Chapter 3: linear regression

Edouard Pauwels

Statistics and optimization in high dimensions M2RI, Toulouse 3 Paul Sabatier

Main model

Generative model

 $Y_i = f^*(X_i) + \epsilon_i, \quad i = 1..., n$

where $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \sim \text{subG}(\sigma^2)$ and $\mathbb{E}[\epsilon] = 0$.

 $f^* : x \mapsto \mathbb{E}[Y|X = x]$ of form $f^* : x \mapsto x^T \theta^*$ for an unknown $\theta^* \in \mathbb{R}^d$.

Fixed design: the design points $x_1, \ldots, x_n \in \mathbb{R}^d$ are fixed and are given by the rows of $\mathbb{X} \in \mathbb{R}^{n \times d}$. We have the idendity in \mathbb{R}^n .

$$Y = \mathbb{X}\theta^* + \epsilon \tag{LM}$$

Measure of performance: the notion of risk is not meaningful here (no randomness on X), we use the mean squared error.

$$g: x \mapsto \theta^T x \qquad (\theta \in \mathbb{R}^d)$$
$$MSE(g) = \frac{1}{n} \sum_{i=1}^n (g(x_i) - f^*(x_i))^2$$
$$MSE(\theta) = \frac{1}{n} ||\mathbb{X} (\theta - \theta^*) ||_2^2.$$

$$\hat{\theta}^{LS} \in \arg\min_{\theta \in \mathbb{R}^d} \|\mathbb{X}\theta - Y\|_2^2$$
(3.1)

Lemma (3.2.1)

We have

$$\mathbb{X}^{\mathsf{T}}\mathbb{X}\hat{\theta}^{\mathsf{LS}} = \mathbb{X}^{\mathsf{T}}\mathsf{Y}$$

and one solution is given by $\hat{\theta}^{LS} = (\mathbb{X}^T \mathbb{X})^{\dagger} \mathbb{X}^T Y$, where \dagger denotes the Moore-Menrose pseusdo inverse.

Let K denote a closed subset of \mathbb{R}^d , the K constrained least squares estimator is given by

$$\hat{\theta}_{\kappa}^{LS} \in \arg\min_{\theta \in \kappa} \|\mathbb{X}\theta - Y\|_{2}^{2}$$
(3.2)

Lemma (3.3.1)

Let $K \subset \mathbb{R}^d$ be closed and $g \colon \mathbb{R}^d \mapsto \mathbb{R}$ denote any function. Assume that model (LM) holds and that $\theta^* \in K$, and set, assuming that the infimum is attained

$$\hat{ heta}_{\mathsf{Kg}}^{\mathsf{LS}} \in rg\min_{ heta \in \mathsf{K}} \|\mathbb{X} heta - Y\|_2^2 + g(heta).$$

Then, almost surely

$$\|\mathbb{X}(\hat{ heta}_{\mathsf{Kg}}^{\mathsf{LS}}- heta^*)\|_2^2\leq 2\epsilon^T\mathbb{X}(\hat{ heta}_{\mathsf{K}}^{\mathsf{LS}}- heta^*)+g(heta^*)-g(\hat{ heta}_{\mathsf{Kg}}^{\mathsf{LS}}).$$

Theorem (3.3.1)

Assume that (LM) holds with $\epsilon \sim \text{subG}(\sigma^2)$, then

$$\mathbb{E}\left[\mathrm{MSE}(\hat{\theta}^{LS})\right] \leq 16\sigma^2 \frac{r}{n}$$

where $r = \operatorname{rank}(\mathbb{X}^T\mathbb{X})$, furthermore, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\operatorname{MSE}(\hat{\theta}^{LS}) \leq \frac{64\sigma^2 \left(2r + \log(1/\delta)\right)}{n}$$

If $\mathbb X$ has full possible rank, then $r = \min(n,d) = d$ assuming $n \geq d$ and

$$\mathrm{MSE}(\hat{\theta}^{LS}) = (\hat{\theta}^{LS} - \theta^*)^T \frac{\mathbb{X}^T \mathbb{X}}{n} (\hat{\theta}^{LS} - \theta^*) \ge \lambda_{\min}\left(\frac{\mathbb{X}^T \mathbb{X}}{n}\right) \|\hat{\theta}^{LS} - \theta^*\|_2^2.$$

Theorem (3.3.2)

Suppose that $Y = \xi + \theta$ where $\theta \in \mathbb{R}^d$ and $\xi_i \sim \mathcal{N}(0, \sigma^2/n)$, i = 1, ..., d. Then, for any $\alpha \in (0, 1/4)$:

$$\inf_{\hat{\theta}} \sup_{\theta \in \mathbb{R}^d} \mathbb{P}_{\theta} \left(\| \hat{\theta} - \theta \|_2^2 \ge \frac{\alpha}{256} \frac{\sigma^2 d}{n} \right) \ge \frac{1}{2} - 2\alpha$$

where the infimum is taken over all measurable functions of Y.

Reduction to finite hypothesis testing, information theoretic lower bounds, see chapter 4 of the lecture notes.

ℓ_1 constrained least squares

We let B_1 denote the unit ball of the ℓ_1 norm in \mathbb{R}^d ,

$$B_1 = \left\{ x \in \mathbb{R}^d, \sum_{i=1}^d |x_i| \leq 1
ight\}.$$

This is a polytope with 2d vertices given by the elements of the canonical basis and their oposite.

Theorem (3.3.3)

Let $K = B_1$ and $d \ge 2$. Assume that model (LM) holds with $\epsilon \sim \operatorname{subG}(\sigma^2)$ and $\theta^* \in K$. Assume also that the columns of \mathbb{X} are normalized such that $\|\mathbb{X}_j\| \le \sqrt{n}$, $j = , 1 \dots, d$. Then, it holds that

$$\mathbb{E}\left[\mathrm{MSE}(\hat{\theta}_{K}^{LS})\right] \leq \frac{4\sigma}{\sqrt{n}}\sqrt{2\log(2d)}$$

and for any $\delta > 0$, with probability at least $1 - \delta$, it holds that

$$\operatorname{MSE}(\hat{\theta}_{K}^{LS}) \leq \sigma \sqrt{\frac{32\log\left(2d/\delta\right)}{n}}$$

ℓ_0 constrained least squares

 ℓ_0 pseudonorm: cardinality of the set of non zero coordinates of a vector. A vector with small ℓ_0 norm is called sparse. For any $\theta \in \mathbb{R}^d$,

$$\| heta\|_0 = \sum_{i=1}^d \mathbb{I}(heta_j
eq 0)$$

 $\operatorname{supp}(heta) = \{j \in \{1, \dots, d\}, \, heta_j
eq 0\},$

 $\|\theta\|_0 = \operatorname{card}(\operatorname{supp}(\theta))$ and for any $k = 1, \ldots, d$, $B_0(k)$ denotes the set of k-sparse vectors.

Theorem (3.3.4)

For any $k \in \mathbb{N}^*$, $k \leq d/2$, let $K = B_0(k)$ and assume that model (LM) holds with $\epsilon \sim \operatorname{subG}(\sigma^2)$ and $\theta^* \in K$. Then, for any $\delta > 0$, with probability $1 - \delta$, it holds

$$\operatorname{MSE}(\hat{\theta}_{K}^{LS}) \leq rac{32\sigma^{2}}{n} \left(2k \log\left(rac{ed}{2k}\right) + 2k \log(6) + \log(1/\delta)\right).$$

Furthermore, we have

$$\mathbb{E}\left[\mathrm{MSE}(\hat{\theta}_{K}^{LS})\right] \leq \frac{32\sigma^{2}}{n} \left(1 + 2k \log\left(\frac{ed}{2k}\right) + 2k \log(6)\right)$$

Adaptivity

Require the knowledge of properties of the unknown θ^* .

Sub-gaussian sequence model: $y = \theta^* + \xi \in \mathbb{R}^d$, where $\xi \sim \text{subG}(\sigma^2/n)$. For any $\delta > 0$, with probability at least $1 - \delta$

$$\max_{1 \le i \le d} |\xi_i| \le \sigma \sqrt{\frac{2\log(2d/\delta)}{n}} = \tau.$$

If $|y_j| \gg \tau$ for some *j*, then it must correspond to $\theta_j^* \neq 0$. If $|y_j| \leq \tau$, then $|\theta_j^*| \leq |y_j| + |\xi_j| \leq 2\tau$ with high probability.

Hard-thresholding estimator:

$$\hat{ heta}_j^{HT} = y_j \mathbb{I}(|y_j| \ge 2 au), \quad j = 1, \dots, d.$$

Conditioning on the event $\mathcal{A} = \{\max_i |\xi_i| \leq \tau\}$, we have for all j, $|y_j| \geq 2\tau \Rightarrow |\theta_j^*| \geq \tau$ and $|y_j| \leq 2\tau \Rightarrow |\theta_j^*| \leq 3\tau$ and

$$\|\hat{\theta}^{RT} - \theta^*\|^2 \leq \frac{32\|\theta\|_0 \sigma^2 \log(2d/\delta)}{n}$$

It turns out that

$$\hat{\theta}^{HT} = \arg\min_{\theta \in \mathbb{R}^d} \|y - \theta\|^2 + 4\tau^2 \|\theta\|_0.$$

Under model (LM), we set, for any $\lambda \ge 0$,

$$\hat{\theta}^{\ell_0} \in \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{2n} \|\mathbb{X}\theta - Y\|^2 + \lambda \|\theta\|_0$$
$$\hat{\theta}^{\ell_1} \in \arg\min_{\theta \in \mathbb{R}^d} \frac{1}{2n} \|\mathbb{X}\theta - Y\|^2 + \lambda \|\theta\|_1$$

Theorem (3.4.1)

Assume that model (LM) holds with $\epsilon \sim \operatorname{subG}(\sigma^2)$ then choosing $\lambda = 8 \log(6)\sigma^2/n + 16\sigma^2 \log(ed)/n$, we have for any $\delta > 0$ with probability at least $1 - \delta$,

$$MSE(\hat{\theta}^{\ell_0}) \le \frac{32\sigma^2 \left(2\|\theta^*\|_0 \left(\log(6) + \log(ed)\right) + \log(1/\delta) + \log(2)\right)}{n}$$

Theorem (3.4.2)

Assume that model (LM) holds with $\epsilon \sim \operatorname{subG}(\sigma^2)$. Moreover assume that the columns of \mathbb{X} have norm at most \sqrt{n} . Then, for any $\delta > 0$, choosing $\lambda = \sigma/\sqrt{n} \left(\sqrt{2\log(2d)} + \sqrt{2\log(1/\delta)}\right)$, we have for any $\delta > 0$ with probability at least $1 - \delta$,

$$\operatorname{MSE}(\hat{ heta}^{\ell_1}) \leq rac{4\| heta^*\|_1\sigma}{\sqrt{n}} \left(\sqrt{2\log(2d)} + \sqrt{2\log(1/\delta)}\right).$$

Definition (3.5.1)

A matrix $\mathbb{X} \in \mathbb{R}^{n \times d}$ is said to have incoherence $k \in \mathbb{N}^*$, if

$$\left\|\frac{\mathbb{X}^{\mathsf{T}}\mathbb{X}}{n}-I_{d}\right\|_{\infty}\leq\frac{1}{32k},$$

where $\|\cdot\|_\infty$ denotes the largest absolute value of a matrix.

Proposition (3.5.1)

Let $\mathbb{A} \in \mathbb{R}^{n \times d}$ be a random matrix which entries are independent Rademacher variables $(\pm 1 \text{ with probability } 1/2)$. Then, for any $\delta > 0$, if $n \ge 2^{11}k^2 \log(1/\delta) + 2^{13}k^2 \log(d)$, with probability $1 - \delta$ over the random draw of its entries, \mathbb{A} has incoherence k.

For any $\theta \in \mathbb{R}^d$, $S \subset \{1, \ldots, d\}$, $\theta_S \in \mathbb{R}^d$ is the vector which entries agree with those of θ on S the others beeing 0.

Lemma (3.5.1)

For any $k \leq d$ and \mathbb{X} having incoherence k, any S with $|S| \leq k$ and any $\theta \in \mathbb{R}^d$ satisfying the cone condition: $\|\theta_{S^c}\|_1 \leq 3\|\theta_S\|_1$, we have $\|\theta\|_2^2 \leq 2\frac{\|\mathbb{X}\theta\|_2^2}{n}$.

Theorem (3.5.1)

For $n \neq 2$, assume that model LM holds with $\epsilon \sim \operatorname{subG}(\sigma^2)$. Assume that $\|\theta^*\|_0 \leq k$ and that \mathbb{X} has incoherence k. Then, for any $\delta > 0$, the Lasso estimator $\hat{\theta}^{\ell_1}$ with $\lambda = 8\sigma/n(\sqrt{\log(2d)} + \sqrt{\log(1/\delta)})$ satisfies with probability $1 - \delta$

$$MSE(\hat{\theta}^{\ell_1}) \le (2^{12}) \frac{k\sigma^2 \log(2d/\delta)}{n}$$
$$\|\hat{\theta}^{\ell_1} - \theta^*\|_2^2 \le (2^{13}) \frac{k\sigma^2 \log(2d/\delta)}{n}$$

The signal to be recovered is $\theta^* \in \mathbb{R}^d *$ which is unknown and assumed to be sparse, that is $\|\theta^*\|_0 = k < d$. $\mathbb{X} \in \mathbb{R}_{n \times d}$ is a sensing matrix which will result in the following measurements:

$$\mathbb{X}\theta^* = y \tag{3.10}$$

How many measurements are required so that θ^* can be inferred accurately only from the knowledge of y and X?

We introduce the estimator

$$\hat{\theta}_{CS}^{\ell_0} \in \min_{\theta \in \mathbb{R}_d} \quad \|\theta\|_0 \quad \text{s.t.} \quad \mathbb{X}\theta = y.$$
(3.11)

under mild assumption on the sensing matrix X, this estimator deterministically recovers the unknown signal θ^* .

Proposition (3.6.1)

Given $k \in \mathbb{N}$, $k \leq d/2$, assume that $\|\theta^*\|_0 \leq k$, and assume that for any S, $|S| \leq 2k$, that \mathbb{X}_S has full column rank. Then, the solution of (3.11) is unique and is equal to θ^* .

We introduce an estimator.

$$\hat{\theta}_{CS}^{\ell_1} \in \min_{\theta \in \mathbb{R}_d} \quad \|\theta\|_1 \quad \text{s.t.} \quad \mathbb{X}\theta = y.$$
(3.12)

Corollary (3.6.1)

Given $k \in \mathbb{N}$, $k \leq d$, and $\delta > 0$, assume that \mathbb{X} is a Rademacher matrix with $n \geq 2^{11}k^2 \log(1/\delta) + 2^{13}k^2 \log(d)$. Assume furthermore that $\|\theta^*\|_0 \leq k$ in (3.10). Then with probability $1 - \delta$ over the random draw of \mathbb{X} , the solution of (3.12) is unique and is equal to θ^* .

Least squares estimator	Mean squared error	Assumptions
Unconstrained/unpenalized	$\frac{\sigma^2 d}{n}$	Design full column rank
ℓ_1 constrained	$\frac{\sigma \log(d)}{\sqrt{n}}$	$\ heta^*\ _1 \leq 1$, $\ \mathbb{X}_j\ _2 \leq \sqrt{n}$
ℓ_0 constrained	$\frac{\sigma^2 k \log(d)}{n}$	$\ heta^*\ _0 \leq k$
ℓ_1 penalized	$\frac{\sigma \log(d)}{\sqrt{n}}$	$\ \mathbb{X}_j\ _2 \leq \sqrt{n}$
ℓ_0 penalized	$\frac{\sigma^2 \ \theta^*\ _0 \log(d)}{n}$	
ℓ_1 penalized	$\frac{\sigma^2 k \log(d)}{n}$	$\ heta^*\ _0 \leq k$, $\mathbb X$ incoherence k

General conclusion:

- $\bullet\,$ In high dimension, prior knowledge on θ^* is required to obtain meaningful bounds.
- $\bullet\,$ For sparisity, ℓ_0 pseudo norm has more favorable statistical properties than ℓ_1 norm.
- Penalized estimators are adaptive to unknown properties of θ^* , contrasting with constrained estimators.