Chapter 3: linear regression

Edouard Pauwels

Statistics and optimization in high dimensions
M2RI, Toulouse 3 Paul Sabatier

Main model

Generative model

$$
Y_{i}=f^{*}\left(X_{i}\right)+\epsilon_{i}, \quad i=1 \ldots, n
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{T} \sim \operatorname{subG}\left(\sigma^{2}\right)$ and $\mathbb{E}[\epsilon]=0$.
$f^{*}: x \mapsto \mathbb{E}[Y \mid X=x]$ of form $f^{*}: x \mapsto x^{T} \theta^{*}$ for an unknown $\theta^{*} \in \mathbb{R}^{d}$.
Fixed design: the design points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are fixed and are given by the rows of $\mathbb{X} \in \mathbb{R}^{n \times d}$. We have the idendity in \mathbb{R}^{n}.

$$
\begin{equation*}
Y=\mathbb{X} \theta^{*}+\epsilon \tag{LM}
\end{equation*}
$$

Measure of performance: the notion of risk is not meaningful here (no randomness on X), we use the mean squared error.

$$
\begin{gathered}
g: x \mapsto \theta^{T} x \quad\left(\theta \in \mathbb{R}^{d}\right) \\
\operatorname{MSE}(g)=\frac{1}{n} \sum_{i=1}^{n}\left(g\left(x_{i}\right)-f^{*}\left(x_{i}\right)\right)^{2} \\
\operatorname{MSE}(\theta)=\frac{1}{n}\left\|\mathbb{X}\left(\theta-\theta^{*}\right)\right\|_{2}^{2}
\end{gathered}
$$

Least squares estimator

$$
\begin{equation*}
\hat{\theta}^{L S} \in \arg \min _{\theta \in \mathbb{R}^{d}}\|\mathbb{X} \theta-Y\|_{2}^{2} \tag{3.1}
\end{equation*}
$$

Lemma (3.2.1)

We have

$$
\mathbb{X}^{T} \mathbb{X} \hat{\theta}^{L S}=\mathbb{X}^{T} Y
$$

and one solution is given by $\hat{\theta}^{L S}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{\dagger} \mathbb{X}^{T} Y$, where \dagger denotes the Moore-Menrose pseusdo inverse.

Constrained least squares estimator

Let K denote a closed subset of \mathbb{R}^{d}, the K constrained least squares estimator is given by

$$
\begin{equation*}
\hat{\theta}_{K}^{L S} \in \arg \min _{\theta \in K}\|\mathbb{X} \theta-Y\|_{2}^{2} \tag{3.2}
\end{equation*}
$$

Lemma (3.3.1)

Let $K \subset \mathbb{R}^{d}$ be closed and $g: \mathbb{R}^{d} \mapsto \mathbb{R}$ denote any function. Assume that model (LM) holds and that $\theta^{*} \in K$, and set, assuming that the infimum is attained

$$
\hat{\theta}_{K g}^{L S} \in \arg \min _{\theta \in K}\|\mathbb{X} \theta-Y\|_{2}^{2}+g(\theta) .
$$

Then, almost surely

$$
\left\|\mathbb{X}\left(\hat{\theta}_{K g}^{L S}-\theta^{*}\right)\right\|_{2}^{2} \leq 2 \epsilon^{T} \mathbb{X}\left(\hat{\theta}_{K}^{L S}-\theta^{*}\right)+g\left(\theta^{*}\right)-g\left(\hat{\theta}_{K g}^{L S}\right)
$$

Statistical bounds for unconstrained least squares estimator

Theorem (3.3.1)

Assume that (LM) holds with $\epsilon \sim \operatorname{subG}\left(\sigma^{2}\right)$, then

$$
\mathbb{E}\left[\operatorname{MSE}\left(\hat{\theta}^{L S}\right)\right] \leq 16 \sigma^{2} \frac{r}{n}
$$

where $r=\operatorname{rank}\left(\mathbb{X}^{T} \mathbb{X}\right)$, furthermore, for any $\delta>0$, with probability at least $1-\delta$,

$$
\operatorname{MSE}\left(\hat{\theta}^{L S}\right) \leq \frac{64 \sigma^{2}(2 r+\log (1 / \delta))}{n}
$$

Optimality and high dimensional setting

If \mathbb{X} has full possible rank, then $r=\min (n, d)=d$ assuming $n \geq d$ and

$$
\operatorname{MSE}\left(\hat{\theta}^{L S}\right)=\left(\hat{\theta}^{L S}-\theta^{*}\right)^{T} \frac{\mathbb{X}^{T} \mathbb{X}}{n}\left(\hat{\theta}^{L S}-\theta^{*}\right) \geq \lambda_{\min }\left(\frac{\mathbb{X}^{T} \mathbb{X}}{n}\right)\left\|\hat{\theta}^{L S}-\theta^{*}\right\|_{2}^{2}
$$

Theorem (3.3.2)

Suppose that $Y=\xi+\theta$ where $\theta \in \mathbb{R}^{d}$ and $\xi_{i} \sim \mathcal{N}\left(0, \sigma^{2} / n\right), i=1, \ldots, d$. Then, for any $\alpha \in(0,1 / 4)$:

$$
\inf _{\hat{\theta}} \sup _{\theta \in \mathbb{R}^{d}} \mathbb{P}_{\theta}\left(\|\hat{\theta}-\theta\|_{2}^{2} \geq \frac{\alpha}{256} \frac{\sigma^{2} d}{n}\right) \geq \frac{1}{2}-2 \alpha
$$

where the infimum is taken over all measurable functions of Y.
Reduction to finite hypothesis testing, information theoretic lower bounds, see chapter 4 of the lecture notes.

ℓ_{1} constrained least squares

We let B_{1} denote the unit ball of the ℓ_{1} norm in \mathbb{R}^{d},

$$
B_{1}=\left\{x \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|x_{i}\right| \leq 1\right\}
$$

This is a polytope with $2 d$ vertices given by the elements of the canonical basis and their oposite.

Theorem (3.3.3)

Let $K=B_{1}$ and $d \geq 2$. Assume that model (LM) holds with $\epsilon \sim \operatorname{subG}\left(\sigma^{2}\right)$ and $\theta^{*} \in K$. Assume also that the columns of \mathbb{X} are normalized such that $\left\|\mathbb{X}{ }_{j}\right\| \leq \sqrt{n}, j=, 1 \ldots, d$. Then, it holds that

$$
\mathbb{E}\left[\operatorname{MSE}\left(\hat{\theta}_{K}^{L S}\right)\right] \leq \frac{4 \sigma}{\sqrt{n}} \sqrt{2 \log (2 d)}
$$

and for any $\delta>0$, with probability at least $1-\delta$, it holds that

$$
\operatorname{MSE}\left(\hat{\theta}_{K}^{L S}\right) \leq \sigma \sqrt{\frac{32 \log (2 d / \delta)}{n}}
$$

ℓ_{0} constrained least squares

ℓ_{0} pseudonorm: cardinality of the set of non zero coordinates of a vector. A vector with small ℓ_{0} norm is called sparse. For any $\theta \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\|\theta\|_{0} & =\sum_{i=1}^{d} \mathbb{I}\left(\theta_{j} \neq 0\right) \\
\operatorname{supp}(\theta) & =\left\{j \in\{1, \ldots, d\}, \theta_{j} \neq 0\right\}
\end{aligned}
$$

$\|\theta\|_{0}=\operatorname{card}(\operatorname{supp}(\theta))$ and for any $k=1, \ldots, d, B_{0}(k)$ denotes the set of k-sparse vectors.

Theorem (3.3.4)

For any $k \in \mathbb{N}^{*}, k \leq d / 2$, let $K=B_{0}(k)$ and assume that model (LM) holds with $\epsilon \sim \operatorname{subG}\left(\sigma^{2}\right)$ and $\theta^{*} \in K$. Then, for any $\delta>0$, with probability $1-\delta$, it holds

$$
\operatorname{MSE}\left(\hat{\theta}_{K}^{L S}\right) \leq \frac{32 \sigma^{2}}{n}\left(2 k \log \left(\frac{e d}{2 k}\right)+2 k \log (6)+\log (1 / \delta)\right)
$$

Furthermore, we have

$$
\mathbb{E}\left[\operatorname{MSE}\left(\hat{\theta}_{K}^{L S}\right)\right] \leq \frac{32 \sigma^{2}}{n}\left(1+2 k \log \left(\frac{e d}{2 k}\right)+2 k \log (6)\right)
$$

Adaptivity

Require the knowledge of properties of the unknown θ^{*}.
Sub-gaussian sequence model: $y=\theta^{*}+\xi \in \mathbb{R}^{d}$, where $\xi \sim \operatorname{subG}\left(\sigma^{2} / n\right)$. For any $\delta>0$, with probability at least $1-\delta$

$$
\max _{1 \leq i \leq d}\left|\xi_{i}\right| \leq \sigma \sqrt{\frac{2 \log (2 d / \delta)}{n}}=\tau
$$

If $\left|y_{j}\right| \gg \tau$ for some j, then it must correspond to $\theta_{j}^{*} \neq 0$. If $\left|y_{j}\right| \leq \tau$, then $\left|\theta_{j}^{*}\right| \leq$ $\left|y_{j}\right|+\left|\xi_{j}\right| \leq 2 \tau$ with high probability.

Hard-thresholding estimator:

$$
\hat{\theta}_{j}^{H T}=y_{j} \mathbb{I}\left(\left|y_{j}\right| \geq 2 \tau\right), \quad j=1, \ldots, d
$$

Conditioning on the event $\mathcal{A}=\left\{\max _{i}\left|\xi_{i}\right| \leq \tau\right\}$, we have for all $j,\left|y_{j}\right| \geq 2 \tau \Rightarrow\left|\theta_{j}^{*}\right| \geq \tau$ and $\left|y_{j}\right| \leq 2 \tau \Rightarrow\left|\theta_{j}^{*}\right| \leq 3 \tau$ and

$$
\left\|\hat{\theta}^{R T}-\theta^{*}\right\|^{2} \leq \frac{32\|\theta\|_{0} \sigma^{2} \log (2 d / \delta)}{n}
$$

Penalized least squares estimators

It turns out that

$$
\hat{\theta}^{H T}=\arg \min _{\theta \in \mathbb{R}^{d}}\|y-\theta\|^{2}+4 \tau^{2}\|\theta\|_{0}
$$

Under model (LM), we set, for any $\lambda \geq 0$,

$$
\begin{aligned}
& \hat{\theta}^{\ell_{0}} \in \arg \min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|\mathbb{X} \theta-Y\|^{2}+\lambda\|\theta\|_{0} \\
& \hat{\theta}^{\ell_{1}} \in \arg \min _{\theta \in \mathbb{R}^{d}} \frac{1}{2 n}\|\mathbb{X} \theta-Y\|^{2}+\lambda\|\theta\|_{1}
\end{aligned}
$$

ℓ_{0} penalized least squares

Theorem (3.4.1)

Assume that model (LM) holds with $\epsilon \sim \operatorname{subG}\left(\sigma^{2}\right)$ then choosing $\lambda=8 \log (6) \sigma^{2} / n+16 \sigma^{2} \log (e d) / n$, we have for any $\delta>0$ with probability at least $1-\delta$,

$$
\operatorname{MSE}\left(\hat{\theta}^{\ell_{0}}\right) \leq \frac{32 \sigma^{2}\left(2\left\|\theta^{*}\right\|_{0}(\log (6)+\log (e d))+\log (1 / \delta)+\log (2)\right)}{n}
$$

Theorem (3.4.2)

Assume that model (LM) holds with $\epsilon \sim \operatorname{subG}\left(\sigma^{2}\right)$. Moreover assume that the columns of \mathbb{X} have norm at most \sqrt{n}. Then, for any $\delta>0$, choosing
$\lambda=\sigma / \sqrt{n}(\sqrt{2 \log (2 d)}+\sqrt{2 \log (1 / \delta)})$, we have for any $\delta>0$ with probability at least $1-\delta$,

$$
\operatorname{MSE}\left(\hat{\theta}^{\ell_{1}}\right) \leq \frac{4\left\|\theta^{*}\right\|_{1} \sigma}{\sqrt{n}}(\sqrt{2 \log (2 d)}+\sqrt{2 \log (1 / \delta)})
$$

Incoherence, random matrices and cone condition

Definition (3.5.1)

A matrix $\mathbb{X} \in \mathbb{R}^{n \times d}$ is said to have incoherence $k \in \mathbb{N}^{*}$, if

$$
\left\|\frac{\mathbb{X}^{T} \mathbb{X}}{n}-I_{d}\right\|_{\infty} \leq \frac{1}{32 k}
$$

where $\|\cdot\|_{\infty}$ denotes the largest absolute value of a matrix.

Proposition (3.5.1)

Let $\mathbb{A} \in \mathbb{R}^{n \times d}$ be a random matrix which entries are independent Rademacher variables (± 1 with probability $1 / 2$). Then, for any $\delta>0$, if $n \geq 2^{11} k^{2} \log (1 / \delta)+2^{13} k^{2} \log (d)$, with probability $1-\delta$ over the random draw of its entries, \mathbb{A} has incoherence k.

For any $\theta \in \mathbb{R}^{d}, S \subset\{1, \ldots, d\}, \theta_{S} \in \mathbb{R}^{d}$ is the vector which entries agree with those of θ on S the others beeing 0 .

Lemma (3.5.1)

For any $k \leq d$ and \mathbb{X} having incoherence k, any S with $|S| \leq k$ and any $\theta \in \mathbb{R}^{d}$
satisfying the cone condition: $\left\|\theta_{S^{c}}\right\|_{1} \leq 3\left\|\theta_{S}\right\|_{1}$, we have $\|\theta\|_{2}^{2} \leq 2 \frac{\|\mathbb{X} \theta\|_{2}^{2}}{n}$.

Fast rate for the Lasso estimator

Theorem (3.5.1)

For $n \neq 2$, assume that model LM holds with $\epsilon \sim \operatorname{subG}\left(\sigma^{2}\right)$. Assume that $\left\|\theta^{*}\right\|_{0} \leq k$ and that \mathbb{X} has incoherence k. Then, for any $\delta>0$, the Lasso estimator $\hat{\theta}^{\ell_{1}}$ with $\lambda=8 \sigma / n(\sqrt{\log (2 d)}+\sqrt{\log (1 / \delta)})$ satisfies with probability $1-\delta$

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{\theta}^{\ell_{1}}\right) & \leq\left(2^{12}\right) \frac{k \sigma^{2} \log (2 d / \delta)}{n} \\
\left\|\hat{\theta}^{\ell_{1}}-\theta^{*}\right\|_{2}^{2} & \leq\left(2^{13}\right) \frac{k \sigma^{2} \log (2 d / \delta)}{n}
\end{aligned}
$$

Compressed sensing

The signal to be recovered is $\theta^{*} \in \mathbb{R}^{d} *$ which is unknown and assumed to be sparse, that is $\left\|\theta^{*}\right\|_{0}=k<d . \mathbb{X} \in \mathbb{R}_{n \times d}$ is a sensing matrix which will result in the following measurements:

$$
\begin{equation*}
\mathbb{X} \theta^{*}=y \tag{3.10}
\end{equation*}
$$

How many measurements are required so that θ^{*} can be infered accurately only from the knowledge of y and \mathbb{X} ?

Exact recovery using ℓ_{0} minimization

We introduce the estimator

$$
\begin{equation*}
\hat{\theta}_{C S}^{\ell_{0}} \in \min _{\theta \in \mathbb{R}_{d}}\|\theta\|_{0} \quad \text { s.t. } \mathbb{X} \theta=y . \tag{3.11}
\end{equation*}
$$

under mild assumption on the sensing matrix \mathbb{X}, this estimator deterministically recovers the unknown signal θ^{*}.

Proposition (3.6.1)

Given $k \in \mathbb{N}, k \leq d / 2$, assume that $\left\|\theta^{*}\right\|_{0} \leq k$, and assume that for any $S,|S| \leq 2 k$, that \mathbb{X}_{s} has full column rank. Then, the solution of (3.11) is unique and is equal to θ^{*}.

Exact recovery from random measurements with ℓ_{1} minimization

We introduce an estimator.

$$
\begin{equation*}
\hat{\theta}_{C S}^{\ell_{1}} \in \min _{\theta \in \mathbb{R}_{d}}\|\theta\|_{1} \quad \text { s.t. } \quad \mathbb{X} \theta=y \tag{3.12}
\end{equation*}
$$

Corollary (3.6.1)

Given $k \in \mathbb{N}, k \leq d$, and $\delta>0$, assume that \mathbb{X} is a Rademacher matrix with $n \geq 2{ }^{11} k^{2} \log (1 / \delta)+2{ }^{13} k^{2} \log (d)$. Assume furthermore that $\left\|\theta^{*}\right\|_{0} \leq k$ in (3.10). Then with probability $1-\delta$ over the random draw of \mathbb{X}, the solution of (3.12) is unique and is equal to θ^{*}.

Recap on complexity for linear regression

Least squares estimator	Mean squared error	Assumptions				
Unconstrained/unpenalized	$\frac{\sigma^{2} d}{n}$	Design full column rank				
ℓ_{1} constrained	$\frac{\sigma \log (d)}{n}$	$\left\\|\theta^{*}\right\\|_{1} \leq 1,\left\\|\mathbb{X}_{j}\right\\|_{2} \leq \sqrt{n}$				
ℓ_{0} constrained	$\frac{\sigma^{2} k \log (d)}{n}$	$\left\\|\theta^{*}\right\\|_{0} \leq k$				
ℓ_{1} penalized	$\frac{\sigma \log (d)}{n}$	$\left\\|\mathbb{X}_{j}\right\\|_{2} \leq \sqrt{n}$				
ℓ_{0} penalized	$\frac{\sigma^{2}\left\\|\theta^{*}\right\\| 0}{} / \log (d)$					
ℓ_{1} penalized	$\frac{\sigma^{2} k \log (d)}{n}$	$\left\\|\theta^{*}\right\\|_{0} \leq k, \mathbb{X}$ incoherence k				

General conclusion:

- In high dimension, prior knowledge on θ^{*} is required to obtain meaningful bounds.
- For sparisity, ℓ_{0} pseudo norm has more favorable statistical properties than ℓ_{1} norm.
- Penalized estimators are adaptive to unknown properties of θ^{*}, contrasting with constrained estimators.

