Chapter 5: First order methods
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Different estimators

X € R™9, Y € R" (random).
0 ¢ arg ming cpa || X6 — Y3
0 € arg minycga|X6 — Y3, s.t. 16l <1
0 € argmingcpa||X0— Y3, st. [|0llo < k
0 € argmingcga||X6 — Y3 + \[10]|o
0 € argmingcpo[[ X0 — Y5+ Al|6]x
0 € argminggal]l1, s.t. X0 =Y.

o The first one can be computed in O(n*d) operations.
@ How about the other ones?

o How to deal with large values of n and d.
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Where have we been so far.

|| - [lo: hard to handle computationally.

@ /1 norm estimators are solutions to conic programs.

General purpose solvers (interior point methods).

o lterative methods: at least d° per iteration.

Plan for today: if one cannot afford d*. Introduction to first order methods and
nonsmooth analysis.

@ Analysis of gradient descent algorithm.
@ Introduction to the notion of subgradient.
@ Algorithm for nonsmooth optimization: subgradient and proximal gradient.

Acceleration.

Sources are diverse, see the lecture notes.
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Plan

1. Gradient descent algorithm
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Intuition from continuous time dynamics

Proposition
Let f: RP — R be twice differentiable with compact sublevel sets. Consider the
differential equation, for xo € RP,
() = ~VF(x(t)) (1)
x(0) = xo. (2)
Then, there exists a solution to the initial value problem defined for all t > 0.
° 0+°° IV F(x(t))||3dt < +o0 and lim;—o || VF(x(t))| = O.
e Any accumulation point X of the trajectory satisfies Vf(X) = 0.

e If in addition f is convex, set f* = infycre f(x) and assume that it is attained at x*,
we have for anyt € R, t > 0,

* ”XO _X*”%
= L == e
f(x(t)) - < 5

And x(t) X where X is a global minimizer of f.
—00
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Gradient descent and a descent lemma

Gradient algorithm: f: R? — R, iteration cost of the order of p.
Xk+1 = Xk — Ska(Xk) (3)
Lemma

Let f: R — R be continuously differentiable with L-Lipschitz gradient (L > 0), then for
any x,y € RP,

£(y) = F6) = (VFG),y = x) | < 5y = xl3

6/39



Gradient descent algorithm

Proposition

Let f: RP — R be continuously differentiable with L-Lipschitz gradient and such that
infxere f(x) > —o00. Consider the algorithm, for xo € RP and

1
Xk41 = Xk — ZVf(xk). (4)

Then

@ limisoo [|[VF(xk)|| = 0, (any accumulation point X of the trajectory satisfies
V£(x)=0).

o If in addition f is convex, set f* = infxcre f(x) and assume that it is attained at x™,
we have for any k € N, k > 0,

Lllxo — x|3
2k

Furthermore xi converges to X a global minimum of f

fxk)— " <

o If in addition f is p-strongly convex, then we have for any k € N

Fxes) — F* < (1 _ %) (F(xe) — 7).
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Plan

2. Nonsmooth analsysis
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Nonsmooth analysis?

How to deal with ¢; norm penalty? We need a generalization of the notion of gradient.
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Lower semicontinuity: f denotes a lower semi-continuous convex function on R”. Lower
semi-continuity: epigraph is closed:

epi; = {(x,z) eR z> f(x)} .
equivalently as for any x € RP
I|my|1fx f(y) > f(x).
Domain: f is allowed to take value +00, we denote its domain by
domfs = {x € R?, f(x) < o0},

which is a convex set.

For example:

min %6~ y|3 = min 10— [} + 5()

where §(8) = 0 if ||f|]: <1, and +o0 otherwise (indicator of the ¢1 unit ball).
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Exercise

Show that a convex function is continuous on the interior of its domain.
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Notion of subgradient

Definition
For any x € domy, the subgradient of f denotes the set

of(x) ={v eR?, f(y) = f(x) + (v,y —x), Vy € R’}
For x & domy, Of(x) is set to be empty.
We deduce from the definition the generalization of Fermat rule

Theorem
x™ € argminy f(x) if and only if 0 € Of (x™).

Exercise, indicator: Let C be compact convex and d(x) =0 for x € C and +oo
otherwise. Describe 04.
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Properties of the subgradient

Proposition

For any x € RP, Of(x) is a closed convex set. Furthermore, at any x € int(domys), Of(x)
is non empty and bounded.

Exercise, sequential closedness: Let f: RP — R be a convex function, show that Of is
sequencialy closed in the sence that, for any X

{v eR?, I (XK, Vi) e » Xk = X, vie = v, vk € Of (xx), F(xi) — F(X)} C 9F(X)

Exercise, lipschitzness: Let f: R? — R, show that f is L-Lipschitz if and only if
SUP,cpe, vear(x) IVII2 < L.

Exercise, sum rule: Let f and g be convex. Show that J(f + g)(x) D 9f(x) + dg(x) for
every x such that 9f(x) and dg(x) are non empty. What do you think about the reverse
inclusion?
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Representation of convex functions

Theorem

Let f be convex and lower semicontinuous and finite at least at one point, then f is the
supremum of all its affine minorants: for any x € RP

f(x)= sup r+ v x s.t. f(y) > r+VT}/» Vy € R”.
reR,veRP
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Subgradients and directional derivatives

Theorem

For any x € int(dom¢) and any h € RP,

Duf(x) = sup (v,h),
vedf(x)

where Dy, denotes the directional derivative of f,
Dpf(x) = lim w

t>0,t—0 t

Consequence: if f is differentiable at X then 0f(x) = {Vf(x)}
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Fenchel-Young's inequality

Definition

Given f convex, the Fenchel-Legendre transform of f is given as follows

f* z supz'y — f(y)
y€ERP

Theorem

For any f convex, f* is convex and for any x,z € RP
f(x)+f(z)>z"x

and the preceeding inequality holds if and only if z € 8f(x). This is called
Fenchel-Young's inequality. Furthermore, f is lower semicontinuous if and only if
(F ) =f.
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Exercise

Set f: x — ||x||i. Compute f* and the subgradient of f.
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Plan

3. Subgradient descent
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Convergence analysis for subgradient descent

Proposition

Let f: RP — R be a convex function which attains its infimum and has full domain.
Consider the algorithm, for xo € RP, a sequence of positive numbers ax > 0, k € N,
iterate

Xk+1 = Xk — Ok Vi (5)
Vi € 6f(Xk). (6)

Then for any global minimizer x*, setting, yx = Z:'(:o aixi/ (Zf:o a,-)

lIxo — x*I1% + 30 o @ llvill3

min f(x) —f* <
i f(x0) - 2 i, @i
2 ko202
f(}/k)_ f* S HXO X ” +k21:0 Q ||V/H2.
22[-:001,'
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Convergence analysis for subgradient descent

Corollary
If f is L-Lipschitz, we have the following convergence result for subgradient method.

o If ax = « is constant, we have

f —f* —
i F)—F < ST e T 2
@ In particular, choosing aj = % we have
[[xo — x"|IL

“min kf(xk) - <

i=1,..., - Vk+1
o Choosing ax = ||xo — x*||/(LV/k) for all k, we obtain for all k

: * xo — x*||2L(1 + log(k
i:TT,kf(Xk)_f ZO(H 2 ” \/(E og( )))
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Subgradient algorithm

o Very generic, applies to any convex function (all purpose tool).

@ Requires computing subgradient (interior of the domain).

The convergence rate is optimal among all Lipschitz function.

Hard to tune (decreasing step size).

Quite slow in practice.
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Plan

4. Composite optimization
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Lasso estimator

. 1
o4 in —[IX6 — Y|I> + \|0]1.
€ arg min 2nII [I*+ Aol

Composite structure: “Smooth + non smooth”
F=f+g

where f is smooth and g is convex, non smooth.

This additional structure can be leveraged. This model includes constrained optimization
problems.
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Proximity operator (Moreau)

Definition

Given a closed convex function, g: RY — R, the proximity operator of g is defined as
follows

. 1 5
prox;: z — arg min g(y) + Slly — z[>.
yeRrd 2

By strong convexity, the minimum is attained and is strict.

Note that we have x = prox,(z) if and only if z = 9g(x) + x and the proximity operator
is sometimes denoted (9g + /).

Indicator: Let C be compact convex and d(x) = 0 for x € C and +oo otherwise. What
is proxs?
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Extension of the descent Lemma

min f(x) +g(x)

Lemma

Let f: RP — R be convex continuously differentiable with L-Lipschitz gradient and g be
convex lower semicontinuous. Fix any x € RP and set

1
y = proxg,, (x = ZVf(X)> .
Then, for any z € RY,

L L
(2) +8(2) + 5llx — 2I3 > F(y) + () + 5lly — 2l
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Proximal gradient algorithm

min £(x) +g(x)

Proposition

Let f: RP — R be convex continuously differentiable with L-Lipschitz gradient and g be
convex lower semicontinuous such that p = infyere f(x) + g(x) > —oo is attained at x™.
Consider the algorithm, for xo € RP and

1
Xk+1 = PrOXy /| (xk - ZVf(Xk)> . (7)
Then xi converges to a global minimum and we have for any k € N, k > 0,

L o *|2
fx)+glx)—p < w

If in addition f + g is p-strongly convex, we have in addition

k41 = X3 < [l = x"3.

L+ p
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Proximal gradient algorithm

More efficient way to handle nonsmooth convex functions.
Easier to implment.
Faster in practice (similar as gradient descent).

Require to compute prox operators (not always possible).
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Plan

5. Lower bounds and acceleration
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O(1/k) convergence rate?

Can we do better? What is the limit?
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A lower bound

Definition
A first order method to minimize a smooth convex function f when initiated at x; = 0,
produces a sequence of points (x;);cy such that for any k € N,

Xk+1 € span (VF(xo), ..., VF(x«)) .

Theorem

Let k < (d —1)/2, L > 0. There exists a convex function f with L-Lipschitz gradient
over RY, such that for any first order method satisfying definition (11),

. o 3L ||Ix0 — x*||?
—_ >0 =2 1
i, F06) = F(x) 2 35 T3y
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Lower bound: proof (from Bubeck's book)

For h: R? — R we denote h* = inf,za h(x).

For k < d let Ax € R¥*? be the symmetric and tridiagonal matrix defined by

2, i=j,i<k
(A)ij = -1, je{i—-Li+1},i<kj#k+1
0, otherwise.

We verify that 0 < Ax < 4/ since for any x € RY,

x

xTAgx =2 . x(i)* = 2z_:x(i)x(i +1) = x(1)® + x(k)* + i(x(l) —x(i+1))?

<4 x(i)’>0

-

i=1
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Lower bound: proof (from Bubeck's book)

2 -1 0
-1 2 -1 0
e . k lines
A = 0 -1 2 -1
0o -1 2
Od—k,k Od—k,d—k
We consider now the following convex function:
L L
f(x) = ngAzka - ZxTel.
For any s =1,...,k, xs must lie in the linear span of e1,...,es_1 (assumption). In
particular for s < k, xs(i) =0 for i = s,...,d, which implies xJ Agiy1xs = x& Aixs.

Set . .
fi(x) = ngAkx — ZXTel’
We proved that, for all s < k

f(xs) — fr= fi(xs) — f27<+1 > - f27<+1~

Thus it remains to compute the minimizer x; of fx, its norm, and the corresponding
function value f.".
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Lower bound: proof (from Bubeck's book)

The point x; is the unique solution in the span of ey,..., e of Aux = er. One can verify
(Exercise) that it is defined by xg (/) =1 — (45 for i =1,..., k. Thus we have:

« L,y « L, L, . L 1
fk = g(Xk)TAka - Z(Xk)Tel = _Z(Xk)-rel =72 <1 T kr1 1) .

Furthermore note that

k

=3 (1-

i=1

L) = () =4t

Thus one obtains:

f'* _ f* — £ 1 _ 1 > % ||X2*k+1||2
Ko T4 \k+1  2k+2) T 16 (k+1)2’
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Optimality of the lower bound?

Gradient descent achieves 1/k and the lower bound is 1/k*. Which one is tight?
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Nesterov's accelerated method

Theorem
Let f: RP — R be convex continuously differentiable with L-Lipschitz gradient
infxere f(x) > —oo. Consider the algorithm, for x_1 € RP, set yo = x_1, t1 = 1 and for
k eN,
1
X = yk — 7 V()

1+ /144t
2

tkr1 =
tk — 1
Yk+1 = Xk + ( , > (Xk — Xk—1)- (8)
tit1
Then for any k € N
U *|2
f(Xk) _ f‘* < 4L||X0 X ”2

=T (k+2)y
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Nesterov's acceleration: proof

Set for any k € N,

pri= (tk — 1) (X1 — x«) sothat  yi = x—
tit1
Momentum term: for any kK > 1
L4 \f48, +1 ! Kk
> ———— >t —>to+=-=1+—-. 9
k 2 5 _k1+2_o+2 +2 (9)
(t;%+1 — tp1) = tf' (10)
Main argument: the sequence {z}ken,
QtE % * (12
zi = T(f(xk)_f )+ llpx = xk + X7, (11)

is non-increasing and zy < 2||xo — x*||?. The result can be deduced by combining (9) and

(11).
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Nesterov's acceleration: proof

We have a series of three inequalities.

t
Pk+1 — Xk+1 = Pk — Xk + %Vf(ykﬂ)

This implies
* * t - 1
1Prst — xes1 + X7 (13 = || — xe + x5 + 2% (Px, VF(ykt1))
f . t?
+ 258 (" — yin, V(1)) + 2 V(i) 13

L

From the Lipschitz gradient assumption, we obtain
* * 1
f(xir) = 7 < Fyia) — £ = ﬂHVf()/kH)H%
. 1
<A(VF (Y1), Yorr — x7) — ﬂl\Vf(ka)llg

1 1
i”Vf(}’kﬂ)H% < F(Wi1) — FOxkg1) < Flxk) — Frs1) — B (P, VF(Yis1))
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Nesterov's acceleration: proof

Using the last three identities, we obtain

llPkrr = i1+ x7[13 = o — xk + X713

tierr — 1 *
=~ 22D () Gy + 255 — e, V) + STl

tr1 — 1 1
< 2tk+1% (f(Xk) - f(ka) - ﬂHVf(YkH)Hg)

t) " 1
#2580 (7 = ) = 2 IVl + B )l

t, -1 . . t
= 20 BT (1) - 7 ) + 22 (F — F)

ti teps
=2 (F0a) = £7) = 2552 (FOwn — 7))
This proves that the sequence (zk)«en is non increasing. It remains to compute zo,
2 * * *
= 7 (F0) = £7) + IIx™ — xo|* < 2|Ix0 — x5

Putting things together
Lzg _ 4L||xo — x*|3
f <5< —F—
() = 2t2 (k+2)?
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Conclusion for nonsmooth optimization

@ When available prefer proximal method.
@ Acceleration works well in practive.

o Extension of Nesterov's algorithm to the proximal decomposition setting (Beck and
Teboulle, FISTA).
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