈N. Consider the recursion

xk+1 = xk − αkvk (3)

vk ∈ ∂fik (xk) (4)

Then for all K ∈ N, K ≥ 1

E [F (x̄K )− F ∗] ≤
‖x0 − x∗‖22 + L2∑K

k=0 α
2
k

2
∑K

k=0 αk

where x̄K =
∑K

k=0 αk xk∑K
k=0

αk
.
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Consequences

Corollary

Under the same hypotheses, we have the following

If αk = α is constant, we have

E [F (x̄k)− F ∗] ≤ ‖x0 − x∗‖2

2(k + 1)α
+

L2α

2
.

In particular, choosing αi = ‖x0−x∗‖/L√
k+1

, we have

E [F (x̄k)− F ∗] ≤ ‖x0 − x∗‖L√
k + 1

.

Choosing αk = ‖x0 − x∗‖/(L
√
k) for all k, we obtain for all k

E [F (x̄k)− F ∗] = O

(
‖x0 − x∗‖2L(1 + log(k))√

k

)
.
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Exercise

For the last point, what can you say if F is strongly convex?
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Non asymptotic rates for stochastic proximal gradient

Proposition

Consider the problem

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi (x) + g(x)

where each fi is convex with L-Lipschitz gradient and g is convex. Choose x0 ∈ R and a
sequence of random variables (ik)k∈N independently identically distributed uniformly on
{1, . . . , n} and a sequence of positive step sizes (αk)k∈N. Consider the recursion

xk+1 = proxαkg/L
(xk − αk/L∇fik (xk)) . (5)

Assume the following

0 < αk ≤ 1, for all k ∈ N.

fi and g are G-Lipschitz for all i = 1, . . . , n;

Then for all K ∈ N, K ≥ 1, setting x̄K =
∑K

k=0 αk xk∑K
k=0

αk
.

E [F (x̄K )− F ∗] ≤
L‖x0 − x∗‖22 + 2G2

L

∑K
k=0 α

2
k

2
∑K

k=0 αk
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Consequences

Corollary

If αk = α is constant, we have for all k ≥ 1

F (x̄k)− F ∗ ≤ L‖x0 − x∗‖2

2(k + 1)α
+

G 2α

L
.

In particular, choosing αi = 1√
2k+2

, for i = 1 . . . , k, for some k ∈ N, we have

F (x̄k)− F ∗ ≤
L‖x0 − x∗‖22 + G2

L√
2k + 2

.

Choosing αk = 1/
√

2k + 2 for all k, we obtain for all k

F (xk)− F ∗ = O

(
L‖x0 − x∗‖22 + G2

L
log(k)

√
2k + 2

)
.
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Optimality of these rates

O(1/
√
k) are optimal rates for optimization based on stochastic oracles.

Smoothness does not improve.

Strong convexity leads to O(1/k).

Linear rates can be achieved using variance reduction techniques for finite sums
under strong convexity.
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Minimizing the population risk

Minimize functions of the form

x 7→ EZ [f (x ,Z)]

where x are model parameters and Z is a population random variable.

Example: input output pair (X ,Y ) of a regression problem, minimize over a parametric
regression function class F .

R(f ) = E
[
(f (X )− Y )2

]
=

∫
X×Y

(f (x)− y))2P(dx , dy).

Single pass: given (xi , yi )
n
i=1, one pass of a stochastic algorithm, amount to perform n

steps of the same algorithm on the population risk.
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Plan

1. Introduction to stochastic approximation

2. Robbins-Monro algorithm

3. Convergence analysis

4. Block coordinate algorithms
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Motivation for large d

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1.

The cost of one proximal gradient step is of the order of d2.

Idea: Update only subsets of the coordinates to reduce the cost.
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Does this work

For smooth convex functions?

For nonsmooth convex functions?

For the Lasso problem?
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Block proximal gradient algorithm

We consider optimization problems of the form

min
x∈Rp

F (x) = f (x) +

p∑
i=1

gi (xi ),

where f : Rp 7→ R has L-Lipschitz gradient and gi : R 7→ R are convex lower
semicontinuous univariate functions.

Let e1, . . . , ep be the elements of the canonical basis. Given a sequence of coordinate
indices (ik)k∈N, starting at x0 ∈ Rp

xk+1 = arg miny=xk+teik
f (xk) + 〈∇f (xk), y − xk〉+

L

2
‖y − xk‖22 + gik (y)

Assumption (Coercivity)

The sublevelset {y ∈ Rp, F (y) ≤ F (x0)} is compact, for any y ∈ Rp such that
F (y) ≤ F (x0), ‖y − x∗‖2 ≤ R.
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Technical Lemma

Lemma

Let (Ak)k∈N be a sequence of positive real numbers and γ > 0 be such that

Ak − Ak+1 ≥ γA2
k

then for all k ∈ N, Ak ≤
(

1
A0

+ γk
)−1

.
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Random block gradient descent

Proposition (Nesterov 2012)

Consider the problem

min
x∈Rp

f (x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient. Choose x0 ∈ R and a
sequence of random variables (ik)k∈N independently identically distributed uniformly on
{1, . . . , p} and a sequence of positive step sizes. Consider the recursion

xk+1 = xk −
1

L
∇ik f (xk) (6)

Then for all k ∈ N, k ≥ 1

E [f (xk)− f ∗] ≤ 2pLR2

k
.
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Random block proximal gradient descent

Proposition (Richtárik,Takác 2014)

Consider the problem

min
x∈Rd

F (x) := f (x) +

p∑
i=1

gi (x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient, each gi : Rp 7→ R is
convex and lower semicontinuous and only depends on coordinate i . Choose x0 ∈ R and
a sequence of random variables (ik)k∈N independently identically distributed uniformly on
{1, . . . , p} and a sequence of positive step sizes. Consider the recursion

xk+1 = arg miny f (xk) + 〈∇ik f (xk), y − xk〉+
L

2
‖y − xk‖22 + gik (y) (7)

= proxgik
/L

(
xk −

1

L
∇ik f (xk)

)
. (8)

Set C = max
{
LR2,F (x0)− F ∗

}
, we have, for all k ≥ 1,

E [F (xk)− F ∗] ≤ 2pC

k
.
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Deterministic block gradient descent

Proposition

Consider the problem

min
x∈Rd

f (x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient. Choose x0 ∈ R, and
consider the recursion

xk+1 = xk −
1

L
∇ik f (xk) (9)

where ik is the largest block of ∇f (xk) in Euclidean norm. Then for all k ∈ N, k ≥ 1

f (xk)− f ∗ ≤ 2pLR2

k
.

Similar for proximal variant.
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Exercise

In the same setting as the block gradient descent method, consider the update

xk+1 ∈ arg min f (y), s.t. y = xk + teik , t ∈ R.

Can you prove a convergence rate for this method?

28 / 31



Comment on complexity for quadratic losses

Lasso estimator

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1.

Full proximal gradient step costs O(d2).

Given θ ∈ Rd and β = XT (Xθ − Y ), choosing θ̃ such that ‖θ − θ̃‖0, computing
XT (Xθ̃ − Y ) given β costs only O(d).

Consequences:

d steps of random block method have roughly the same cost as one step of the full
method.

The computational overhead for deterministic rules is affordable.
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Conclusion for randomized methods

Stochastic Gradient Descent (SGD) is at the heart of machine learning methods
beyond convex optimization (deep learning . . . ).

Block decomposition methods can be beneficial even for small d .

Most state of the art method used randomized algorithms.
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Conclusion

Sparse least squares problem, a running example to illustrate:

Statistical efficiency issues in high dimension and their resolution

Computational complexity barriers in high dimensional estimation.

All purpose solvers for conic programming

First order methods and composite optimization

Randomized methods to treat high dimensionality issues from a computational view
point.

Lecture notes: available at

https://www.math.univ-toulouse.fr/~epauwels/M2RI/index.html

Feedback form: please rate the course.
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