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Main model

Generative model
Yi = f ∗(Xi ) + εi , i = 1 . . . , n

where ε = (ε1, . . . , εn)T ∼ subG(σ2) and E [ε] = 0.

f ∗ : x 7→ E [Y |X = x ] of form f ∗ : x 7→ xTθ∗ for an unknown θ∗ ∈ Rd .

Fixed design: the design points x1, . . . , xn ∈ Rd are fixed and are given by the rows of
X ∈ Rn×d . We have the idendity in Rn.

Y = Xθ∗ + ε (LM)

Measure of performance: the notion of risk is not meaningful here (no randomness
on X ), we use the mean squared error.

g : x 7→ θT x (θ ∈ Rd)

MSE(g) =
1

n

n∑
i=1

(g(xi )− f ∗(xi ))
2

MSE(θ) =
1

n
‖X (θ − θ∗) ‖22.
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Least squares estimator

θ̂LS ∈ arg min
θ∈Rd
‖Xθ − Y ‖22 (3.1)

Lemma (3.2.1)

We have

XTXθ̂LS = XTY

and one solution is given by θ̂LS = (XTX)†XTY , where † denotes the Moore-Menrose
pseusdo inverse.
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Constrained least squares estimator

Let K denote a closed subset of Rd , the K constrained least squares estimator is given by

θ̂LSK ∈ arg min
θ∈K
‖Xθ − Y ‖22 (3.2)

Lemma (3.3.1)

Let K ⊂ Rd be closed and g : Rd 7→ R denote any function. Assume that model (LM)
holds and that θ∗ ∈ K, and set, assuming that the infimum is attained

θ̂LSKg ∈ arg min
θ∈K
‖Xθ − Y ‖22 + g(θ).

Then, almost surely

‖X(θ̂LSKg − θ∗)‖22 ≤ 2εTX(θ̂LSK − θ∗) + g(θ∗)− g(θ̂LSKg ).
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Statistical bounds for unconstrained least squares estimator

Theorem (3.3.1)

Assume that (LM) holds with ε ∼ subG(σ2), then

E
[
MSE(θ̂LS)

]
≤ 16σ2 r

n

where r = rank(XTX), furthermore, for any δ > 0, with probability at least 1− δ,

MSE(θ̂LS) ≤ 64σ2 (2r + log(1/δ))

n
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Optimality and high dimensional setting

If X has full possible rank, then r = min(n, d) = d assuming n ≥ d and

MSE(θ̂LS) = (θ̂LS − θ∗)T XTX
n

(θ̂LS − θ∗) ≥ λmin

(
XTX
n

)
‖θ̂LS − θ∗‖22.

Theorem (3.3.2)

Suppose that Y = ξ + θ where θ ∈ Rd and ξi ∼ N (0, σ2/n), i = 1, . . . , d. Then, for any
α ∈ (0, 1/4):

inf
θ̂

sup
θ∈Rd

Pθ
(
‖θ̂ − θ‖22 ≥

α

256

σ2d

n

)
≥ 1

2
− 2α

where the infimum is taken over all measurable functions of Y .

Reduction to finite hypothesis testing, information theoretic lower bounds, see chapter 4
of the lecture notes.
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`1 constrained least squares

We let B1 denote the unit ball of the `1 norm in Rd ,

B1 =

{
x ∈ Rd ,

d∑
i=1

|xi | ≤ 1

}
.

This is a polytope with 2d vertices given by the elements of the canonical basis and their
oposite.

Theorem (3.3.3)

Let K = B1 and d ≥ 2. Assume that model (LM) holds with ε ∼ subG(σ2) and θ∗ ∈ K.
Assume also that the columns of X are normalized such that ‖Xj‖ ≤

√
n, j =, 1 . . . , d.

Then, it holds that

E
[
MSE(θ̂LSK )

]
≤ 4σ√

n

√
2 log(2d)

and for any δ > 0, with probability at least 1− δ, it holds that

MSE(θ̂LSK ) ≤ σ
√

32 log (2d/δ)

n
.
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`0 constrained least squares

`0 pseudonorm: cardinality of the set of non zero coordinates of a vector. A vector with
small `0 norm is called sparse. For any θ ∈ Rd ,

‖θ‖0 =
d∑

i=1

I(θj 6= 0)

supp(θ) = {j ∈ {1, . . . , d} , θj 6= 0} ,

‖θ‖0 = card(supp(θ)) and for any k = 1, . . . , d , B0(k) denotes the set of k-sparse
vectors.

Theorem (3.3.4)

For any k ∈ N∗, k ≤ d/2, let K = B0(k) and assume that model (LM) holds with
ε ∼ subG(σ2) and θ∗ ∈ K. Then, for any δ > 0, with probability 1− δ, it holds

MSE(θ̂LSK ) ≤ 32σ2

n

(
2k log

(
ed

2k

)
+ 2k log(6) + log(1/δ)

)
.

Furthermore, we have

E
[
MSE(θ̂LSK )

]
≤ 32σ2

n

(
1 + 2k log

(
ed

2k

)
+ 2k log(6)

)
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Adaptivity

Require the knowledge of properties of the unknown θ∗.

Sub-gaussian sequence model: y = θ∗ + ξ ∈ Rd , where ξ ∼ subG(σ2/n). For any
δ > 0, with probability at least 1− δ

max
1≤i≤d

|ξi | ≤ σ
√

2 log(2d/δ)

n
= τ.

If |yj | � τ for some j , then it must correspond to θ∗j 6= 0. If |yj | ≤ τ , then |θ∗j | ≤
|yj |+ |ξj | ≤ 2τ with high probability.

Hard-thresholding estimator:

θ̂HTj = yj I(|yj | ≥ 2τ), j = 1, . . . , d .

Conditioning on the event A = {maxi |ξi | ≤ τ}, we have for all j , |yj | ≥ 2τ ⇒ |θ∗j | ≥ τ
and |yj | ≤ 2τ ⇒ |θ∗j | ≤ 3τ and

‖θ̂RT − θ∗‖2 ≤ 32‖θ‖0σ2 log(2d/δ)

n
.
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Penalized least squares estimators

It turns out that

θ̂HT = arg min
θ∈Rd
‖y − θ‖2 + 4τ 2‖θ‖0.

Under model (LM), we set, for any λ ≥ 0,

θ̂`0 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖0

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1
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`0 penalized least squares

Theorem (3.4.1)

Assume that model (LM) holds with ε ∼ subG(σ2) then choosing
λ = 8 log(6)σ2/n + 16σ2 log(ed)/n, we have for any δ > 0 with probability at least 1− δ,

MSE(θ̂`0) ≤ 32σ2 (2‖θ∗‖0 (log(6) + log(ed)) + log(1/δ) + log(2))

n
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`1 penalized least squares

Theorem (3.4.2)

Assume that model (LM) holds with ε ∼ subG(σ2). Moreover assume that the columns
of X have norm at most

√
n. Then, for any δ > 0, choosing

λ = σ/
√
n
(√

2 log(2d) +
√

2 log(1/δ)
)

, we have for any δ > 0 with probability at least

1− δ,

MSE(θ̂`1) ≤ 4‖θ∗‖1σ√
n

(√
2 log(2d) +

√
2 log(1/δ)

)
.
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Incoherence, random matrices and cone condition

Definition (3.5.1)

A matrix X ∈ Rn×d is said to have incoherence k ∈ N∗, if∥∥∥∥XTX
n
− Id

∥∥∥∥
∞
≤ 1

32k
,

where ‖ · ‖∞ denotes the largest absolute value of a matrix.

Proposition (3.5.1)

Let A ∈ Rn×d be a random matrix which entries are independent Rademacher variables
(±1 with probability 1/2). Then, for any δ > 0, if n ≥ 211k2 log(1/δ) + 213k2 log(d),
with probability 1− δ over the random draw of its entries, A has incoherence k.

For any θ ∈ Rd , S ⊂ {1, . . . , d}, θS ∈ Rd is the vector which entries agree with those of
θ on S the others beeing 0.

Lemma (3.5.1)

For any k ≤ d and X having incoherence k, any S with |S | ≤ k and any θ ∈ Rd

satisfying the cone condition: ‖θSc ‖1 ≤ 3‖θS‖1, we have ‖θ‖22 ≤ 2
‖Xθ‖22

n
.
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Fast rate for the Lasso estimator

Theorem (3.5.1)

For n 6= 2, assume that model LM holds with ε ∼ subG(σ2). Assume that ‖θ∗‖0 ≤ k and
that X has incoherence k. Then, for any δ > 0, the Lasso estimator θ̂`1 with
λ = 8σ/n(

√
log(2d) +

√
log(1/δ)) satisfies with probability 1− δ

MSE(θ̂`1) ≤ (212)
kσ2 log(2d/δ)

n

‖θ̂`1 − θ∗‖22 ≤ (213)
kσ2 log(2d/δ)

n
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Compressed sensing

The signal to be recovered is θ∗ ∈ Rd∗ which is unknown and assumed to be sparse, that
is ‖θ∗‖0 = k < d . X ∈ Rn×d is a sensing matrix which will result in the following
measurements:

Xθ∗ = y (3.10)

How many measurements are required so that θ∗ can be infered accurately only from the
knowledge of y and X?
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Exact recovery using `0 minimization

We introduce the estimator

θ̂`0CS ∈ min
θ∈Rd

‖θ‖0 s.t. Xθ = y . (3.11)

under mild assumption on the sensing matrix X, this estimator deterministically recovers
the unknown signal θ∗.

Proposition (3.6.1)

Given k ∈ N, k ≤ d/2, assume that ‖θ∗‖0 ≤ k, and assume that for any S, |S | ≤ 2k,
that XS has full column rank. Then, the solution of (3.11) is unique and is equal to θ∗.
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Exact recovery from random measurements with `1 minimization

We introduce an estimator.

θ̂`1CS ∈ min
θ∈Rd

‖θ‖1 s.t. Xθ = y . (3.12)

Corollary (3.6.1)

Given k ∈ N, k ≤ d, and δ > 0, assume that X is a Rademacher matrix with
n ≥ 211k2 log(1/δ) + 213k2 log(d). Assume furthermore that ‖θ∗‖0 ≤ k in (3.10). Then
with probability 1− δ over the random draw of X, the solution of (3.12) is unique and is
equal to θ∗.
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Recap on complexity for linear regression

Least squares estimator Mean squared error Assumptions

Unconstrained/unpenalized σ2d
n

Design full column rank

`1 constrained σ log(d)√
n

‖θ∗‖1 ≤ 1, ‖Xj‖2 ≤
√
n

`0 constrained σ2k log(d)
n

‖θ∗‖0 ≤ k

`1 penalized σ log(d)√
n

‖Xj‖2 ≤
√
n

`0 penalized σ2‖θ∗‖0 log(d)
n

`1 penalized σ2k log(d)
n

‖θ∗‖0 ≤ k, X incoherence k

General conclusion:

In high dimension, prior knowledge on θ∗ is required to obtain meaningful bounds.

For sparisity, `0 pseudo norm has more favorable statistical properties than `1 norm.

Penalized estimators are adaptive to unknown properties of θ∗, contrasting with
constrained estimators.
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