
Chapter 4: computation, complexity, conic programming

Edouard Pauwels

Statistics and optimization in high dimensions
M2RI, Toulouse 3 Paul Sabatier

1 / 36

Different estimators

X ∈ Rn×d , Y ∈ Rn (random).

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22
θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22, s.t. ‖θ‖1 ≤ 1

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22, s.t. ‖θ‖0 ≤ k

θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22 + λ‖θ‖0
θ̂ ∈ arg minθ∈Rd ‖Xθ − Y ‖22 + λ‖θ‖1
θ̂ ∈ arg minθ∈Rd ‖θ‖1, s.t. Xθ = Y .

The first one can be computed in O(n2d) operations.

How about the other ones?

How to deal with large values of n and d .

2 / 36

What does it mean to compute?

Estimators involving the `1 norm can be computed in polynomial time. Computing
estimators involving the `0 norm is NP-hard.

Plan for today: meaning of this.

Basics of computational complexity theory.

Recap on convex geometry in finite dimension.

Conic programming and interior point methods.

(Partial) picture of theory and practice of numerical computing in the late 90’s.

Source, mostly Ben-Tal and Nemirowski “Modern Convex Opitmization” 2001 and
Alexander Schrijver “Theory of linear and integer programming” 1986.

3 / 36

Plan

1. Computational complexity

2. Recap on convexity

3. Conic programming

4. Computational complexity of our statistical estimators

4 / 36

Alphabet, words, size

Alphabet: a finite set Σ (usually Σ = {0, 1}), which elements are called “letters”.

Words: ordered finite sequence of elements in Σ. The set of words is denoted by Σ∗.

Size: for a word (or a string), the number of its components. The zero length word is
the empty word ∅.

Example: binary encoding of natural numbers, if α = p/q (where p and q are relatively
prime integers), c = (c1, . . . , cn) is a rational vector and A = (aij)i=1...m,j=1...n a rational
matrix, we have

size(α) = 1 + dlog2(p)e+ dlog2(q)e

size(c) = n +
n∑

i=1

size(ci)

size(A) = nm +
m∑
i=1

n∑
j=1

size(aij)

Size of linear inequalities, or equalities are defined in a similar way. We essentially ignore
multiplicative constants.

5 / 36

Problems

A (search) problem: a subset Π ⊂ Σ∗ × Σ∗, meta-mathematical problem:

Given z ∈ Σ∗, find y ∈ Σ∗ such that (z , y) ∈ Π or decide that there exists no such y .

Example: given a matrix A ∈ Qm×n and a vector b ∈ Qm, find x ∈ Qn such that Ax ≤ b.

Decision problem: a problem which output is either 0 or 1.

Example: given A and b, is there an x such that Ax ≤ b?

Decision problem: the set L ⊂ Σ∗ of 1 instances.

6 / 36

Algorithm

Algorithm: a finite list of instruction to solve a problem.

Turing machine: thought experiment object which formalizes the notion of algorithm.
Idealized computer.

Church-Turing thesis computable functions of natural numbers are precisely the ones
which can be computed by a Turing machine.

Turing equivalent system: a formal system which can compute exactly the same
functions as a Turing machine.

Examples: recursive functions, lambda calculus, circuits, . . . and most programming
languages (eventually idealized).

Algorithm: a computer program, i.e. a finite list of symbols from a finite alphabet.

7 / 36

Runing time

Given input Σ∗, an algorithm A for problem Π determines y such that (z , y) ∈ Π, or
stops without output if there is no such y .

Runing time: Number of elementary operations during the execution of an algorithm.
Formally, the runing time function of an algorithm f : N 7→ N can be given by

f (σ) = max
size(z)≤σ

(running time of A for input z).

Polynomial time algorithm An algorithm A for problem Π which time function is upper
bounded by a polynomial. In this case Π is polynomially solvable.

The class P: The class of polynomially solvable decision problems.

8 / 36

Computation over Q

Euclidean algorithm is polynomial time (Gabriel Lamé 1844). Unique representation
quotients in Q. Addition, multiplication are also polynomial time.

Complexity over Q: Number of elementary arithmetic operations.

In practice: Most numerical softwares perform finite precision arithmetic over Q.

9 / 36

The class NP

Non deterministic Polynomial time: Decisions problems which have a polynomial size
proof.

L ⊂ Σ∗ ∈ NP: there exists L′ ⊂ Σ∗ × Σ∗, L′ ∈ P and a polynomial φ such that

z ∈ L ⇔ ∃y ∈ Σ∗, (z , y) ∈ L′ and size(y) ≤ φ(size(z)).

such an y is called a certificate.

Brute force search: for any Π ∈ NP there is a polynomial ψ such that the solution for
input z can be found in time at most 2ψ(size(z)).

10 / 36

The class NP: examples

Traveling salesman: Given pairwise distances between n cities (in Q):

Given d ∈ Q, decide if there is a path visiting all the cities of total length at most d .

Linear inequalities:

Given A ∈ Qn×d and b ∈ Qn, decide if Ax ≤ b has a solution over Qn.

Schiver’s book chapter 10: if feasible, there is a solution which size is polynomially
bounded by the size of A and b.

11 / 36

Karp reduction

L ∈ Σ∗ is Karp reducible to L′ ⊂ Σ∗ if there exists a polynomial time algorithm such
that, for any input string z ∈ Σ∗, A delivers a string x such that

z ∈ L ⇔ x ∈ L′

Notation: L ≤ L′, an algorithm for solving L′ would provide an algorithm for solving L
with an added computational cost at most polynomial.

12 / 36

Karp reduction: example

L: boolean formula satisfiability problems (SAT).
L′: satisfiability problems of boolean formula in 3 conjunctive normal form (3-SAT)
L ≤ L′.

Proof sketch: For any boolean formula there is a formula

over linearly more variable.

which size is at most linear in the size of the original formula

in conjunctive normal form.

which preserves satisfiability.

For example using Tseytin transformation. We obtain a formula of the form

(a ∨ b ∨ c ∨ d) ∧ (ā ∨ e ∨ f ∨ ḡ ∨ d) . . .

Any disjunction can be reduced to a conjunction of disjunctions of size at most 3 by
adding variables:

q ∨ r ∨ s ∨ t ∨ u

⇔ (q ∨ r ∨ a) ∧ (ā ∨ s ∨ b) ∧ (b̄ ∨ t ∨ u).

13 / 36

Karp reduction and the class NP

if L′ belongs to NP and L ≤ L′, then L also belongs to NP (exercise).

NP hardness: L is NP-hard, if each problem in NP is reducible to L.

NP completeness: If furhtermore L ∈ NP, then L is called NP-complete.

brute force exponential time algorithm for problems in NP.

a polynomial time algorithm for one NP complete problem would provide a proof
that P = NP.

widely believed to be false.

14 / 36

NP hardness is a worst case theoretical notion

NP-complete problems considered hard: believed that no polynomial time algorithm
exists on all instances.

Karp reduction: some instances are hard, not necessarily all of them.

No notion of constant or exponent, problems in P may still be intractable in practice.

15 / 36

Cook’s Theorem

Boolean satisfiability (SAT): first problem proved to be NP-complete by Cook in 1971.

Idea of the proof. SAT is clearly in NP. The problem is NP-hard: a polynomial time
verifier implemented on a Turing machine can be shown to be equivalent to a boolean
formula (technical bulk of the proof).

Consequence: As SAT≤3-SAT and 3-SAT∈ NP, 3-SAT is also NP-complete.

16 / 36

Sparse regression is NP-hard

Theorem

Given A ∈ Qm×n, b ∈ Qm, decide if there exist x ∈ Qn such that Ax = b and
‖x‖0 ≤ m/3. This problem is NP-hard.

Proof from Natarajan (1995) “Sparse approximate solutions to linear systems”.

Same result replacing Ax = b by ‖Ax − b‖22 ≤ 1/2.

This is what is meant by “computing min‖x‖0≤k ‖Ax − b‖22 is NP-hard”.

17 / 36

Computation over the reals

a ∈ R is computable if there is a terminating algorithm A such that ∀ε ∈ Q, ε > 0,
|A(ε)− a| ≤ ε. Computable numbers are only denumerable.

BSS machine from Blum, Shub and Smale. Exact computation over real numbers.
Leads to a notion of “algebraic complexity”.

Oracle complexity: an orcale performs real operations (and more), given a precision
threshold ε > 0, the complexity is the number of call to the oracle to reach precision
ε. Used in optimization.

18 / 36

Plan

1. Computational complexity

2. Recap on convexity

3. Conic programming

4. Computational complexity of our statistical estimators

19 / 36

Definitions

Definition

X ⊂ Rd is convex if for any x , y ∈ X , α ∈ [0, 1], αx + (1− α)y ∈ X .

f : Rd → R is convex if its epigraph is convex in Rd+1.

epi(f) =
{

(x , z) ∈ Rd+1, z ≥ f (x)
}

Equivalently, for any x , y ∈ Rd , and any α ∈ [0, 1],

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y).

20 / 36

Properties of convex sets

Lemma

For any convex set X ⊂ Rd we have

The closure of X is convex.

The interior of X is convex.

For any u ∈ int(X) and v ∈ cl(X), [u, v) ⊂ int(X).

If the interior of X is non empty, then cl(X) = cl(int(X)).

The interior of X is empty if and only if it is contained in a lower dimensional affine
subspace.

21 / 36

Characterization of convex functions

Theorem

Let f : Rd → R:

1 If f is continuously differentiable, then f is convex if and only if or any x , y ∈ Rd ,
f (y) ≥ f (x) +∇f (x)T (y − x).

2 If f is continuously differentiable, then f is convex if and only if or any x , y ∈ Rd ,
(∇f (x)−∇f (y))T (y − x) ≥ 0.

3 If f is twice continuously differentiable, then f is convex if and only if or any x ∈ Rd ,
∇2f (x) is positive semidefinite.

Start with dimension 1.
f : Rd 7→ R is convex if and only if for any x , y ∈ Rd , the function
gxy : t 7→ f (x + t(y − x)) is convex.

Corollary (Fermat rule)

Let f : Rd → R be convex continuously differentiable, then the following are equivalent

x is a global minimizer of f .

∇f (x) = 0.

Example: θ̂LS ∈ arg minθ∈Rd ‖Xθ − y‖22
22 / 36

Separating hyperplane

Theorem (Separating hyperplane)

Let X ,Y ⊂ Rd be two disjoint closed convex sets, then there exists a vector v ∈ Rd ,
v 6= 0 and a number c ∈ R such that xT v > c for all x ∈ X and yT v < c for all
y ∈ Y.

Let X ,Y ⊂ Rd be two disjoint convex sets, then there exists a vector v ∈ Rd , v 6= 0
and a number c ∈ R such that xT v ≥ c for all x ∈ X and yT v ≤ c for all y ∈ Y.

23 / 36

Supporting hyperplane

Theorem (Supporting hyperplane)

Let X ⊂ Rd be a convex sets such that 0 6∈ X , then there exists a vector v ∈ Rd ,
v 6= 0 such that vT x ≥ 0, for all x ∈ X .

Let X ⊂ Rd be a convex set such that 0 is on the boundary of X , then there exists
a vector v ∈ Rd , v 6= 0 such that vT x ≥ 0, for all x ∈ X .

24 / 36

Extreme points polyhedra and polytopes

Definition

x is an extreme point of the convex set X ⊂ Rd , if for any x1, x2 ∈ X , x = (x1 + x2)/2
implies that x1 = x2 = x .

Lemma

Let c ∈ Rd , c 6= 0 and X be a convex and compact set. Then minx∈X cT x is attained
then the optimum is attained at an extreme point x̄ ∈ X .

Theorem (Krein Millman)

Let X be a compact convex set, then X ⊂ Rd is the convex hull of its extreme points.

25 / 36

Extreme points polyhedra and polytopes

Definition

A polyhedra is a set X ⊂ Rd such that there exists A ∈ Rm×d , b ∈ Rm such that
X = x ∈ Rd , Ax ≤ b. This is a canonical form representation.

Add variables s ∈ Rm, set x+ and x− the entry-wise positive and negative part of x ,
X = {(x+, x−, s) ∈ R2n+m, s = b − A(x+ − x−), s ≥ 0, x+ ≥ 0, x− ≥ 0}.

X = {x ∈ Rd ,Ax = b, x ≥ 0} for a matrix A and a vector b which is called standard
form.

Lemma

Let X =
{
x ∈ Rd ,Ax = b, x ≥ 0

}
be non empty. Then X has at least one and at most a

finite number of extreme points. We have the following equivalence

x is an extreme point of X
the columns of A corresponding to non zero entries of x are independent.

Example: The `1 ball in Rd is a polytope which has 2d extreme points. Linear fuctions
attain their optimum at these extreme points.

26 / 36

Plan

1. Computational complexity

2. Recap on convexity

3. Conic programming

4. Computational complexity of our statistical estimators

27 / 36

Cones, conic programs and the conic hierarchy

Definition

K ⊂ Rd is a cone if it satisfies for any x ∈ K and α ≥ 0, αx ∈ K.

Conic programs: Given a closed convex cone K, for any A ∈ Rm×d , b ∈ Rm, c ∈ Rd ,

p∗ = inf
x∈Rd

cT x s.t. Ax = b, x ∈ K. (P)

Conic hierarchy:

K = Rd
+, linear programs (LP).

K =
{

(x , t) ∈ Rd+1, ‖x‖2 ≤ t
}

, second order cone programs (SOCP).

K the cone of positive semidefinite matrices, semidefinite programs (SDP).
C ∈ Rd×d , A : Rd×d → Rm linear, b ∈ Rm

min
X∈Rd×d

tr(CTX) s.t. A(X) = b, XT = X , X < 0.

Exercise: An LP can be expressed as a SOCP which can be expressed as an SDP (Schur
complement argument).

28 / 36

Dual cone

Definition

Let K ⊂ Rd be a convex cone, the dual cone of K is denoted by

K∗ =
{
y ∈ Rd , xT y ≥ 0, ∀x ∈ K

}
If K = K∗, we say that K is self dual

29 / 36

Conic duality

Primal program: closed convex cone K, A ∈ Rm×d , b ∈ Rm, c ∈ Rd ,

p∗ = inf
x∈Rd

cT x s.t. Ax = b, x ∈ K. (P)

Lagrangian: for any x ∈ Rd , µ ∈ Rd , ν ∈ Rm,

L(x , µ) = cT x + µT (b − Ax) (1)

Dual problem: obtained by minimizing the Lagrangian over K.

d∗ = sup bTµ s.t. c − ATµ ∈ K∗. (D)

Theorem

It holds that d∗ ≤ p∗.

If rank(A) = m, there is x̄ such that Ax̄ = b and x̄ ∈ int(K) and p∗ > −∞, then
p∗ = d∗ and the dual problem has a solution.

In this case, x is primal optimal if and only if it is primal feasible and there exists a
dual feasible µ such that

xT (c − ATµ) = 0 or xT c = bTµ.

30 / 36

Strong convexity

This notion will be important to develop algorithmic ideas to solve the optimization
problems which we have seen.

Definition

A function f : Rd 7→ R is µ strongly convex, if f − µ
2
‖ · ‖ is convex. The following provide

sufficient conditions:

If f is differentiable, f (y) ≥ f (x) + (y − x)T∇f (x) + µ
2
‖y − x‖22, for all x , y .

If f is differentiable, (∇f (x)−∇f (y))T (y − x) ≥ µ‖y − x‖22 for all x , y .

If f is twice differentiable, the matrix ∇2f (x)− µI is positive semidefinite for all x .

Exercise: Prove that the function f : x 7→ − log(1− ‖x‖2) is strongly convex (when
restricted to the unit Euclidean ball).

31 / 36

Newton’s method

Strongly convex function f : Rd 7→ R, α > 0: choose x0 and iterate for k ∈ N,

xk+1 = xk − α
(
∇2f (xk)

)−1

∇f (xk). (2)

Where α is a positive stepsize, determined algorithmically.

Theorem (Local quadratic convergence for Newton’s method)

Let f be µ-strongly convex, twice continuoulsy differentiable, with L-Lipschitz Hessian
(operator norm) and x̄ be the (unique) minimum of f . Newton’s method with unit step
size satisfy, for all k ∈ N,

L

2µ2
‖∇f (xk)‖2 ≤

(
L

2µ2
‖∇f (x0)‖2

)2k

,

In particular, if ‖∇f (x0)‖2 < L
2µ2 , we have quadratic convergence.

32 / 36

Interior point methods in one example

Given a ∈ Rd , b ∈ R, and f : Rd 7→ R, convex differentiable

f ∗ = min
x∈Rd

f (x) s.t. ‖x‖2 ≤ 1, aT x ≤ b (3)

Barrier method: For any t > 0,

f ∗t = min
x∈Rd

tf (x)− log(1− ‖x‖22)− log(b − aT x) (4)

Central path: (4) is strongly convex, its minimum xt is attained and is unique, the
central path is the map t 7→ xt .

Lemma

For any t > 0, we have f (xt) ≤ f ∗ + 2
t
.

33 / 36

Polynomial time LP (and QP) solver

Theorem (Khachiyan,Karmarkar)

Given inputs A ∈ Qn×d , b ∈ Qn and c ∈ Qd consider the problem of computing

ρ = inf
x∈Qd

cT x s.t. Ax ≤ b. (5)

This problem is in P.

if the infimum is not attained there polynomial time certificates for this can be
found in polynomial time.

the optimum is attained at one of the finitely many vertices of the polyhedra.

Only polynomialy many candidate optimal values for ρ.

Ellipsoid method (for Khachiyan’s algorithm) or interior point methods (for
Karmarkar’s algorithm) converge exponentially fast to ρ.

Carefully controling the magnitude of accumulated errors allong the local search
path and the degree of approximation required to dicriminate between any two
candidate optimal values.

Convex quadratic objectives over linear constraint can also be solved in polynomial time
over Q.

34 / 36

Plan

1. Computational complexity

2. Recap on convexity

3. Conic programming

4. Computational complexity of our statistical estimators

35 / 36

Consequence for our statistical estimators

Conclusion:

All the estimators involving the `1 norm can be computed in polynomial time given
data in Q.

It is largely accepted that there is no efficient algorithm to compute all the possible
large scale instances of the estimators involving the `0 pseudo norm.

36 / 36

	Computational complexity
	Recap on convexity
	Conic programming
	Computational complexity of our statistical estimators

