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Different estimators

X ∈ Rn×d , Y ∈ Rn (random).

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22
θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22, s.t. ‖θ‖1 ≤ 1

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22, s.t. ‖θ‖0 ≤ k

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22 + λ‖θ‖0
θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22 + λ‖θ‖1
θ̂ ∈ arg minθ∈Rd ‖θ‖1, s.t. Xθ = Y .

The first one can be computed in O(n2d) operations.

How about the other ones?

How to deal with large values of n and d .
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Where have we been so far.

‖ · ‖0: hard to handle computationally.

`1 norm estimators are solutions to conic programs.

General purpose solvers (interior point methods).

Iterative methods: at least d3 per iteration.

Plan for today: if one cannot afford d3. Introduction to first order methods and
nonsmooth analysis.

Analysis of gradient descent algorithm.

Introduction to the notion of subgradient.

Algorithm for nonsmooth optimization: subgradient and proximal gradient.

Acceleration.

Sources are diverse, see the lecture notes.
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Plan

1. Gradient descent algorithm

2. Nonsmooth analsysis

3. Subgradient descent

4. Composite optimization

5. Lower bounds and acceleration
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Intuition from continuous time dynamics

Proposition

Let f : Rp 7→ R be twice differentiable with compact sublevel sets. Consider the
differential equation, for x0 ∈ Rp,

ẋ(t) = −∇f (x(t)) (1)

x(0) = x0. (2)

Then, there exists a solution to the initial value problem defined for all t > 0.∫ +∞
0
‖∇f (x(t))‖22dt < +∞ and limt→∞ ‖∇f (x(t))‖ = 0.

Any accumulation point x̄ of the trajectory satisfies ∇f (x̄) = 0.

If in addition f is convex, set f ∗ = infx∈Rp f (x) and assume that it is attained at x∗,
we have for any t ∈ R, t > 0,

f (x(t))− f ∗ ≤ ‖x0 − x∗‖22
2t

.

And x(t) →
t→∞

x̄ where x̄ is a global minimizer of f .
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Gradient descent and a descent lemma

Gradient algorithm: f : Rp 7→ R, iteration cost of the order of p.

xk+1 = xk − sk∇f (xk) (3)

Lemma

Let f : Rp 7→ R be continuously differentiable with L-Lipschitz gradient (L > 0), then for
any x , y ∈ Rp,

|f (y)− f (x)− 〈∇f (x), y − x〉 | ≤ L

2
‖y − x‖22.

6 / 39



Gradient descent algorithm

Proposition

Let f : Rp 7→ R be continuously differentiable with L-Lipschitz gradient and such that
infx∈Rp f (x) > −∞. Consider the algorithm, for x0 ∈ Rp and

xk+1 = xk −
1

L
∇f (xk). (4)

Then

limk→∞ ‖∇f (xk)‖ = 0, (any accumulation point x̄ of the trajectory satisfies
∇f (x̄) = 0).

If in addition f is convex, set f ∗ = infx∈Rp f (x) and assume that it is attained at x∗,
we have for any k ∈ N, k > 0,

f (xk)− f ∗ ≤ L‖x0 − x∗‖22
2k

.

Furthermore xk converges to x̄ a global minimum of f

If in addition f is µ-strongly convex, then we have for any k ∈ N

f (xk+1)− f ∗ ≤
(

1− µ

L

)
(f (xk)− f ∗).
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Plan

1. Gradient descent algorithm

2. Nonsmooth analsysis

3. Subgradient descent

4. Composite optimization

5. Lower bounds and acceleration
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Nonsmooth analysis?

How to deal with `1 norm penalty? We need a generalization of the notion of gradient.
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Notations

Lower semicontinuity: f denotes a lower semi-continuous convex function on Rp. Lower
semi-continuity: epigraph is closed:

epif =
{

(x , z) ∈ Rp+1, z ≥ f (x)
}
.

equivalently as for any x ∈ Rp

lim inf
y→x

f (y) ≥ f (x).

Domain: f is allowed to take value +∞, we denote its domain by

domf = {x ∈ Rp, f (x) < +∞} ,

which is a convex set.

For example:

min
‖θ‖1≤1

‖Xθ − y‖22 = min
θ∈Rd
‖Xθ − y‖22 + δ(x)

where δ(θ) = 0 if ‖θ‖1 ≤ 1, and +∞ otherwise (indicator of the `1 unit ball).
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Exercise

Show that a convex function is continuous on the interior of its domain.
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Notion of subgradient

Definition

For any x ∈ domf , the subgradient of f denotes the set

∂f (x) = {v ∈ Rp, f (y) ≥ f (x) + 〈v , y − x〉 , ∀y ∈ Rp} .

For x 6∈ domf , ∂f (x) is set to be empty.

We deduce from the definition the generalization of Fermat rule

Theorem

x∗ ∈ arg minx f (x) if and only if 0 ∈ ∂f (x∗).

Exercise, indicator: Let C be compact convex and δ(x) = 0 for x ∈ C and +∞
otherwise. Describe ∂δ.
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Properties of the subgradient

Proposition

For any x ∈ Rp, ∂f (x) is a closed convex set. Furthermore, at any x ∈ int(domf ), ∂f (x)
is non empty and bounded.

Exercise, sequential closedness: Let f : Rp 7→ R be a convex function, show that ∂f is
sequencialy closed in the sence that, for any x̄{

v ∈ Rp, ∃ (xk , vk)k∈N , xk → x̄ , vk → v , vk ∈ ∂f (xk), f (xk)→ f (x̄)
}
⊂ ∂f (x̄)

Exercise, lipschitzness: Let f : Rp 7→ R, show that f is L-Lipschitz if and only if
supx∈Rp , v∈∂f (x) ‖v‖2 ≤ L.

Exercise, sum rule: Let f and g be convex. Show that ∂(f + g)(x) ⊃ ∂f (x) + ∂g(x) for
every x such that ∂f (x) and ∂g(x) are non empty. What do you think about the reverse
inclusion?
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Representation of convex functions

Theorem

Let f be convex and lower semicontinuous and finite at least at one point, then f is the
supremum of all its affine minorants: for any x ∈ Rp

f (x) = sup
r∈R,v∈Rp

r + vT x s.t. f (y) ≥ r + vT y , ∀y ∈ Rp.
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Subgradients and directional derivatives

Theorem

For any x ∈ int(domf ) and any h ∈ Rp,

Dhf (x) = sup
v∈∂f (x)

〈v , h〉 ,

where Dh denotes the directional derivative of f ,

Dhf (x) = lim
t>0,t→0

f (x + th)− f (x)

t
.

Consequence: if f is differentiable at x̄ then ∂f (x̄) = {∇f (x̄)}
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Fenchel-Young’s inequality

Definition

Given f convex, the Fenchel-Legendre transform of f is given as follows

f ∗ : z 7→ sup
y∈Rp

zT y − f (y)

Theorem

For any f convex, f ∗ is convex and for any x , z ∈ Rp

f (x) + f ∗(z) ≥ zT x

and the preceeding inequality holds if and only if z ∈ ∂f (x). This is called
Fenchel-Young’s inequality. Furthermore, f is lower semicontinuous if and only if
(f ∗)∗ = f .
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Exercise

Set f : x 7→ ‖x‖1. Compute f ∗ and the subgradient of f .
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Plan

1. Gradient descent algorithm

2. Nonsmooth analsysis

3. Subgradient descent

4. Composite optimization

5. Lower bounds and acceleration
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Convergence analysis for subgradient descent

Proposition

Let f : Rp 7→ R be a convex function which attains its infimum and has full domain.
Consider the algorithm, for x0 ∈ Rp, a sequence of positive numbers αk > 0, k ∈ N,
iterate

xk+1 = xk − αkvk (5)

vk ∈ ∂f (xk). (6)

Then for any global minimizer x∗, setting, yk =
∑k

i=0 αixi/
(∑k

i=0 αi

)
min

i=1,...,k
f (xk)− f ∗ ≤

‖x0 − x∗‖2 +
∑k

i=0 α
2
i ‖vi‖22

2
∑k

i=0 αi

f (yk)− f ∗ ≤
‖x0 − x∗‖2 +

∑k
i=0 α

2
i ‖vi‖22

2
∑k

i=0 αi

.
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Convergence analysis for subgradient descent

Corollary

If f is L-Lipschitz, we have the following convergence result for subgradient method.

If αk = α is constant, we have

min
i=1,...,k

f (xk)− f ∗ ≤ ‖x0 − x∗‖2

2(k + 1)α
+

L2α

2
.

In particular, choosing αi = ‖x0−x∗‖/L√
k+1

, we have

min
i=1,...,k

f (xk)− f ∗ ≤ ‖x0 − x∗‖L√
k + 1

.

Choosing αk = ‖x0 − x∗‖/(L
√
k) for all k, we obtain for all k

min
i=1,...,k

f (xk)− f ∗ = O

(
‖x0 − x∗‖2L(1 + log(k))√

k

)
.
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Subgradient algorithm

Very generic, applies to any convex function (all purpose tool).

Requires computing subgradient (interior of the domain).

The convergence rate is optimal among all Lipschitz function.

Hard to tune (decreasing step size).

Quite slow in practice.
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Plan

1. Gradient descent algorithm

2. Nonsmooth analsysis

3. Subgradient descent

4. Composite optimization

5. Lower bounds and acceleration
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Motivation

Lasso estimator

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1.

Composite structure: “Smooth + non smooth”

F = f + g

where f is smooth and g is convex, non smooth.

This additional structure can be leveraged. This model includes constrained optimization
problems.
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Proximity operator (Moreau)

Definition

Given a closed convex function, g : Rd 7→ R, the proximity operator of g is defined as
follows

proxf : z 7→ arg min
y∈Rd

g(y) +
1

2
‖y − z‖22.

By strong convexity, the minimum is attained and is strict.

Note that we have x = proxg (z) if and only if z = ∂g(x) + x and the proximity operator

is sometimes denoted (∂g + I )−1.

Indicator: Let C be compact convex and δ(x) = 0 for x ∈ C and +∞ otherwise. What
is proxδ?
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Extension of the descent Lemma

min
x∈Rp

f (x) + g(x)

Lemma

Let f : Rp 7→ R be convex continuously differentiable with L-Lipschitz gradient and g be
convex lower semicontinuous. Fix any x ∈ Rp and set

y = proxg/L

(
x − 1

L
∇f (x)

)
.

Then, for any z ∈ Rd ,

f (z) + g(z) +
L

2
‖x − z‖22 ≥ f (y) + g(y) +

L

2
‖y − z‖22.
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Proximal gradient algorithm

min
x∈Rp

f (x) + g(x)

Proposition

Let f : Rp 7→ R be convex continuously differentiable with L-Lipschitz gradient and g be
convex lower semicontinuous such that ρ = infx∈Rp f (x) + g(x) > −∞ is attained at x∗.
Consider the algorithm, for x0 ∈ Rp and

xk+1 = proxg/L

(
xk −

1

L
∇f (xk)

)
. (7)

Then xk converges to a global minimum and we have for any k ∈ N, k > 0,

f (xk) + g(xk)− ρ ≤ L‖x0 − x∗‖22
2k

.

If in addition f + g is µ-strongly convex, we have in addition

‖xk+1 − x∗‖22 ≤
L

L + µ
‖xk − x∗‖22.
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Proximal gradient algorithm

More efficient way to handle nonsmooth convex functions.

Easier to implment.

Faster in practice (similar as gradient descent).

Require to compute prox operators (not always possible).
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Plan

1. Gradient descent algorithm

2. Nonsmooth analsysis

3. Subgradient descent

4. Composite optimization

5. Lower bounds and acceleration
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O(1/k) convergence rate?

Can we do better? What is the limit?
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A lower bound

Definition

A first order method to minimize a smooth convex function f when initiated at x1 = 0,
produces a sequence of points (xi )i∈N such that for any k ∈ N,

xk+1 ∈ span (∇f (x0), . . . ,∇f (xk)) .

Theorem

Let k ≤ (d − 1)/2, L > 0. There exists a convex function f with L-Lipschitz gradient
over Rd , such that for any first order method satisfying definition (11),

min
1≤s≤k

f (xs)− f (x∗) ≥ 3L

32

‖x0 − x∗‖2

(k + 1)2
.
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Lower bound: proof (from Bubeck’s book)

For h : Rd → R we denote h∗ = infx∈Rd h(x).

For k ≤ d let Ak ∈ Rd×d be the symmetric and tridiagonal matrix defined by

(Ak)i,j =


2, i = j , i ≤ k
−1, j ∈ {i − 1, i + 1}, i ≤ k, j 6= k + 1
0, otherwise.

We verify that 0 � Ak � 4I since for any x ∈ Rd ,

xTAkx = 2
k∑

i=1

x(i)2 − 2
k−1∑
i=1

x(i)x(i + 1) = x(1)2 + x(k)2 +
k−1∑
i=1

(x(i)− x(i + 1))2

≤ 4
k∑

i=1

x(i)2 ≥ 0
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Lower bound: proof (from Bubeck’s book)

Ak =



2 −1 0
−1 2 −1 0

. . . . . .
0 −1 2 −1

0 −1 2

 k lines

0d−k,k 0d−k,d−k


We consider now the following convex function:

f (x) =
L

8
x>A2k+1x −

L

4
x>e1.

For any s = 1, . . . , k, xs must lie in the linear span of e1, . . . , es−1 (assumption). In
particular for s ≤ k, xs(i) = 0 for i = s, . . . , d , which implies xT

s A2k+1xs = xT
s Akxs .

Set

fk(x) =
L

8
x>Akx −

L

4
x>e1,

We proved that, for all s ≤ k

f (xs)− f ∗ = fk(xs)− f ∗2k+1 ≥ f ∗k − f ∗2k+1.

Thus it remains to compute the minimizer x∗k of fk , its norm, and the corresponding
function value f ∗k .
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Lower bound: proof (from Bubeck’s book)

The point x∗k is the unique solution in the span of e1, . . . , ek of Akx = e1. One can verify
(Exercise) that it is defined by x∗k (i) = 1− i

k+1
for i = 1, . . . , k. Thus we have:

f ∗k =
L

8
(x∗k )>Akx

∗
k −

L

4
(x∗k )>e1 = −L

4
(x∗k )>e1 = −L

4

(
1− 1

k + 1

)
.

Furthermore note that

‖x∗k ‖2 =
k∑

i=1

(
1− i

k + 1

)2

=
k∑

i=1

(
i

k + 1

)2

≤ k + 1

3
.

Thus one obtains:

f ∗k − f ∗2k+1 =
L

4

(
1

k + 1
− 1

2k + 2

)
≥ 3L

16

‖x∗2k+1‖2

(k + 1)2
,
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Optimality of the lower bound?

Gradient descent achieves 1/k and the lower bound is 1/k2. Which one is tight?

34 / 39



Nesterov’s accelerated method

Theorem

Let f : Rp 7→ R be convex continuously differentiable with L-Lipschitz gradient
infx∈Rp f (x) > −∞. Consider the algorithm, for x−1 ∈ Rp, set y0 = x−1, t1 = 1 and for
k ∈ N,

xk = yk −
1

L
∇f (yk)

tk+1 =
1 +

√
1 + 4t2k
2

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1). (8)

Then for any k ∈ N

f (xk)− f ∗ ≤ 4L‖x0 − x∗‖22
(k + 2)2

.
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Nesterov’s acceleration: proof

Set for any k ∈ N,

pk := (tk − 1)(xk−1 − xk) so that yk+1 = xk −
pk
tk+1

Momentum term: for any k ≥ 1

tk ≥
1 +

√
4t2k−1 + 1

2
≥ tk−1 +

1

2
≥ t0 +

k

2
= 1 +

k

2
. (9)

(t2k+1 − tk+1) = t2k . (10)

Main argument: the sequence {zk}k∈N,

zk :=
2t2k
L

(f (xk)− f ∗) + ‖pk − xk + x∗‖2, (11)

is non-increasing and z0 ≤ 2||x0 − x∗||2. The result can be deduced by combining (9) and
(11).
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Nesterov’s acceleration: proof

We have a series of three inequalities.

pk+1 − xk+1 = pk − xk +
tk+1

L
∇f (yk+1)

This implies

‖pk+1 − xk+1 + x∗‖22 = ‖pk − xk + x∗‖22 + 2
(tk+1 − 1)

L
〈pk ,∇f (yk+1)〉

+ 2
tk+1

L
〈x∗ − yk+1,∇f (yk+1)〉+

t2k+1

L2
‖∇f (yk+1)‖22

From the Lipschitz gradient assumption, we obtain

f (xk+1)− f ∗ ≤ f (yk+1)− f ∗ − 1

2L
‖∇f (yk+1)‖22

≤ 〈∇f (yk+1), yk+1 − x∗〉 − 1

2L
‖∇f (yk+1)‖22

1

2L
‖∇f (yk+1)‖22 ≤ f (yk+1)− f (xk+1) ≤ f (xk)− f (xk+1)− 1

tk+1
〈pk ,∇f (yk+1)〉
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Nesterov’s acceleration: proof

Using the last three identities, we obtain

‖pk+1 − xk+1 + x∗‖22 − ‖pk − xk + x∗‖22

= 2
(tk+1 − 1)

L
〈pk ,∇f (yk+1)〉+ 2

tk+1

L
〈x∗ − yk+1,∇f (yk+1)〉+

t2k+1

L2
‖∇f (yk+1)‖22

≤ 2tk+1
(tk+1 − 1)

L

(
f (xk)− f (xk+1)− 1

2L
‖∇f (yk+1)‖22

)
+ 2

tk+1

L

(
f ∗ − f (xk+1)− 1

2L
‖∇f (yk+1)‖22

)
+

t2k+1

L2
‖∇f (yk+1)‖22

= 2tk+1
(tk+1 − 1)

L
(f (xk)− f ∗ + f ∗ − f (xk+1)) + 2

tk+1

L
(f ∗ − f (xk+1))

= 2
t2k
L

(f (xk)− f ∗)− 2
t2k+1

L
(f (xk+1 − f ∗))

This proves that the sequence (zk)k∈N is non increasing. It remains to compute z0,

z0 =
2

L
(f (x0)− f ∗) + ‖x∗ − x0‖2 ≤ 2‖x0 − x∗‖22.

Putting things together

f (xk)− f ∗ ≤ Lz0
2t2k
≤ 4L‖x0 − x∗‖22

(k + 2)2
.
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Conclusion for nonsmooth optimization

When available prefer proximal method.

Acceleration works well in practive.

Extension of Nesterov’s algorithm to the proximal decomposition setting (Beck and
Teboulle, FISTA).
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