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Generative model
Y,'If*(X,')—l—E,', i=1...,n

where € = (e1,...,¢e,)" ~ subG(c?) and E[e] = 0.

f*: x> E[Y|X = x] of form f*: x + x”6* for an unknown 6* € R?.

Fixed design: the design points xi, . .., x, € RY are fixed and are given by the rows of
X € R™?. We have the idendity in R".

Y =X0" +¢ (LM)

Measure of performance: the notion of risk is not meaningful here (no randomness
on X), we use the mean squared error.

g x— 0 x (0 € RY)
MSE(g) = Z(g(x,)— £ (x))?
MSE(0) = E”X“) -0 .

2/18



Least squares estimator

0" ¢ arg min, X6 — Y3 (3.1)

Lemma (3.2.1)
We have

XX =xTYy

and one solution is given by 0-° = (X"X)"XTY, where 1 denotes the Moore-Menrose
pseusdo inverse.
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Constrained least squares estimator

Let K denote a closed subset of RY, the K constrained least squares estimator is given by

0 € arg min || X6 — Y3 (3.2)

Lemma (3.3.1)

Let K C RY be closed and g: R — R denote any function. Assume that model (LM)
holds and that 0* € K, and set, assuming that the infimum is attained

N .
Oz € arg min X6 — Y13 + g(6)-
Then, almost surely

IX(Og — 07113 < 2¢"X(0K° — 07) + £(6") — g(0iz)-
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Statistical bounds for unconstrained least squares estimator

Theorem (3.3.1)
Assume that (LM) holds with € ~ subG(c?), then

r

E [MSE(@LS)] < 1607
where r = rank(XTX), furthermore, for any 6 > 0, with probability at least 1 — §,

< 640° (2r + log(1/5))

MSE(9"°)
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Optimality and high dimensional setting

If X has full possible rank, then r = min(n, d) = d assuming n > d and

)
MSE(D) = (3% — 6) 550 ) > A (X X) 18" — 0|3

Theorem (3.3.2)
Suppose that Y = & + 0 where § € R? and & ~ N(0,6%/n), i =1,...,d. Then, for any
a € (0,1/4):

~ a o°d 1
inf P 0—0|5 > —— — — 2
o e (1012 5777) 2

where the infimum is taken over all measurable functions of Y .

Reduction to finite hypothesis testing, information theoretic lower bounds, see chapter 4
of the lecture notes.
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f1 constrained least squares

We let B; denote the unit ball of the £; norm in RY,

d
B1—{X€Rd,2|x;|§1}.

i=1

This is a polytope with 2d vertices given by the elements of the canonical basis and their
oposite.

Theorem (3.3.3)

Let K = By and d > 2. Assume that model (LM) holds with ¢ ~ subG(c?) and 0* € K.
Assume also that the columns of X are normalized such that |X;|| < +/n, j=,1...,d.
Then, it holds that

E [MSE(@,&S)] < %\/2 log(2d)

and for any § > 0, with probability at least 1 — 0, it holds that
A log (2
MSE(G;L(S) < oy /320g7r(,d/5)~
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lo constrained least squares

fo pseudonorm: cardinality of the set of non zero coordinates of a vector. A vector with
small £y norm is called sparse. For any § € R¢,

I6llo = > _1(6; # 0)

i=1
supp(0) = {j € {1,...,d}, 6; # 0},

||0]|o = card(supp(0)) and for any k =1,...,d, Bo(k) denotes the set of k-sparse
vectors.

Theorem (3.3.4)

For any k € N*, k < d/2, let K = By(k) and assume that model (LM) holds with
e ~ subG(c?) and 0* € K. Then, for any 6 > 0, with probability 1 — §, it holds

MSE(45) < 32”” (2k| (%>+2klog(6)+log(l/6)).

Furthermore, we have

E [MSE(@,L(S ] - (1 + 2k log (;) + 2k|og(6))
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Adaptivity

Require the knowledge of properties of the unknown 6*.

Sub-gaussian sequence model: y = 0* + ¢ € RY, where & ~ subG(a?/n). For any
6 > 0, with probability at least 1 — §

2log(2d /6
max || < o) 228240 _
1<i<d n

If |y;| > 7 for some j, then it must correspond to 6 # 0. If |y;| < 7, then [0 <
lyi| + |&| < 27 with high probability.

Hard-thresholding estimator:
07" = yl(ly| > 2r), j=1,....d.

Conditioning on the event A = {max; |§;| < 7}, we have for all j, |y;| > 27 = |0]| > 7
and |yj| <27 = [0]| < 37 and

2  32||6]joc” log(2d/5)

1677 — 67|
n
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Penalized least squares estimators

It turns out that

6" = arg min ||y — 0] + 47°(|6)jo.
0eRd
Under model (LM), we set, for any A > 0,

A 1
f*o in —|IX0 — Y[|>+ )0
S ey ol I+ AllE]lo

N 1
f4 in —||X0— Y|+ A0
€ arg min L I -+ AllO]]x
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lo penalized least squares

Theorem (3.4.1)

Assume that model (LM) holds with ¢ ~ subG(o?) then choosing
X\ = 8log(6)c?/n + 1602 log(ed)/n, we have for any 6 > 0 with probability at least 1 — &,

< 3202 (2]|97[|o (log(6) + log(ed)) + log(1/5) + log(2))

- n

MSE(§%)
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{1 penalized least squares

Theorem (3.4.2)
Assume that model (LM) holds with ¢ ~ subG(c?). Moreover assume that the columns
of X have norm at most \/n. Then, for any § > 0, choosing

A=oao/v/n <\/2 log(2d) + /2 Iog(l/é)), we have for any 6 > 0 with probability at least
1-9,

MSE(0“) < % (\/2 log(2d) + /2 |og(1/5)) .
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Incoherence, random matrices and cone condition

Definition (3.5.1)

A matrix X € R"*9 is said to have incoherence k € N*, if

X'X 1
H - Id S an
LT 32k
where || - ||co denotes the largest absolute value of a matrix.

Proposition (3.5.1)

Let A € R"%9 be a random matrix which entries are independent Rademacher variables
(+1 with probability 1/2). Then, for any § > 0, if n > 21 k? log(1/6) + 2"k? log(d),
with probability 1 — & over the random draw of its entries, A has incoherence k.

Forany 8 € R, S C {1,...,d}, s € RY is the vector which entries agree with those of
0 on S the others beeing 0.

Lemma (3.5.1)
For any k < d and X having incoherence k, any S with |S| < k and any 0 € R?

satisfying the cone condition: ||0sc||1 < 3||0s]|1, we have ||0]|3 < 21=2 “XGH?
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Fast rate for the Lasso estimator

Theorem (3.5.1)

For n # 2, assume that model LM holds with e ~ subG(a?). Assume that ||0*|lo < k and
that X has incoherence k. Then, for any § > 0, the Lasso estimator 6% with
= 80 /n(+/log(2d) + +/log(1/4)) satisfies with probability 1 — §

MSE(@A) < (212)k¢72 |0gn(2d/5)

||é‘21 _ 9*”2 < (213) kgz |Og(2d/5)
2= n
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Compressed sensing

The signal to be recovered is §* € R¥x which is unknown and assumed to be sparse, that
is [|0%|lo = k < d. X € Ryxq is a sensing matrix which will result in the following
measurements:

X0* =y (3.10)

How many measurements are required so that 8" can be infered accurately only from the
knowledge of y and X?
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Exact recovery using ¢y minimization

We introduce the estimator

6 € min 1lollo st X6 =y. (3.11)

under mild assumption on the sensing matrix X, this estimator deterministically recovers
the unknown signal 0*.

Proposition (3.6.1)

Given k € N, k < d/2, assume that ||0”||o < k, and assume that for any S, |S| < 2k,
that Xs has full column rank. Then, the solution of (3.11) is unique and is equal to 6*.

16/18



Exact recovery from random measurements with #; minimization

We introduce an estimator.

0% € min 16]: st. XO=y. (3.12)

Corollary (3.6.1)

Given k € N, k < d, and 6 > 0, assume that X is a Rademacher matrix with

n > 2" k%log(1/8) + 23k* log(d). Assume furthermore that ||0*||o < k in (3.10). Then
with probability 1 — 6 over the random draw of X, the solution of (3.12) is unique and is
equal to 0*.
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Recap on complexity for linear regression

Least squares estimator

Mean squared error

Assumptions

{1 penalized

Unconstrained /unpenalized ind Design full column rank
{1 constrained 2 logld) 071 < 1, X2 < v/
2
lo constrained o klog(d) 10710 < k
n
o log(d)

IXjll2 < v/n

{o penalized

/n
o2[6% || log(d)

{1 penalized

n
ok log(d)
n

[[0%]lo < k, X incoherence k

General conclusion:

@ In high dimension, prior knowledge on 6* is required to obtain meaningful bounds.

@ For sparisity, o pseudo norm has more favorable statistical properties than ¢; norm.

@ Penalized estimators are adaptive to unknown properties of 8%, contrasting with

constrained estimators.
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