
Lecture notes:
Statistics, optimization and algorithms in high dimension

Edouard Pauwels

(Version of February 6, 2020)

2

Forewords:

These are lecture notes for a course on statistics and optimization in high dimensions taught at
Université Toulouse 3 Paul Sabatier in 2019. A website for the course is available at

https://www.math.univ-toulouse.fr/~epauwels/M2RI/

with supporting slides and practical sessions. The content is adapted from various sources, which
I tried to cite as precisely as possible throughout the chapters. I am aware that the text may still
contain imprecisions, typos or mistakes and welcome feedback of any kind.

3

https://www.math.univ-toulouse.fr/~epauwels/M2RI/

4

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Overview of regression and learning . 7

2 Sub Gaussian random variables 11
2.1 Introduction and characterization . 11
2.2 Maximal inequalities . 14

3 Linear regression 17
3.1 Introduction . 17
3.2 Least squares and constrained least squares with fixed design 18
3.3 Finite sample bounds for least squares . 18
3.4 Penalized estimators . 23
3.5 Incoherence and fast rates for Lasso . 26
3.6 Compressed sensing . 28

4 Computation, Complexity, Conic Programming 33
4.1 Introduction . 33
4.2 Computation over Q. 33
4.3 Karp reduction and NP completeness . 35
4.4 Computation over the reals . 37
4.5 Recap on convexity . 38
4.6 Conic programming . 42

5 First order methods 49
5.1 Gradient descent . 49
5.2 Recap on nonsmooth analysis . 52
5.3 Subgradient descent . 56
5.4 Composite optimization . 57
5.5 Acceleration . 59
5.6 Non convex problems . 63

6 Stochastic approximation 65
6.1 Motivation, large n . 65
6.2 Prototype stochastic approximation algorithm . 66
6.3 The ODE approach . 67
6.4 Rates for convex optimization . 67
6.5 Minimizing the population risk . 70

5

6 CONTENTS

7 Block coordinate methods 73
7.1 Motivation, large d . 73
7.2 Description of the algorithm . 73
7.3 Convergence rate analysis using random blocks . 74
7.4 Convergence rates using deterministic blocks . 77
7.5 Comments on complexity for quadratic problems 78

8 Further reading 79

Chapter 1

Introduction

1.1 Motivation

The motivation for this course is to illustrate the theoretical and practical implications of high
dimensionality when working with data. In this context, high dimensionality means a large number
of observations or a large number of descriptor variables, or both. The actual meaning of large is
vague and could be taken as “too big to be ignored”, meaning that usual methods may not work
directly and necessitate special developments. Two concrete examples

• In a statistical context, the number of observations is not sufficient to propose a conclusive
quantitative analysis.

• From a computational perspective, the execution time is bottleneck resource.

These constraints motivated theoretical and practical developments at the interplay between
statistical analysis and optimization. These two disciplines meet naturally in high dimensional
regimes and the first goal of this course is to provide an illustration of the different issues at stake.

The purpose is not to be exhaustive, we will stick to one of the most simple and well known
example in this field, the sparse least squares problem, which will be a running example to illus-
trate:

• Statistical efficiency issues in high dimension and their resolution

• Computational complexity barriers in high dimensional estimation.

• All purpose solvers for conic programming

• First order methods and composite optimization

• Randomized methods to treat high dimensionality issues from a computational view point.

1.2 Overview of regression and learning

The content of this section is adapted from Philippe Rigollet lectures notes [51].

1.2.1 General setting:

We call a topological space X a feature space and Y ⊂ R an output space and let (X,Y) be a
random variable on X ×Y such that Y has finite variance. Our goal will be to predit Y given X.
This question has a simple probabilistic solution. We consider a decision theoretic framework which
adds a notion of risk on top of probability theory. Let P denote the joint probability distribution

7

8 CHAPTER 1. INTRODUCTION

on X ×Y for the random variable (X,Y) and consider the following, for any measureable function
f : X 7→ Y, we set

R(f) = E
[
(f(X)− Y)2

]
=

∫
X×Y

(f(x)− y))2P (dx, dy). (1.1)

Risk minimization
Our goal is to find the prediction function f having the lowest risk, that is minf R(f) where the
minimum is taken over all measurable functions. The solution to the minimization of the expected
prediction error is given by the regression function

f∗ : x 7→ E [Y |X = x] . (1.2)

see [29], for a mathematical treatement of conditional expectation. Indeed, for any measurable
function g : X 7→ R, one has

E
[
(Y − g(X))2

]
= E

[
(Y − f∗(X))2

]
+ E

[
(f∗(X)− g(X))2

]
+ 2E [(Y − f∗(X))(f∗(X)− g(X))] ,

and one sees that

E [(Y − f∗(X))(f∗(X)− g(X))] = E [E [(Y − f∗(X))(f∗(X)− g(X))|X]]

= E [(f∗(X)− g(X))E [(Y − f∗(X))|X]] = 0.

From a probabilistic point of view, the problem is solved. The minimal value of the expected
prediction error is called Bayes risk and is a lower bound on what could potentially be achieved.
However, as a statistician, one does not have access to this conditional expectation and it needs
to be estimated from a finite sample.

Estimation:
We are given a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} which consists of independant copies of
(X,Y). The goal of regression is to construct an estimator f̂n : X 7→ Y which has a small L2 risk
R(f̂n). If we denote by PX the marginal distribution of X, for any h : X 7→ R, we define

‖h‖22 := ‖h‖2L2(dPX) =

∫
X
h2dPX = E

[
h2(X)

]
(1.3)

then one has

R(f̂n) = R(f∗) + ‖f̂n − f∗‖22.

In other words, it is equivalent to study R(f̂n) and ‖f̂n − f∗‖22, we will focus on the second term.
Note that both are random quantities since our sample Dn is random and we need deterministic
estimates to quantify convergence speed. We shall use bounds in expectation:

E
[
‖f̂n − f∗‖22

]
≤ φ(n), ∀n ∈ N

or bounds with high probability

P
[
‖f̂n − f∗‖22 > ψ(n, δ)

]
≤ δ, ∀n ∈ N, δ ∈ (0, 1)

where in both cases, the randomness is over the random draw of Dn. Note that this ensures for
any δ > 0, with probability at least 1 − δ, ‖f̂n − f∗‖22 ≤ ψ(n, δ). Often bounds in probability
are deduced from bounds in expectation by concentration of measure. We will mostly focus on
sub-gaussian concentration, but the topic is much more vast [18].

1.2. OVERVIEW OF REGRESSION AND LEARNING 9

Empirical risk minimization:
How is f̂n constructed? The majority of methods rely on Empirical Risk Minimization (ERM).
The law of large numbers entails that for a given g : X 7→ Y and for sufficiently large n ∈ N, the
expectation E [g(X)] may be approximated by an empirical average, 1

n

∑n
i=1 g(Xi) with indepen-

dent copies of X. We denote by Rn the empirical risk, obtained by replacing the expectation in
R by such a discrete sum:

Rn(g) =
1

n

n∑
i=1

(g(Xi)− Yi)2

One could proceed by minimizing Rn(g) in place of R. Building estimators based on solutions of
optimization problems is refered as M-estimation in the statistics litterature. However, the law
of large number is not uniform and it is easy to see that there exists functions g (for example
polynomials) which satisfy Rn(g) = 0 while the Bayes risk remains positive. This phenomenon is
called overfitting and is a curse which has to be avoided. Common approaches include fixing a
function class G which will restrict the search space for candidate prediction functions, or imposing
a penalty Ω on the prediction function in order to favor “simple” objects. This second approach is
refered to penalized or regularized empirical risk or inductive bias, we construct decision functions
by solving the following problem

min
g∈G

1

n

n∑
i=1

(g(Xi)− Yi)2 + Ω(g)

This notions of course generalizes to other notions of risk than the square loss. This formulation
of the problem of estimating a prediction function underlines the core importance of optimization
to compute those estimates.

Linear regression:
In the statistical linear regression setting, a generating process on (X,Y) is assumed such that
f∗ : x 7→ E [Y |X = x] has the form x 7→ θTx for some θ ∈ Rp. This hypothesis is very strong
and can be seen as invalid or impossible to verify in most pracitcal situations. However, one may
view this as a simplified toy model which allow to get hands on high dimensional phenomena in
statistics. In learning theory, it is custom not to assume much on the generative process and in
this case one can decompose the L2 error as follows

‖f̂n − f∗‖22 = ‖f̂n − f̄‖22 + ‖f̄ − f∗‖22

where f̄ is the projection of f∗ on the subspace of L2
dPX

consisting of linear functions. The second
term is deterministic so that it is sufficient to consider ‖f̂n − f̄‖22 and obtain bounds of the form

E
[
‖f̂n − f∗‖22

]
≤ ‖f̄ − f∗‖22 + φ(n), ∀n ∈ N.

Such bounds are called oracle inequalities because they refer to the unknown oracle f̄ which is the
best one can hope when considering only linear models.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Sub Gaussian random variables

This chapter is mostly based on [51, Chapter 1] and the expository note in [52]. See the tutorial
course [33] for a broader view on the topic of concentration of measure.

2.1 Introduction and characterization

2.1.1 Gaussian concentration
The centered Gaussian random variable X on R with variance σ2 > 0 has density given by

p(x) =
1√

2πσ2
exp

(
−x2

2σ2

)
.

It plays a central role in statistics due to the central limit theorem. It also has a central position
in statistical and signal processing estimation problems. Important properties of this distribution
is closure under addition of iid replicates and concentration (Mill’s inequality), if X is N

(
0, σ2

)
,

we have, for any t > 0, P (|X| ≥ t) ≤ σ
√
2

t
√
π

exp
(
−t2
2σ2

)
.

Proof.

P (|X| ≥ t) ≤ 2P (X ≥ t) (symmetry and union bound)

=

√
2√
πσ2

∫ +∞

t

exp

(
−x2

2σ2

)
dx

≤ σ2
√

2√
πσ2

∫ +∞

t

x

σ2t
exp

(
−x2

2σ2

)
dx

=
σ
√

2

t
√
π

∫ +∞

t

− ∂

∂x
exp

(
−x2

2σ2

)
dx

=
σ
√

2

t
√
π

exp

(
−t2

2σ2

)
.

Sub Gaussian random variables are constrained to concentrate in a similar way which is suffi-
cient for many purposes.

2.1.2 Equivalent definitions
The following provides qualitatively equivalent definitions for sub Gaussianity with variance proxy
σ2 > 0 (up to multiplicative constants).

11

12 CHAPTER 2. SUB GAUSSIAN RANDOM VARIABLES

Theorem 2.1.1. Let X be a centered random variable on R, each statement bellow implies the
next (we take σ2 > 0 in the first definition as a variance proxy). The first one can be taken as the
definition of sub gaussian random variable.

• Laplace transform: for any s ∈ R, E [exp(sX)] ≤ exp
(
σ2s2

2

)
.

• Concentration: for any t > 0, max{P (X ≥ t) , P (X ≤ −t)} ≤ exp
(
−t2
2σ2

)
.

• Moment condition: for any q ∈ N∗, E
[
X2q

]
≤ q!(4σ2)q.

• Orlicz condition: E
[
exp

(
X2

8σ2

)]
≤ 2.

• Laplace transform: for any t ∈ R, E [exp(tX)] ≤ exp
(

24σ2t2

2

)
.

Proof. The first implication is through Chernov’s bound which is a consequence of Markov’s
inequality, for any s > 0, t > 0:

P(X > t) = P (exp (sX) > exp (st))

≤ E [exp (sX)]

exp (st)

≤ exp

(
σ2s2

2
− st

)
,

where the last inequalitie uses the Laplace transform condition. The result follows from the fact
that mins>0

σ2s2

2 − st = −t2
2σ2 attained for s = t/σ2. For the second implication, we have, for any

q ∈ N,

E
[
X2q

]
=

∫ +∞

0

P
(
Z2q > u

)
du

=

∫ +∞

0

P
(
|Z| > u1/2q

)
du

≤ 2

∫ +∞

0

exp

(
−u1/q

2σ2

)
du

=
(
2σ2
)q

2q

∫ +∞

0

exp (−v) vq−1dv v =
u1/q

2σ2

=
(
2σ2
)q

2qq!

≤
(
4σ2
)q
q! 2q ≤ 2q

The next implication follows from the monotone convergence theorem. We obtain

E
[
exp

(
X2

8σ2

)]
= E

[∞∑
k=0

X2k

(4σ2)
k
k!

1

2k

]
≤
∞∑
k=0

1

2k
= 2

Getting back to the first item is done as follows, for any s ∈ R, using the fact that X is centered,

2.1. INTRODUCTION AND CHARACTERIZATION 13

for any t ∈ R,

E [exp (tX)] = E

[
+∞∑
k=0

(tX)k

k!

]

= 1 + E

[
+∞∑
k=2

(tX)k

k!

]
E[X] = 0

≤ 1 +
t2

2
E
[
X2 exp (|tX|)

] (tX)k

k!
≤ t2X2

2

|tX|k−2

(k − 2)!
, k ≥ 2

≤ 1 +
t2

2
exp

(
4σ2t2

)
E
[
X2 exp

(
X2

16σ2

)]
inf
a

{
t2

2a
+
aX2

2

}
= t|X|, a =

1

8σ2

≤ 1 + 4σ2t2 exp
(
4σ2t2

)
E
[
exp

(
X2

8σ2

)]
z ≤ exp

(z
2

)
≤
(
1 + 8σ2t2

)
exp

(
4σ2t2

)
≤ exp

(
24σ2t2

2

)
(1 + 2z) ≤ e2z

A first exercise is to show that if X is sub gaussian with variance proxy σ2, then aX is sub
gaussian with variance proxy a2σ2.

2.1.3 Examples

Sub Gaussian random variables exist, for example the Gaussian random variable is subgaussian.
Hoeffding’s Lemma (1963) asserts that bounded random variables are also sub Gaussian.

Lemma 2.1.1. Let X be a real centered random variable such that X ∈ [a, b] almost surely. Then
E[exp (sX)] ≤ exp

(
s2 (b−a)2

8

)
for any s ∈ R, or X is sub Gaussian with variance proxy (b−a)2

4 .

Proof. Consider the cumulent generating function ψ : s 7→ log (E [exp (sX)]), we have

ψ′(s) =
E [X exp (sX)]

E[exp (sX)]
ψ′′(s) =

E
[
X2 exp (sX)

]
E[exp (sX)]

−
(
E [X exp (sX)]

E[exp (sX)]

)2

and ψ′′ is the variance under the law of X reweighted by exp(sX)
E[exp(sX)] . For any random variable

Z in [a, b], we have var [Z] = var
[
Z − a+b

2

]
≤ (b−a)2

4 . We can integrate two times using ψ(0) =
log(1) = 0 and ψ′(0) = E [X] = 0.

2.1.4 Sub Gaussian vectors

The definition extends similarly as for the Gaussian case.

Definition 2.1.1. A random vector X ∈ Rd is said to be sub Gaussian with variance proxy σ2 if
it is centered and for any u ∈ Rd such that ‖u‖ = 1, the real random variable uTX is subgaussian
with variance proxy σ2. We write X ∼ subG(σ2).

There exists such random vectors, for example

Theorem 2.1.2. Let X1, . . . , Xp be independant subG(σ2) real random variables then the random
vector X ∈ Rp which i-th coordinates is Xi, is subG(σ2).

14 CHAPTER 2. SUB GAUSSIAN RANDOM VARIABLES

Proof. For any u ∈ Rp such that ‖u‖ = 1, we have for any s ∈ R,

E
[
exp

(
suTX

)]
=

p∏
i=1

E [exp (suiXi)] ≤
p∏
i=1

exp

(
σ2s2u2i

2

)
= exp

(
σ2s2‖u‖2

2

)
= exp

(
σ2s2

2

)

This allows to obtain various concentration results for sub Gaussian random variables.

2.2 Maximal inequalities
We first provide tail bounds for maximum of a finite number of subgaussian random variables and
then over polytopes and Euclidean ball.

Theorem 2.2.1. Let X1, . . . , XN be N real random variables with Xi ∼ subG(σ2), i = 1, . . . , N ,
not necessarily independant. Then

E
[

max
i=1,...,N

Xi

]
≤ σ

√
2 log(N) and E

[
max

i=1,...,N
|Xi|

]
≤ σ

√
2 log(2N)

and for any t > 0

P
[

max
i=1,...,N

Xi > t

]
≤ N exp

(
−t2

2σ2

)
and P

[
max

i=1,...,N
|Xi| > t

]
≤ 2N exp

(
−t2

2σ2

)

Proof. For any s > 0

E
[

max
i=1,...,N

Xi

]
=

1

s
E
[
log

(
exp

(
s max
i=1,...,N

Xi

))]
≤ 1

s
log

(
E
[
exp

(
s max
i=1,...,N

Xi

)])
(Jensen)

=
1

s
log

(
E
[

max
i=1,...,N

exp (sXi)

])
≤ 1

s
log

(
E

[
N∑
i=1

exp (sXi)

])

≤ 1

s
log

(
N∑
i=1

exp

(
s2σ2

2

))

=
log(N)

s
+
sσ2

2
.

The result follows by taking s =
√

2 log(N)/σ2. The result on the deviation probability is a simple
union bound and the results on the absolute value follows by applying the two previous results to
the 2N random variables X1, . . . , XN ,−X1, . . . ,−XN .

Remark 2.2.1. For any δ > 0, by taking t = σ
√

2 log(2N/δ), it holds with probability at least
1− δ,

max
i=1...N

|Xi| ≤ σ
√

2 log(2N/δ).

We will conclude this chapter by providing a bound for the maximum over an L2 ball: if
X ∈ Rp is subG(σ2), can we control max‖c‖≤1 c

TX? We begin with a Lemma.

2.2. MAXIMAL INEQUALITIES 15

Lemma 2.2.1. For any ε ∈ (0, 1), it is possible to cover the Euclidean unit ball in Rp by at most
(3/ε)p Euclidean balls of radius ε.

Proof. Build a covering iteratively, start with the unit ball of radius ε centered at 0, S = {0} and
while there exists x, ‖x‖ ≤ 1 and dist(x,S) > ε, add such an x to S. After N iterations, call
x1, . . . , xN the elements of S.

We clearly have that the balls of radius ε/2 centered at the points in S are disjoint and contained
in the euclidean ball of radius 1 + ε/2. Computing volumes, we obtain

N
(ε

2

)p
≤
(

1 +
ε

2

)p
.

Hence the process must stop after at most
(
2
ε + 1

)p ≤ (3ε)p iterations at which point we obtain a
cover.

This allows to prove the following result

Theorem 2.2.2. Let X ∼ subG(σ2) be a d dimensional random vector. Then

E
[

max
‖c‖≤1

cTX

]
= E

[
max
‖c‖≤1

|cTX|
]
≤ 4σ

√
d

and for any t > 0

P
[

max
‖c‖≤1

|cTX| > t

]
= P

[
max
‖c‖≤1

cTX > t

]
≤ 6d exp

(
−t2

8σ2

)
.

Proof. Consider a covering of the unit Euclidean ball with at most 6d balls of radius 1/2, denote
by x1, . . . , x6d the centers of these balls. For any c such that ‖c‖ ≤ 1, there exists i such that
‖c− xi‖ ≤ 1

2 . Hence we have

max
‖c‖≤1

cTX ≤ max
i=1,...,6d

xTi X + max
‖c‖≤1/2

cTX = max
i=1,...,6d

xTi X +
1

2
max
‖c‖≤1

cTX

and hence max‖c‖≤1 c
TX ≤ maxi=1,...,6d 2xTi X and the result follows from Theorem 2.2.1 because

2xTi X ∼ subG(4σ2) and log(6) ≤ 2.

Remark 2.2.2. For any δ > 0, taking t =
√

8 log(6)σ
√
p + 2σ

√
2 log(1/δ), we obtain that with

probability 1− δ, it holds that

max
‖c‖≤1

cTX = max
‖c‖≤1

|cTX| ≤ 4σ
√
p+ 2σ

√
2 log(1/δ) = 4σ

√
p

(
1 +

√
log(1/δ)

2p

)
.

Theorem 2.2.3. Let P be a polytope, the convex hull of N points, v(1), . . . , v(N) in Rd. Let
X ∈ Rd be a random variable such that for all i = 1, . . . , n, [v(i)]TX ∼ subG(σ2), then the
conclusion of Theorem 2.2.1 holds

E
[
max
θ∈P

θTX

]
≤ σ

√
2 log(N) and E

[
max
θ∈P
|θTX|

]
≤ σ

√
2 log(2N)

and for any t > 0

P
[
max
θ∈P

θTX > t

]
≤ N exp

(
−t2

2σ2

)
and P

[
max
θ∈P
|θTX| > t

]
≤ 2N exp

(
−t2

2σ2

)

16 CHAPTER 2. SUB GAUSSIAN RANDOM VARIABLES

Exercises
Exercise 2.2.1. Under the setting of Theorem 2.1.2, show that for any t > 0, we have

P

[
1

p

p∑
i=1

Xi ≥ t

]
≤ exp

(
−t2p
2σ2

)
.

Exercise 2.2.2. Let Z be a real random variable with probability measure Pz on R such that Z ≥ 0
almost surely. Show that

E [Z] =

∫ +∞

0

P(Z > u)du.

(Hint: use Funini’s theorem. Beware: we did not assume that E[Z] is finite).

Exercise 2.2.3. For X ∈ Rn×d and Y ∈ Rn, the least squares estimator is written as

θ̂LS ∈ arg min
θ∈Rd

‖Xθ − Y ‖22. (2.1)

We have XTXθ̂LS = XTY and one solution is given by θ̂LS = (XTX)†XTY , where † denotes the
Moore-Penrose pseusdo inverse. (Hint: First assume that XTX is invertible, the pseudo inverse is
then the usual matrix inverse. If you are familiar with convex analysis, the result can be deduced
from convexity of the ojective, solving the first order conditions)

Recall that if D is diagonal, then its pseudo inverse is obtained by inverting the non zero
diagonal elements (leaving the others unchainged). Pseudo inverse of real symmetric matrices are
defined in the same way after diagonalization.

Exercise 2.2.4. Let X be N
(
0, σ2

)
, prove that for any t > 0, P (|X| ≥ t) ≤ σ

√
2

t
√
π

exp
(
−t2
2σ2

)
. This

is called Mill’s inequality.

Exercise 2.2.5. Let v(1), . . . , v(N) ∈ Rd and set

P = conv(v(1), . . . , v(N)) =

{
N∑
i=1

λiv
(i), λi ≥ 0, i = 1, . . . , N,

N∑
i=1

λi = 1

}

Show that for any c ∈ Rd, the problem supθ∈P c
T θ is attained at v(i) for some i ∈ {1, . . . , N}.

Prove Theorem 2.2.3.

Exercise 2.2.6. Let X ∼ subG(σ2) be a d-dimensional random vector, show that, for any δ > 0,
with probability 1− δ,

sup
‖θ‖1≤1

|θTX| ≤ σ
√

2 log(2d/δ).

Exercise 2.2.7. Let A ∈ Rn×m be a random matrix which entries are iid subgaussian with vari-
ance proxy σ2. The operator norm of A is given by ‖A‖op = supx∈Rm ‖Ax‖2/‖x‖2. Show that
E [‖A‖op] ≤ cσ

√
m+ n for a constant c to be determined.

Exercise 2.2.8. Prove Jensen’s inequality, if D ⊂ R is an interval and φ : D 7→ R is concave
continuous, if X is a real random variable such that X ∈ D with probability 1, then E [φ(X)] ≤
φ (E [X]).

Chapter 3

Linear regression

This chapter is mostly based on [51, Chapter 2]. Further reading include [51, Chapter 3,4],

3.1 Introduction

We consider a generative model of the following form Yi = f∗(Xi) + εi, i = 1 . . . , n, where
ε = (ε1, . . . , εn)T ∼ subG(σ2) and E [ε] = 0. The regression function f∗ : x 7→ E [Y |X = x] is
assumed to be of the form f∗ : x 7→ xT θ∗ for an unknown θ∗ ∈ Rd. This generative model is
assumed to hold true throughout the chapter.

Design points:

The sample points X1, . . . , Xn are called design points. Depending on the nature of these points
one may consider different ways to measure the quality of an estimate.

Random design: The design points are random, given Dn and a new observation Xn+1, one
would like to build a predictor f̂n for Yn+1. In this case R(f̂n) is a relevant measure.

Fixed design: If the design points are not random, one talks about fixed design and we denote
the design points by x1, . . . , xn. In this situation, there is not much interest in talking about risk
or expected prediction errror, since there is no expectation to consider. In this situation, we will
consider for any g the mean squared error:

MSE(g) =
1

n

n∑
i=1

(g(xi)− f∗(xi))2

We denote by X ∈ Rn×d the design matrix for which each row is one of the design points. Our
model can then be expressed as follows:

Y = Xθ∗ + ε (LM)

where Y = (Y1, . . . , Yn)T and ε = (ε1, . . . , εn)T . In the sequel, we will focus on fixed designs. In
this case, the mean squared error is given for any θ ∈ Rd, by

MSE(θ) =
1

n
‖X (θ − θ∗) ‖22.

17

18 CHAPTER 3. LINEAR REGRESSION

3.2 Least squares and constrained least squares with fixed
design

Least squares estimator
The least squares estimator is given by

θ̂LS ∈ arg min
θ∈Rd

‖Xθ − Y ‖22 (3.1)

where we use the Euclidean norm. We start with an algebraic expression for θ̂LS .

Lemma 3.2.1. We have

XTXθ̂LS = XTY

and one solution is given by θ̂LS = (XTX)†XTY , where † denotes the Moore-Menrose pseusdo
inverse.

Proof. The matrix XTX is positive semidefinite so that the objective in (3.1) is a convex quadratic
function of θ. A necessary and sufficient condition for global optimality is that the gradient
vanishes. This is the first claim and the second one follows from properties of the pseudoinverse.

3.2.1 Constrained least squares estimator
Let K denote a closed subset of Rd, the K constrained least squares estimator is given by

θ̂LSK ∈ arg min
θ∈K
‖Xθ − Y ‖22 (3.2)

where we use the Euclidean norm. The following lemma will be useful to prove finite sample
bounds for θ̂LSK . The difficulty in bounding mean squared errors comes from the randomness of
θ̂LS , here we bound the MSE by a product of the noise and a quantity which can be controled
uniformly. The question of how to compute constrained least squares estimates will be the topic
of further chapters.

3.3 Finite sample bounds for least squares
We start with a general Lemma for constrained least squares estimators.

Lemma 3.3.1. Let K ⊂ Rd be closed and g : Rd 7→ R denote any function. Assume that model
(LM) holds and that θ∗ ∈ K, and set, assuming that the infimum is attained

θ̂LSKg ∈ arg min
θ∈K
‖Xθ − Y ‖22 + g(θ).

Then, almost surely

‖X(θ̂LSKg − θ∗)‖22 ≤ 2εTX(θ̂LSK − θ∗) + g(θ∗)− g(θ̂LSKg).

Proof. Since θ∗ ∈ K and we have by definition of θ̂LSKg,

‖Xθ̂LSKg − Y ‖22 + g(θ̂LSKg) ≤ ‖Xθ∗ − Y ‖22 + g(θ∗) = ‖ε‖22 + g(θ∗).

Furthermore, it holds that

‖Xθ̂LSKg − Y ‖22 = ‖Xθ̂LSKg − Xθ∗ − ε‖22
= ‖Xθ̂LSKg − Xθ∗‖22 − 2εTX(θ̂LSKg − θ∗) + ‖ε‖22

3.3. FINITE SAMPLE BOUNDS FOR LEAST SQUARES 19

So that

‖X(θ̂LSKg − θ∗)‖22 = ‖Xθ̂LSKg − Y ‖22 − ‖ε‖22 + 2εTX(θ̂LSKg − θ∗)

≤ 2εTX(θ̂LSKg − θ∗) + g(θ∗)− g(θ̂LSKg).

Unconstrained least squares
The following result provides mean squared error estimates for the least squares estimator.

Theorem 3.3.1. Assume that (LM) holds with ε ∼ subG(σ2), then

E
[
MSE(θ̂LS)

]
≤ 16σ2 r

n

where r = rank(XTX), furthermore, for any δ > 0, with probability at least 1− δ,

MSE(θ̂LS) ≤ 64σ2 (2r + log(1/δ))

n

Proof. Denote by Φ ∈ Rn×r a matrix which column constitute an orthonormal basis of the column
span of X. One may write X

(
θ̂LS − θ∗

)
= Φν where ν ∈ Rr. We have

εTX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖2

=
εTΦν

Φν
=
(
εTΦ

) ν

‖ν‖2
≤ ‖ΦT ε‖2.

Applying Lemma 3.3.1, with K = Rd, we have

‖X(θ̂LS − θ∗)‖22 ≤ 4

(
εTX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖2

)2

≤ 4‖ΦT ε‖22 = 4

r∑
i=1

(ΦTi ε)
2,

where Φi denotes the i-th column of Φ, i = 1, . . . , n. Note that ΦTi ε ∼ subG(σ2) by orthonormality
of the Columns of Φ and Theorem 2.1.2 for i = 1 . . . , r and hence using Theorem 2.1.1, we have

E
[
MSE(θ̂LS)

]
≤ 4

n

r∑
i=1

(ΦTi ε)
2 ≤ 16rσ2

n
.

This concludes the bound in expectation. For the bound in probability, we remakr that ‖ΦT ε‖2 =
max‖u‖≤1 u

TΦT ε where ΦT ε ∼ subG(σ2). Theorem 2.2.2 and Remark 2.2.2 entails for any δ > 0,
with probability at least 1− δ,

MSE(θ̂LS) ≤ 4

n

(
4σ
√
r + 2σ

√
2 log(1/δ)

)2
≤ 64σ2 (2r + log(1/δ))

n

Optimality and high dimensional setting
A natural question arising about Theorem 3.3.1 is “could we do better?”. If d is the number of
variables an X has full possible rank, then r = min(n, d) = d assuming n ≥ d. We obtain a rate of
the order of σ2d/n. In this case, we have

MSE(θ̂LS) = (θ̂LS − θ∗)T X
TX
n

(θ̂LS − θ∗) ≥ λmin

(
XTX
n

)
‖θ̂LS − θ∗‖22.

It turns out that this rate is optimal in a precise minimax sense.

20 CHAPTER 3. LINEAR REGRESSION

Theorem 3.3.2. Suppose that Y = ξ + θ where θ ∈ Rd and ξi ∼ N (0, σ2/n), i = 1, . . . , d. Then,
for any α ∈ (0, 1/4):

inf
θ̂

sup
θ∈Rd

Pθ
(
‖θ̂ − θ‖22 ≥

α

256

σ2d

n

)
≥ 1

2
− 2α

where the infimum is taken over all measurable functions of Y .

The proof of this statement, can be done by reduction to statistical hypothesis testing and use
known impossibility results to discriminate between two close hyptheses (See Chapter 4 of Philippe
Rigollet’s notes). Note that in the specific Gaussian sequence model proposed in the Theorem,
the order of decay predicted by Theorem 3.3.1 is precisely σ2d/n. The theorem essentially says
that for any estimator, there is a statistical setting for which this rate is attained. This type of
result is called minimax. The conclusion is that the least squares estimator is optimal among all
estimators without any prior knowledge.

In the high dimensional setting, we have d ≥ n and in this case, the bound of Theorem 3.3.1
remains bounded away from zero. Since this bound is optimal, it seems that there is no hope to
solve high dimensional statistical problems. This is in fact not true, if one has for example prior
knowledge that θ∗ is in a certain ball of radius δ, then imposing that our estimaor θ̂ is in the
same ball allows to estimate θ∗ such that ‖θ̂− θ∗‖2 ≤ δ2. If δ is small, this may improve over the
estimate of Theorem 3.3.1.

How is this compatible with Theorem 3.3.2? In the inf sup expression, the sup is taken over
Rd and considering smaller subsets of Rd would reduce the right hand side.

`1 constrained least squares

We let B1 denote the unit ball of the `1 norm in Rd,

B1 =

{
x ∈ Rd,

d∑
i=1

|xi| ≤ 1

}
.

This is a polytope with 2d vertices given by the elements of the canonical basis and their oposite.
The following result shows that under prior knowledge on θ∗, one can hope for better rates.

Theorem 3.3.3. Let K = B1 and d ≥ 2. Assume that model (LM) holds with ε ∼ subG(σ2) and
θ∗ ∈ K. Assume also that the columns of X are normalized such that ‖Xj‖ ≤

√
n, j =, 1 . . . , d.

Then, it holds that

E
[
MSE(θ̂LSK)

]
≤ 4σ√

n

√
2 log(2d)

and for any δ > 0, with probability at least 1− δ, it holds that

MSE(θ̂LSK) ≤ σ
√

32 log (2d/δ)

n
.

Proof. Invoking Lemma 3.3.1, we have

‖X(θ̂LSK − θ∗)‖22 ≤ 2εTX(θ̂LSK − θ∗).

Note that since ‖θ̂LSK ‖1 ≤ 1 and ‖θ∗‖1 ≤ 1, we have ‖θ̂LSK − θ∗‖1 ≤ 2 so that

‖X(θ̂LSK − θ∗)‖22 ≤ 2 sup
‖v‖1≤2

εTXv = 4 sup
‖v‖1≤1

εTXv = 4 sup
u∈XK

εTu.

3.3. FINITE SAMPLE BOUNDS FOR LEAST SQUARES 21

Now XK by linearity if v is not an extreme point of K then Xv is not an extreme point of XK.
Hence XK is a polytope with at most 2d vertices which are taken among the columns of X. The
normalization of the columns of X ensures that on each of these vertices, XTj ε ∼ subG(σ2n).
Applying Theorem 2.2.3, we have

E
[
MSE(θ̂LSK)

]
≤ 4

n

√
nσ
√

2 log(2d) =
4σ√
n

√
2 log(2d).

Furthermore, for any t > 0, we have

P
[
MSE(θ̂LSK) ≥ t

]
≤ P

[
sup
u∈XK

εTu ≥ nt

4

]
≤ 2de−

nt2

32σ2 .

Given any δ ≥ 0, one has

2de−
nt2

32σ2 ≤ δ ⇔ t2 ≥ 32σ2

n
log

(
2d

δ

)
,

and the conclusion follows.

`0 constrained least squares
We refer to the `0 norm as the cardinality of the set of non zero coordinates of a vector θ ∈ Rd.
Note that this is an abuse of notations since this is not a norm. For any θ ∈ Rd,

‖θ‖0 =

d∑
i=1

I(θj 6= 0).

A vector with small `0 norm is called sparse. The support of a vector is the set of indices of its
nonzero coordinates:

supp(θ) = {j ∈ {1, . . . , d} , θj 6= 0} ,

so that ‖θ‖0 = card(supp(θ)). By extension, for any k = 1, . . . , d, we denote by B0(k) the set of
k-sparse vectors.

Theorem 3.3.4. For any k ∈ N∗, k ≤ d/2, let K = B0(k) and assume that model (LM) holds
with ε ∼ subG(σ2) and θ∗ ∈ K. Then, for any δ > 0, with probability 1− δ, it holds

MSE(θ̂LSK) ≤ 32σ2

n

(
log

((
d

2k

))
+ 2k log(6) + log(1/δ)

)
.

Furthermore, we have

E
[
MSE(θ̂LSK)

]
≤ 32σ2

n

(
1 + log

((
d

2k

))
+ 2k log(6)

)

Proof. Using Lemma 3.3.1, we have

‖X(θ̂LSK − θ∗)‖22 ≤ 4

(
εTX(θ̂LSK − θ∗)

)2
‖X(θ̂LSK − θ∗)‖22

.

We have ‖θ̂LSK − θ∗‖0 ≤ 2k and we set Ŝ = supp
(
θ̂LSK − θ∗

)
, we have |Ŝ| ≤ 2k. We repeat similar

steps as for the unconstrained least squares. For any S ⊂ {1, . . . , d}, denote by XS ∈ Rn×|S|

22 CHAPTER 3. LINEAR REGRESSION

the matrix composed of the columns of X indexed by S, by rS the rank of XS and by ΦS an
orthonormal basis of the span of the collumns of X. There exists ν ∈ RrŜ , such that

εTX(θ̂LSK − θ∗)
‖X(θ̂LSK − θ∗)‖2

=
εΦŜν

‖ν‖
≤ max
|S|=2k

max
u∈RrS ,‖u‖2≤1

uTΦTS ε.

Using Theorem 2.1.2, for any S, ΦTS ε ∼ subG(σ2). Using a union bound, and Theorem 2.2.2, for
any t > 0, we have

P
[
‖X(θ̂LSK − θ∗)‖22 ≥ 4t

]
≤ P

[
max
|S|=2k

max
u∈RrS ,‖u‖2≤1

(
uTΦTS ε

)2
> t

]
≤ P

[
max
|S|=2k

max
u∈RrS ,‖u‖2≤1

∣∣uTΦTS ε
∣∣ > √t]

≤
∑
|S|=2k

P
[

max
u∈RrS ,‖u‖2≤1

|uTΦTS ε| >
√
t

]
≤
∑
|S|=2k

6|S|e
−t
8σ2

≤
(
d

2k

)
62ke

−t
8σ2 .

We deduce that

P
[
MSE(θ̂LS) ≥ 4t

n

]
≤
(
d

2k

)
62ke

−t
8σ2

and we choose t such that the right hand side is bounded by δ, that is

t ≥ 8σ2

(
log

((
d

2k

))
+ 2k log(6) + log(1/δ)

)
and the bound in probability follows. The expectation is deduced from the bound in probability.
We have, for any H ≥ 0, using

E
[
MSE(θ̂LSK)

]
=

∫ +∞

0

P
[
MSE(θ̂LSK) > u

]
du

≤ H +

∫ +∞

0

P
[
MSE(θ̂LSK) ≥ (u+H)

]
du

≤ H +

(
d

2k

)
62k
∫ +∞

0

e
−n(u+H)

32σ2 du

= H +

(
d

2k

)
62ke

−nH
32σ2

32σ2

n
.

Inverting the relation (
d

2k

)
62ke

−nH
32σ2 = 1,

we obtain

H =
32σ2

n

(
log

((
d

2k

))
+ 2k log(6)

)
and the result follows.

3.4. PENALIZED ESTIMATORS 23

Lemma 3.3.2. For any 1 ≤ k ≤ n, it holds(
n

k

)
≤
(en
k

)k

Proof. This is a simple recursion.

As a consequence, the order of the bounds which we obtain is σ2k
n log

(
ed
2k

)
. This also turns out

to be minimax optimal for sparse estimation.

3.4 Penalized estimators

Adaptivity
Theorem 3.3.3 and 3.3.4 are very attractive since they provide fast decrease of the mean squared
error in high dimensional settings. However, they require the knowledge of properties of the
unknown θ∗. It is possible to produce adaptive estimators which do not require such knowledge.

Consider the sub-gaussian sequence model: y = θ∗ + ξ ∈ Rd, where ξ ∼ subG(σ2/n). This
allows to capture the intuition about penalization. Using Theorem 2.2.1 and Remark 2.2.1, we
have for any δ > 0, with probability at least 1− δ

max
1≤i≤d

|ξi| ≤ σ
√

2 log(2d/δ)

n
= τ.

If |yj | � τ for some j, then it must correspond to θ∗j 6= 0. On the other hand, if |yj | ≤ τ , then
|θ∗j | ≤ |yj | + |ξj | ≤ 2τ with high probability. This motivates the use of the following estimator,
called the hard-thresholding estimator:

θ̂HTj = yjI(|yj | ≥ 2τ), j = 1, . . . , d.

Indeed, conditioning on the event:

A =
{

max
i
|ξi| ≤ τ

}
,

we have for all j, |yj | ≥ 2τ ⇒ |θ∗j | ≥ τ and |yj | ≤ 2τ ⇒ |θ∗j | ≤ 3τ and

‖θ̂RT − θ∗‖2 =

d∑
i=1

(|yi − θ∗i |I(|yi| ≥ 2τ) + |θ∗i |I(|yi| < 2τ))
2

≤
d∑
i=1

(τI(|θ∗i | ≥ τ) + (θ∗i)I(|θ∗i | < 3τ))
2

≤
d∑
i=1

(
4 min

{
|θ∗j |2, τ

})2 ≤ 16‖θ∗‖0τ2 =
32‖θ‖0σ2 log(2d/δ)

n
.

Furthermore, if minj∈supp(θ∗) |θ∗j | ≥ 3τ , then supp(θ̂HT) = supp(θ∗).
It turns out that θ̂HT is obtained by penalization using `0 pseudo norm ball:

θ̂HT = arg min
θ∈Rd

‖y − θ‖2 + 4τ2‖θ‖0.

This is easily seen as if |yi| < 2τ for some j, then 4τ2I(θj 6= 0) > y2j . This motivates the use of
penalized estimators which are more adaptative to unknown properties of θ∗.

24 CHAPTER 3. LINEAR REGRESSION

Under model (LM), we set, for any λ ≥ 0,

θ̂`0 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖0

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1

The second estimator is commonly called the Lasso estimator.

`0 penalized least squares
Theorem 3.4.1. Assume that model (LM) holds with ε ∼ subG(σ2) then choosing λ = 8 log(6)σ2/n+
16σ2 log(ed)/n, we have for any δ > 0 with probability at least 1− δ,

MSE(θ̂`0) ≤ 32σ2 (2‖θ∗‖0 (log(6) + log(ed)) + log(1/δ) + log(2))

n

Proof. We have by definition
1

2n
‖Xθ̂`0 − Y ‖2 + λ‖θ̂`0‖0 ≤

1

2n
‖Xθ∗ − Y ‖2 + λ‖θ∗‖0.

Similarly as in Lemma 3.3.2, we have

‖Xθ̂`0 − Xθ∗‖2 ≤ 2εTX
(
θ̂`0 − θ∗

)
+ 2nλ(‖θ∗‖0 − ‖θ̂`0‖0).

For any a, b ∈ Rd, we have

2aT b = 2aT
b

‖b‖2
‖b‖2 ≤ 2

(
aT

b

‖b‖2

)2

+
1

2
‖b‖22,

and hence

‖Xθ̂`0 − Xθ∗‖2 ≤ 4

 εTX
(
θ̂`0 − θ∗

)
∥∥∥X(θ̂`0 − θ∗)∥∥∥2

2

2

+ 4nλ(‖θ∗‖0 − ‖θ̂`0‖0). (3.3)

Setting U(θ̂`0 − θ∗) = X
(
θ̂`0 − θ∗

)
/
∥∥∥X(θ̂`0 − θ∗)∥∥∥

2
, we have(

εTU(θ̂`0 − θ∗)
)2
− nλ‖θ̂`0‖0 ≤ sup

θ∈Rd

(
εTU(θ − θ∗)

)2 − nλ‖θ‖0
≤ max

0≤k≤d
max
|S|=k

sup
supp(θ)=S

(
εTU(θ − θ∗)

)2 − nλk
≤ max

0≤k≤d
max
|S|=k

sup
u∈RrS∗ ,‖u‖2≤1

(
εTΦS∗u

)2 − nλk
where ΦS∗ ∈ Rn×rS∗ denotes an orthonormal basis of the span of the columns of X indexed by
S ∪ supp(θ∗), and rS∗ ≤ |S|+ ‖θ∗‖0. For any t > 0, k and S with |S| = k, we have using Theorem
2.2.2.

P

[
4 sup
u∈RrS∗ ,‖u‖2≤1

(
εTΦS∗u

)2 − 4nλk > t

]
= P

[
sup

u∈RrS∗ ,‖u‖2≤1

∥∥εTΦS∗u
∥∥ >√ t

4
+ nλk

]

≤ 6rS∗ exp

(
−

t
4 + nλk

8σ2

)
≤ exp

(
− t

32σ2
− nλk

8σ2
+ (k + ‖θ∗‖0) log(6)

)
. (3.4)

3.4. PENALIZED ESTIMATORS 25

Using the definition of λ, we have

−nλk
8σ2

+ (k + ‖θ∗‖0) log(6) = −k log(6)− 2k log(ed) + (k + ‖θ∗‖0) log(6)

= −2k log(ed) + ‖θ∗‖0 log(6).

Using a union bound with (3.3) and (3.4), we obtain, for any t > 0,

P
[
‖Xθ̂`0 − θ∗‖22 ≥ 4nλ‖θ∗‖0 + t

]
≤

d∑
k=0

∑
|S|=k

exp

(
− t

32σ2
− 2k log(ed) + ‖θ∗‖0 log(6)

)

≤ exp

(
− t

32σ2
+ ‖θ∗‖0 log(6)

)
+

d∑
k=1

(
d

k

)
exp

(
− t

32σ2
− 2k log(ed) + ‖θ∗‖0 log(6)

)

≤ exp

(
− t

32σ2
+ ‖θ∗‖0 log(6)

)
+

d∑
k=1

exp

(
− t

32σ2
− k log(ed) + ‖θ∗‖0 log(6)

)
Lemma 3.3.2

≤ exp

(
− t

32σ2
+ ‖θ∗‖0 log(6)

)
+

d∑
k=1

(ed)−k exp

(
− t

32σ2
+ ‖θ∗‖0 log(6)

)
≤ 2 exp

(
− t

32σ2
+ ‖θ∗‖0 log(6)

)
Choosing t = 32σ2 (log(1/δ) + ‖θ∗‖0 log(6) + log(2)), the right hand side is equal to δ and we
obtain that with probability 1− δ,

‖Xθ̂`0 − Xθ∗‖22 ≤ 4nλ‖θ∗‖0 + t

= 32σ2 (‖θ∗‖0 (log(6) + 2 log(ed)) + (log(1/δ) + ‖θ∗‖0 log(6) + log(2)))

= 32σ2 (2‖θ∗‖0 (log(6) + log(ed)) + log(1/δ) + log(2))

This is a very strong result as it provides an estimator which completely adapts to unknwon
support, including its size.

`1 penalized least squares
Theorem 3.4.2. Assume that model (LM) holds with ε ∼ subG(σ2). Moreover assume that the
columns of X have norm at most

√
n. Then, for any δ > 0, choosing λ = σ/

√
n
(√

2 log(2d) +
√

2 log(1/δ)
)
,

we have for any δ > 0 with probability at least 1− δ,

MSE(θ̂`1) ≤ 4‖θ∗‖1σ√
n

(√
2 log(2d) +

√
2 log(1/δ)

)
.

Proof. We have by definition

1

2n
‖Xθ̂`1 − Y ‖2 + λ‖θ̂`1‖1 ≤

1

2n
‖Xθ∗ − Y ‖2 + λ‖θ∗‖1.

Similarly as in Lemma 3.3.2, we have

‖Xθ̂`1 − Xθ∗‖2 ≤ 2εTX
(
θ̂`1 − θ∗

)
+ 2nλ(‖θ∗‖1 − ‖θ̂`1‖1).

26 CHAPTER 3. LINEAR REGRESSION

Hölder’s inequality states that for any a, b ∈ Rd, we have aT b ≤ ‖a‖∞‖b‖1, and hence

‖Xθ̂`1 − Xθ∗‖22
2

≤ ‖εTX‖∞
(
‖θ̂`1‖1 + ‖θ∗‖1

)
+ nλ(‖θ∗‖1 − ‖θ̂`1‖1) (3.5)

= ‖θ̂`1‖1(‖εTX‖∞ − λn) + ‖θ∗‖1(‖εTX‖∞ + λn). (3.6)

Now for any t > 0, and any column Xj of X, we have that XTj ε ∼ subG(σ2n) and from Theorem
2.2.3

P
[
‖XT ε‖∞ > t

]
≤ 2de−

t2

2nσ2 .

Taking t = σ(
√

2n log(2d) +
√

2n log(1/δ)) = nλ, we have that 2de−
t2

2nσ2 ≤ δ, we obtain using
(3.6), that with probability 1− δ,

‖Xθ̂`1 − Xθ∗‖22 ≤ 4nλ‖θ∗‖1.

3.5 Incoherence and fast rates for Lasso

Incoherence, random matrices and cone condition
Definition 3.5.1. A matrix X ∈ Rn×d is said to have incoherence k ∈ N∗, if∥∥∥∥XTXn − Id

∥∥∥∥
∞
≤ 1

32k
,

where ‖ · ‖∞ denotes the largest absolute value of a matrix.

For k →∞ this entails that X is orthonormal and prevents situations where d > n. However,
finite values of k, amount to relax this constraint and allow for much larger d.

Proposition 3.5.1. Let A ∈ Rn×d be a random matrix which entries are independent Rademacher
variables (±1 with probability 1/2). Then, for any δ > 0, if n ≥ 211k2 log(1/δ)+213k2 log(d), with
probability 1− δ over the random draw of its entries, A has incoherence k.

Proof. The diagonal entries of ATA are equal to n and the off-diagonal elements are sum of
n independant Rademacher random variables. From Hoeffding’s lemma (2.1.1), Rademarcher
random variables are sub gaussian with variance proxy 1 and using Theorem 2.1.2, their sum is
subG(n). Using a union bound, we have, for any t ≥ 0, using Theorem 2.1.1 and summing over
the d2 entries of ATA,

P
[∥∥∥∥XTXn − Id

∥∥∥∥
∞
> t

]
≤ 2d2e

−nt2
2 .

Choosing t = 1/(32k), we have

P
[∥∥∥∥XTXn − Id

∥∥∥∥
∞
>

1

32k

]
≤ elog(2)+2 log(d)− n

211k2 ≤ δ,

for the choice of n which has been made.

The k2 term can actually be improved to k. For any θ ∈ Rd, S ⊂ {1, . . . , d}, we denote
by θS , the vector which support is S and which entries agree with those of θ on S. We have
‖θ‖1 = ‖θS‖1 + ‖θSc‖1.

3.5. INCOHERENCE AND FAST RATES FOR LASSO 27

Lemma 3.5.1. For any k ≤ d and X having incoherence k, any S with |S| ≤ k and any θ ∈ Rd
satisfying the cone condition:

‖θSc‖1 ≤ 3‖θS‖1,

we have ‖θ‖22 ≤ 2
‖Xθ‖22
n .

Proof. We have θ = θS + θSc , and hence

‖Xθ‖22 = ‖XθS‖22 + ‖XθSc‖22 + 2θSXTXθSc .

From the incoherence condition, we have

‖XθS‖22 = n‖θS‖22 + nθTS

(
XTX
n
− Id

)
θS ≥ n‖θS‖22 − n

‖θS‖21
32k

.

This also holds for θSc and using the cone condition, we obtain

‖XθSc‖22 ≥ n‖θSc‖22 − n
‖θSc‖21

32k
≥ n‖θSc‖22 − 9n

‖θS‖21
32k

.

Using the incoherence property again as well as Hölder’s inequality and the fact that S and Sc

are disjoint, we obtain

2
∣∣θTSXTXθSc ∣∣ ≤ 2n

32k
‖θS‖1‖θSc‖1 ≤

6n

32k
‖θS‖21.

Finnally, from Cauchy-Schwartz inequality, one has ‖θS‖21 ≤ |S|‖θS‖22 ≤ k‖θS‖22 and

‖Xθ‖22
n

≥ ‖θS‖22 + ‖θSc‖22 −
16|S|‖θS‖22

32k
≥ ‖θS‖

2
2

2
.

Fast rate for the Lasso estimator
Theorem 3.5.1. For n 6= 2, assume that model LM holds with ε ∼ subG(σ2). Assume that
‖θ0‖0 ≤ k and that X has incoherence k. Then, for any δ > 0, the Lasso estimator θ̂`1 with
λ = 8σ/n(

√
log(2d) +

√
log(1/δ)) satisfies with probability 1− δ

MSE(θ̂`1) ≤ (212)
kσ2 log(2d/δ)

n

‖θ̂`1 − θ∗‖22 ≤ (213)
kσ2 log(2d/δ)

n

Proof. We have by definition

1

2n
‖Xθ̂`1 − Y ‖2 ≤ 1

2n
‖Xθ∗ − Y ‖2 + λ(‖θ∗‖1 − ‖θ̂`1‖1).

and similarly as in Lemma 3.3.1,

‖Xθ̂`1 − Xθ∗‖2 + nλ‖θ̂`1 − θ∗‖1 ≤ 2εTX(θ̂`1 − θ∗) + nλ‖θ̂`1 − θ∗‖1 + 2nλ(‖θ∗‖1 − ‖θ̂`1‖1).

Similarly as in the proof of Theorem 3.4.2, X has columns satisfying ‖Xj‖22 ≤ n+ 1
32k ≤ 2n from

the incoherence condition. Hence, for any t > 0,

P
[
‖XT ε‖∞ > t

]
≤ 2de−

t2

4nσ2 .

28 CHAPTER 3. LINEAR REGRESSION

Taking t = 2σ(
√
n log(2d) +

√
n log(1/δ)) = nλ4 , the right hand side is smaller than δ, and we

obtain that with probability 1− δ,

εTX(θ̂`1 − θ∗) ≤ ‖XT ε‖∞‖θ̂`1 − θ∗‖1

≤ nλ

4
‖θ̂`1 − θ∗‖1.

Setting S the support of θ∗ and noting that ‖θ̂`1−θ∗‖1−‖θ̂`1‖1 = ‖θ̂`1S −θ∗‖1−‖θ̂
`1
S ‖1, we obtain,

with probability 1− δ

‖Xθ̂`1 − Xθ∗‖2 + nλ‖θ̂`1 − θ∗‖1 ≤ 2nλ‖θ̂`1 − θ∗‖1 + 2nλ(‖θ∗‖1 − ‖θ̂`1‖1) (3.7)

≤ 2nλ‖θ̂`1S − θ
∗‖1 + 2nλ(‖θ∗‖1 − ‖θ̂`1S ‖1) (3.8)

≤ 4nλ‖θ̂`1S − θ
∗‖1. (3.9)

In particular, we have

‖θ̂`1Sc − θ
∗
Sc‖1 ≤ 3‖θ̂`1S − θ

∗‖1

which is the cone condition of Lemma 3.5.1. Using this and Cauchy-Schwartz inequality, we obtain

‖θ̂`1S − θ
∗‖1 ≤

√
|S|‖θ̂`1S − θ

∗‖2 ≤
√
|S|‖θ̂`1 − θ∗‖2 ≤

√
2k

n

∥∥∥X(θ̂`1 − θ∗)∥∥∥
2
.

Combining with (3.9), we have∥∥∥X(θ̂`1 − θ∗)∥∥∥2
2
≤ 32nkλ2 ≤ (212)kσ2 log(2d/δ).

The secon inequality follows because from Lemma 3.5.1, we have ‖θ̂`1 − θ∗‖22 ≤ 2MSE(θ̂`1).

For the proof, we only used Lemma 3.5.1 and more precisely

inf
|S|≤k

inf
θ∈CS

‖Xθ‖22
n‖θ‖22

≥ 1

2
,

where CS is the cone defined by ‖θSc‖1 ≤ 3‖θS‖1. This condition is called restricted eigenvalue
condition. It can be seen as a lower bound on the eigenvalues of X when restricted to sparse
eigen vectors. In particular it implies that the smallest singular value of XS is at least n/2 for
all |S| ≤ k. To summarize, Proposition 3.5.1 and Theorem 3.5.1 en sure that there exists design
matrices X such that the Lasso estimators has a fast convergence rate in high dimensions.

3.6 Compressed sensing
High dimentional statistics have an important intersection with compressed sensing [28, 23] in
signal processing. Traditional approaches separate signal aquisition and signal compression which
is performed on a signal which is fully characterized in the memory of a device (or at least
very accurately described). The field of compressed sensing emerge as different approach for this
problem based on two observations.

• Natural signals such as speach, sounds, images, are not generic or completely random and
they have a strong intrinsic strucutre.

• If this structure was known it should be possible to take advantage in a signal aquisition /
compression scheme.

Compressed sensing emerged as a development of the preceeding observation based on two ideas.

3.6. COMPRESSED SENSING 29

• the undelying structure of natural signals is captured by sparsity patterns in a certain basis.

• if a signal is sparse in a given basis, one could probably mix the aquisition and compression
phase by aquiring only a very limited number of measurements.

We describe a signal recovery result from random measurements relying on linear programming.
Further readings on the topic include [22, 23, 25].

Signal recovery
Althouth the notations will be the same as in the high dimensional statistics context, the viewpoint
is a bit different. The signal to be recovered is θ∗ ∈ Rd∗ which is unknown and assumed to be
sparse, that is ‖θ∗‖0 = k < d. The operator has the possibility to choose a sensing matrix
X ∈ Rn×d which will result in the following measurements:

Xθ∗ = y (3.10)

The goal of compressed sensing is to establish methods and conditions ensuring large classes of
values of θ∗ can be infered accurately only from the knowledge of y and X. Other questions of
interest include robustness to noise and exact recovery of supp(θ∗). For simplicity we will only
touch the noiseless setting in (3.10). We will deduce compressed sensing type results from MSE
estimates of the previous sections.

Exact recovery using `0 minimization
We introduce the estimator

θ̂`0CS ∈ min
θ∈Rd

‖θ‖0 s.t. Xθ = y. (3.11)

under mild assumption on the sensing matrix X, this estimator deterministically recovers the
unknown signal θ∗.

Proposition 3.6.1. Given k ∈ N, k ≤ d/2, assume that ‖θ∗‖0 ≤ k, and assume that for any S,
|S| ≤ 2k, that XS has full column rank. Then, the solution of (3.11) is unique and is equal to θ∗.

Proof. Assume that θ̂`0CS 6= θ∗. We have ‖θ̂`0CS‖0 ≤ ‖θ∗‖0 = k. Set S = supp(θ∗ − θ̂`0CS). We have
|S| ≤ 2k and X(θ∗ − θ̂`0CS) = 0 and hence θ∗ = θ̂`0CS .

Exact recovery from random measurements with `1 minimization
Intuitively if one is interested in signal recovery over large classes of signals using `1 norm, the
sensing matrix in (3.10) should not have structure fooling the `1 norm. This happens if X is generic
in some sense. One way to achieve this is to use random measurements. This amounts to choose a
random X in (3.10) such as the one described in Proposition 3.5.1 for example. Furthermore, since
there is no noise, in the measurements, the least squares approach does not really make sense. We
introduce an estimator.

θ̂`1CS ∈ min
θ∈Rd

‖θ‖1 s.t. Xθ = y. (3.12)

Corollary 3.6.1. Given k ∈ N, k ≤ d, and δ > 0, assume that X is a Rademacher matrix with
n ≥ 211k2 log(1/δ) + 213k2 log(d). Assume furthermore that ‖θ∗‖0 ≤ k in (3.10). Then with
probability 1− δ over the random draw of X, the solution of (3.12) is unique and is equal to θ∗.

Proof. Assume that θ̂`1CS 6= θ∗ and set d = θ̂`1CS − θ∗. We have ‖θ̂`1CS‖1 ≤ ‖θ∗‖1 and Xd = 0. Set
S = supp(θ∗), we have

‖θ∗‖1 ≥ ‖θ̂`1CS‖1 = ‖dSc‖1 + ‖dS + θ∗‖1 ≥ ‖dSc‖1 + ‖θ∗‖1 − ‖dS‖1.

As a result, we have ‖dS‖1 ≥ ‖dSc‖1 and Xd = 0. Lemma 3.5.1 implies that d = 0 with probability
1− δ corresponding to the event X having incoherence at level k.

30 CHAPTER 3. LINEAR REGRESSION

This result shows that it is possible to recover θ∗ with high probability only from the order of
O(k2 log(d)) measurements provided that ‖θ∗‖0 ≤ k. The k2 term can be improved further. In
the context of noisy measurements, conditioning both on the realization of X and the realization
of the noise, one can obtain results similar to Theorem 3.5.1 for signal processing.

3.6. COMPRESSED SENSING 31

Exercises
Exercise 3.6.1. Given x ∈ Rd and λ > 0, show that the solution to the problem

min
y∈Rp

1

2
‖y − x‖22 + λ‖y‖1

is given by coordinatwise application of pλ : R 7→ R to x, where, for any s ∈ R

pλ(s) =

s− λ, if s > λ

0, if |s| ≤ λ
s+ λ, if s < λ

.

This is the soft-thresholding operation and the result is called the proximity operator of the function
λ‖·‖1. Give a graphical representation of pλ and compare it to the hard-thresholding operator given
by t 7→ tI(|t| ≥ λ).

Exercise 3.6.2. Let X = (1, Z, . . . , Zd)T ∈ Rd+1 be a random vector where Z is a real random
variable. Show that E

[
XXT

]
∈ Rd+1×d+1 is positive definite when Z admits a density with respect

to Lebesgue measure on R. Provide a counter example for which E
[
XXT

]
is singular.

Exercise 3.6.3. Under the linear model (LM),

• Assuming that XTX is invertible and E[ε] = 0, show that E[θLS] = θ∗.

• Assuming in addition that ε ∼ subG(σ2), show that θLS − θ∗ ∼ subG
(

σ2

λmin

)
where λmin

denotes the smallest eigenvalue of XTX. Propose a generalization of the result when the
invertibility assumption is dropped.

• If XTX is not invertible, show that θLS = arg minθ ‖θ‖2, such that XTXθ = XTY .

Exercise 3.6.4. We consider the model (LM), and define the ridge regression estimator, for any
λ > 0

θ̂`2 = arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖22.

• Show that θ̂`2 is indeed uniquely defined and propose a closed form expression for it.

• Compute the bias: E
[
θ̂`2 − θ∗

]
and show that it is bounded by ‖θ∗‖22.

• Show that θ̂`2 − E
[
θ̂`2
]
∼ subG

(
σ2

λ

)
.

• Show the bias variance decomposition identity:

E
[
‖θ̂`2 − θ∗‖22

]
= E

[∥∥∥θ̂`2 − E
[
θ̂`2
]∥∥∥2

2

]
+
∥∥∥E [θ̂`2 − θ∗]∥∥∥2

2
.

• Using the previous exercise, suggest as situation for which

E
[
‖θ̂`2 − θ∗‖22

]
< E

[
‖θ̂LS − θ∗‖22

]

32 CHAPTER 3. LINEAR REGRESSION

Chapter 4

Computation, Complexity, Conic
Programming

Source: most of the content of this chapter is described in Ben-Tal and Nemirowski’s book on
“Modern Convex Opitmization” [10]. An extensive treatment of the linear programming problem
is found in Schrijver’s book on linear programming [57]. Further reading include Bertsekas’s book
[13] and Boyd and Vandenberghe [20] (freely available) which content is a bit wider than our
interest here. An interesting discussion between complexity theory and mathematics is given by
[59]. Physical implications of complexity theory are given in [1]. Oracle complexity is extensively
discussed in [43] and a more recent treatment is given in [45].

4.1 Introduction

When considering high dimensional statistics, computation has to be taken into account because
the size of the problems to be adressed does not allow to ignore the computational cost of handling
them. In particular, one may prefer a less statistically accurate estimator if it can be computed
efficiently. Although very intuitive, the mathematical definition of “computation” is highly non
trivial and has very strong connections to logics, physics and phylosophy. We start with a brief
overview of theoretical computer science concepts which enlights computational properties of the
statistical estimators we considered.

The second part of this chapter presents an overview of convex optimization as developped
in the 90’s. This resulted in classification of families of tractable convex optimization problems
for which general purpose numerical solvers were developped. In the context of high dimensional
statistics, these elements are mostly interesting for historical purposes as prefered methods for
modern data analysis do not fall in the category of methods described in this chapter.

4.2 Computation over Q.
We first provide an overview of computation formalism. Most of this is borowed from Schrijver’s
book [57].

4.2.1 Computation over a finite alphabet and complexity over Q
Alphabet, words, size: We consider a finite set Σ (usually Σ = {0, 1}), which is called an
alphabet and its elements are called letters. An ordered finite sequence of elements in Σ is called
a word. The set of words is denoted by Σ∗. The size of a string is the number of its components.
The zero length string is the empty string ∅.

33

34 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Strings can be used to represent rational numbers, vectors, matrices, and combinatorial struc-
tures such as graphs and trees. There are standard ways to encode these objects over a finite
alphabet such as {0, 1}, depending on the chosen way this induces a concept of size for these
objects. For example if α = p/q (where p and q are relatively prime integers), c = (c1, . . . , cn) a
rational vector and A = (aij)i=1...m,j=1...n a rational matrix, we have

size(α) = 1 + dlog2(p)e+ dlog2(q)e

size(c) = n+

n∑
i=1

size(ci)

size(A) = nm+

m∑
i=1

n∑
j=1

size(aij)

Size of linear inequalities, or equalities are defined in a similar way.

Problems: A (search) problem is a subset Π ⊂ Σ∗ ×Σ∗, the corresponding meta-mathematical
problem read as follows:

Given z ∈ Σ∗, find y ∈ Σ∗ such that (z, y) ∈ Π or decide that there exists no such y.

An example of a search problem is given a matrix A ∈ Qm×n and a vector b ∈ Qm, find x ∈ Qn such
that Ax ≤ b (where the inequality is understood elementwise). A decision problem is a problem
which output is either 0 or 1. For example, given A and b, is there an x such that Ax ≤ b? A
decision problem is often identified with L ⊂ Σ∗, the set of inputs such that the output is 1.

Algorithm and running time: An algorithm is a list of instruction to solve a problem. A
Turing machine is a thought experiment object which formalizes the notion of algorithm. The
Church-Turing thesis is a founding hypothesis of computer science stating that functions of natural
numbers computable by humans using pen and pencil, following an algorithm are precisely the
ones which can be computed by a Turing machine. One can view a Turing machine as a device
which performs pen and paper computation automatically and take it as a rigorous formalization
of what it means “to compute”. There exists equivalent formalizations such as recursive functions,
lambda calculus, circuits which lead to equivalent notions of computation all of them are called
Turing complete.

For a given input Σ∗, an algorithm for problem Π determines an output y such that (z, y) is
in Π, or stops without delivering an output if there exists no such y. An algorithm can have the
shape of a computer program, which is a finite string of symbols from a finite alphabet. Hence,
an algorithm can be defined as a finite string A of 0’s and 1’s. One says that A solves problem
Π, if for any instance z of Σ∗, when giving the string (A, z) to a universal Turing machine (a
Turing machine which could simulate any other Turing machine, in particular, a Turing machine
implementing A), the machine stops after a finite number of steps, and delivers y with (z, y) ∈ Π,
or no string in the case where such a string y does not exist.

The running time of an algorithm is number of elementary operations during the execution of
the algorithm. It depends on the precise implementation considered. One way to formalize this
is the number of moves of the head of a universal Turing machine before stoping given the input
(A, z). Formally, the runing time function of an algorithm f : N 7→ N can be given by

f(σ) = max
size(z)≤σ

(running time of A for input z).

Polynomial algorithm and computation over Q An algorithm is called polynomial time, if
its time function is upper bounded by a polynomial. A problem is calle polynomially solvable if
there exists a polynomial time algorithm to solve it.

The elementary operations such as adding, substracting, multiplying, dividing, comparing num-
bers can be executed in polynomial time. Note that for computation overQ, we use the (polynomial

4.3. KARP REDUCTION AND NP COMPLETENESS 35

time) Euclidean algorithm to obtain a unique representation of these numbers. Therefore, in order
to show that a numerical algorithm is polynomial time, it suffices to show that it applies a number
of elementary operations which is polynomial in the size of the input and that the size of the
intermediate numbers to which these elementary operations are polynomially bounded by the size
of the input.

Note that any numerical software, such as the ones used for statistical estimation, actually
perform computation over Q as they implement finite precision arithmetic. This amounts to
consider choose a finite precision ε ∈ Q, ε > 0 and perform all numerical operations by rounding
over a discrete grid {nε}n∈Z ⊂ Q.

The classes P and NP and co − NP The class of decision problems solvable in polynomial
time is called P. The class NP is central in complexity analysis and corresponds to decisions
problems for which there is an easy to check verification, that is, which have a polynomial size
proof. More formaly a decision problem L ⊂ Σ∗ belongs to NP if there exists a polynomialy
solvable decision problem L′ ⊂ Σ∗ × Σ∗ and a polynomial φ such that

z ∈ L ⇔ ∃y ∈ Σ∗, (z, y) ∈ L′ and size(y) ≤ φ(size(z)).

The crucial point here is that it is not required that y is found in polynomial time, but if it was
given, the proof could be checked in polynomial time. The string y is called a certificate. Brute
force search over all possible strings of a given length provides an algorithm showing that for any
problem in NP there exists a polynomial ψ such that the solution for input z can be found in
time at most 2ψ(size(z)).

Example 4.2.1. Given a set of cities and distances between cities (in Q), the traveling salesman
problem is in NP:

Given d ∈ Q, decide if there is a path visiting all the cities of total length at most d.

Indeed, if such a path exists, it has the same length as the total number of cities so that checking
that it passes through all cities and that its length is less than d can be done in polynomial time.
Therefore, if the decision problem admits a solution, it has a polynomial time certificate.

Example 4.2.2. Given A ∈ Qn×d and b ∈ Qn, consider the problem of deciding if Ax ≤ b has a
solution over Qn. It can be shown (See Schiver’s book chapter 10) that if such a solution exists,
then there should be a solution which size is polynomially bounded by the size of A and b. Hence
this decision problem is in NP.

The class of decision problems L ⊂ Σ∗ which complement in Σ∗ is in NP is denoted by
co − NP. The class NP ∩ co − NP consists of those decision problems which answer (positive
or negative) have a polynomial length proof. We have P ⊂ NP and P ⊂ co −NP and it is not
known wether these inclusions are strict (there is a million dollars price on these questions).

The term NP comes from “Non deterministic Polynomial time”. This means that a lucky
algorithm which has the possibility to “guess” in polynomial time a good certificate over a set with
polynomial size can solve the corresponding decision problem.

4.3 Karp reduction and NP completeness

A decision problem L ∈ Σ∗ is Karp reducible to a decision problem L′ ⊂ Σ∗ if there exists a
polynomial time algorithm such that, for any input string z ∈ Σ∗, A delivers a string x such that

z ∈ L ⇔ x ∈ L′

This can be denoted as L ≤ L′ as an algorithm for solving L′ would provide an algorithm for
solving L with an added computational cost which is at most polynomial.

36 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Example 4.3.1. For any boolean formula there is a formula over linearly more variable in con-
junctive normal form, which preserves satisfiability. The size of the new formula is at most linear
in the size of the original formula, using Tseytin transformation for example. We obtain a formula
of the form

(a ∨ b ∨ c ∨ d) ∧ (ā ∨ e ∨ f ∨ ḡ ∨ d) . . .

Then any disjunction can be reduced to a conjunction of disjunctions of size at most 3 by adding
variables. For example

q ∨ r ∨ s ∨ t ∨ u
⇔ (q ∨ r ∨ a) ∧ (ā ∨ s ∨ b) ∧ (b̄ ∨ t ∨ u).

Thus if L denotes the boolean formula satisfiability problem (SAT) and L′ denotes the satisfiability
problem of boolean formula in 3 conjunctive normal form (3-SAT), we have shown that L ≤ L′.

Similarly, if L′ belongs to NP and L ≤ L′, then L also belongs to NP. A problem L is called
NP-hard, if each problem in NP is reducible to L and if furthermore, L is in NP, then L is called
NP-complete. As we have seen, we have an exponential time algorithm to solve problems in NP,
this is a brute force search algorithm. It is widely believed that for a given NP-complete problem,
this is the most efficient algorithm to solve all the possible instances. Indeed, a polynomial time
algorithm for any NP complete problem would provide a proof that P = NP which is widely
believed to be false. This is undelying the P 6= NP conjecture. It is important to note that the
notion of NP-hardness is a worst case notion.

• NP-complete problems are considered to be hard as there si no known polynomial time
algorithm to solve them and it is believed that no such algorithm exists.

• This concept relies on Karp reduction which only underlines that some instances are hard,
not necessarily all of them.

• There is no notion of constant or exponent in these concepts so that an algorithm in P may
still be intractable in practice. The notion is mostly used to prove computational difficulty
of certain problems.

From optimization to decision An optimization problem is the minimization of an objective
function c over a finite set or over rational numbers. An efficient algorithm to solve an optimization
problem provide an algorithm to decide if there exists a sequence of input with cost less or equal
to α, for any α. For example given A ∈ Qn×d, b ∈ Qn, c ∈ Qd, computing

ρ = inf
Ax≤B

cTx

provides an algorithm to decide whether Ax ≤ b and cTx ≤ α has a solution for any α ∈ Q. As a
result, optimization objectives involving NP-complete problems are considered as hard.

Examples:

Example 4.3.2 (Cook’s Theorem). The boolean satisfiability problem (SAT) consists of decision
problem over boolean variables involving boolean formulas in conjunctive normal form: the variables
are augmented with their negations, and the formula consists of a conjunction of disjunctions (all
clauses made using “or” and are aggregated with an “and”). Example

(x1 and x2 and x6) or (x̄2 and x3 and x̄7) or . . .

This is the first problem proved to be NP-complete by Cook in 1971.
The idea of the proof is as follows. First the problem is clearly in NP as it suffices to exhibit a

an instance of boolean values which satisfy the formula. The problem is NP-hard because because

4.4. COMPUTATION OVER THE REALS 37

a polynomial time verifier implemented on a Turing machine can be shown to be equivalent to a
boolean formula (this is the technical bulk of the proof). Finaly there is a polynomial time reduction
from any boolean formula to a formula of the above form where each disjunction involves at most
3 variables.

This problem remains NP-complete if we restrict the disjunctions to involve at most 3 variables
(as in the example) by the 3-SAT reduction argument. This shows that 3-SAT is NP-complete.

Example 4.3.3. An important list of NP-complete problems can be found in the classic book,
Computers and Intractability: A Guide to the Theory of NP-Completeness.

Theorem 4.3.1. Consider the decision problem with input A ∈ Qm×n, b ∈ Qm, does there exist
x ∈ Qn such that Ax = b and ‖x‖0 ≤ m/3. This problem is NP-hard.
Proof. We reproduce the proof given in [42]. First, the problem is clearly in NP. Completness is
shown by reduction is to “cover by 3 sets” which is an NP-complete problem:

Given a set S and a set C which elements consists of subsets of S of size 3. Decide if there is
Ĉ ⊂ C such that each elements of S occurs exactly once in Ĉ.

Assume that S = {s1, . . . , sm} and C = {c1, . . . , cn} and assume that m is a multiple of 3.
Set b = (1, . . . , 1)T ∈ Qm and A ∈ Rm×n which column i is zero except at the j, k, l where
(sj , sk, sl) = ci, i = 1, . . . , n. We show that there exists x ∈ Qn such that Ax = b with ‖x‖0 ≤ m/3
if an only if the answer to the “cover by 3 set problem” is positive.

On the one hand given Ĉ, choosing xi = 1 if ci ∈ Ĉ and zero otherwise. We have Ax = b and
x has m/3 non zero entries. On the other hand if one finds x ∈ Qn with Ax = b and ‖x‖0 ≤ m/3.
The entries of Ax must be in 1. Since x has at most m/3 non zero entries and each column has
at most 3 nonzero entries, it means that x has exactly m/3 nonzero entries. The nonzero entries
of x solves the “cover by 3 set” problem.

The theorem generalizes to real inputs and real variables in the computation model of infinite
precision RAM model or computation over the reals and approximate solutions ‖Ax− b‖22 ≤ ε, see
[42]. The implication of these results is that solving problems involving the ‖ · ‖0 pseudonorm is
hard. For example computing θ̂`0 can be done by solving 2d unconstrained least squares problems,
and, unless P = NP, no algorithm can do significantly better on all possible instances for all
values of d. This underlines the value of the question P = NP? This kind of statement is very
common in computer science: if there is a reduction from a given problem to another problem
which is proved (or largely believed) to be hard, then the original problem must be hard.

4.4 Computation over the reals
The statistical estimators which are defined in previous chapters, are given over the real field and
we only mentioned computation over the rationals so far. The difference may look innocuous at
first sight but it actually has tremendous implications. Furthermore most of the optimization
theory which we are going to describe is given for algorithms over the reals, and therefore, it is
worth mentioning models of computation over the reals. The content of this section is mostly
theoretical since real arithmetic is not realisable in the physical word [1] (it would break well
accepted physical impossibility principles).

Computable number: Computer Algebra Systems use symbolic programing to perform op-
erations on algebraic objects. However the set of real numbers which can be described by such
systems is only denumerable and therefore, miss most of the reals. Another definition of com-
putable number concerns the possibility to approximate it up to an arbitrary precision.

Definition 4.4.1. A number a ∈ R is called computable if there is a terminating algorithm A
such that for any ε ∈ Q, ε > 0, |A(ε)− a| ≤ ε.

Intuitively, there are only countably many terminating algorithms and the set of computable
numbers is therefore only countable. Hence, most real numbers are not computable in this sense.

38 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Real machines: In 1989 Blum, Shub and Smale described a theoretical machine for real com-
putation [15]. This is refered to as BSD machine or real RAM machine and leads to the theory of
algebraic complexity. Roughly speaking such a machine manipulates real numbers instead of ele-
ment of a finite alphabet and is able to perform addition, multiplication, division and comparison
over real numbers.

This is a canonical model for computation over the reals. Although not realisable in the
physiscal word [1], this constitutes an interesting thought experiment. For example, we will see
that the linear programming (LP) problem (4.7) is polynomially solvable over the rationals, but
it is not known if it is polynomialy solvable over the reals [59]. The main difference between
computation over Q and over R is that in the first case, the size of the input (number of bits
required to decribe it using standard encoding) provides a bound on the accuracy level required
to obtain provably correct rounding schemes. In the real case, the size of the input is only the
number of entries. For example the condition number of a matrix A depends on its size over Q
while it does not depend on its size over R.

Oracle complexity: The computational model underlying continuous optimization mixes real
computation and unknown primitives which are provided by an oracle. For example, if one wishes
to minimize a differentiable function f over Rd, one can construct an algorithm which is allowed
to querry sequentially the value of f and its gradient ∇f at different points in Rd. The running
time of an algorithm is given by the number of call to the oracle and the number of real arithmetic
operations performed by the algorithm. Complexity is then given by worst case bounds on the
number of operations required solve a specific problem and it usually depends on properties of
f such as conditioning. Depending on the oracle of choice, one may define different notions of
running time and complexity for optimization algorithms. Note that although this model is quite
intuitive, it is actually very far from what is performed in practice when using physical computers.
Nemirovski Yudin [43] introduced this notion of complexity as a systematic way to study continous
optimization algorithms, further comments and a more recent exposition can be found in the book
of Nesterov [45]. An interesting discussion about the connections between such a model and
classical complexity theory is found in [10].

4.5 Recap on convexity
We limit ourselves to the finite dimensional setting which is sufficient for our purpose. Most
notions given here generalize to infinite dimensions [39, 8]. The content of this section is mostly
related to [10, 20].

Convex sets and functions
A subset of a vector space X is convex if it is closed under convex combinations.

Definition 4.5.1. Let X ⊂ Rd, we say that X is convex if for any x, y ∈ X , α ∈ [0, 1], αx +
(1 − α)y ∈ X . A function f : Rd → R is convex if its epigraph is convex in Rd+1. Recall that
epi(f) =

{
(x, z) ∈ Rd+1, z ≥ f(x)

}
. Equivalently, for any x, y ∈ Rd, and any α ∈ [0, 1], f(αx +

(1− α)y) ≤ αf(x) + (1− α)f(y).

Convex sets are closed under many set operations including, interior, closure, intersection,
(Minkowski) addition, affine mapping and inverse affine mapping. There is a well defined notion
of dimenision for convex set X , it is simply the dimension of the smallest affine set containing X .

Lemma 4.5.1. For any convex set X ⊂ Rd we have

• The closure of X is convex.

• The interior of X is convex.

• For any u ∈ int(X) and v ∈ cl(X), [u, v) ⊂ int(X).

4.5. RECAP ON CONVEXITY 39

• If the interior of X is non empty, then cl(X) = cl(int(X)).

• The interior of X is empty if and only if it is contained in a lower dimensional affine
subspace.

Characterization of convex functions
We have the following characterizations of convexity

Theorem 4.5.1. Let f : Rd → R:

1. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, f(y) ≥
f(x) +∇f(x)T (y − x).

2. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, (∇f(x)−
∇f(y))T (x− y) ≥ 0.

3. If f is twice continuously differentiable, then f is convex if and only if or any x ∈ Rd,
∇2f(x) is positive semidefinite.

One has the following consequence which is a central motivation for studying convex optimiza-
tion problems

Corollary 4.5.1. Let f : Rd → R be a convex continuously differentiable function, then the fol-
lowing are equivalent

• x is a global minimizer of f .

• ∇f(x) = 0.

Example 4.5.1. Consider the least squares linear regression estimate θ̂LS ∈ arg minθ∈Rd ‖Xθ −
y‖22. The hessian matrix of the objective is XTX which is positive semidefinite so that the objective
is convex and first order conditions are sufficient for optimality.

Separating hyperplane and supporting hyperplane
Theorem 4.5.2 (Separating hyperplane). Let X ,Y ⊂ Rd be two disjoint closed convex sets, then
there exists a vector v ∈ Rd, v 6= 0 and a number c ∈ R such that xT v > c for all x ∈ X and
yT v < c for all y ∈ Y.

Proof. Set S = X − Y = {s = x− y, x ∈ X , y ∈ Y}, S is convex and closed. Since X and Y are
disjoint, 0 6∈ S. Let s̄ denote any minimal norm element of s. For any s ∈ S, and t ∈ [0, 1],

0 < ‖s̄‖22 ≤ ‖s̄+ t(s− s̄)‖22 = ‖s̄‖22 + 2ts̄T (s− s̄) + t2‖(s− s̄)‖22.

The right hand side is differentiable for t ∈ R and the derivative at 0 must be non negative. Hence,
for any s ∈ S, sT s̄ ≥ ‖s̄‖22 > 0. We deduce that

inf
x∈X

s̄Tx = ‖s̄‖22 + sup
y∈Y

s̄T y

which shows that we can choose v = s̄ and any c ∈
(
infx∈X s̄

Tx, supy∈Y s̄
T y
)
where the interval is

non empty.

We deduce the following which is a weak finite dimensional form of the Hahn Banach theorem.

Theorem 4.5.3 (Supporting hyperplane). Let X ⊂ Rd be a convex sets such that 0 6∈ X , then
there exists a vector v ∈ Rd, v 6= 0 such that vTx ≥ 0, for all x ∈ X .

40 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Proof. If 0 6∈ cl(X) then the result follows immediately from the separating hyperplane theorem.
If 0 ∈ cl(X), since 0 6∈ X , 0 6∈ int(X), and 0 is on the boundary of X . Hence 0 is in the closure
of the complement of cl(X) and there exists a sequence {zk}k∈N not in cl(X). Which converges
to 0. Applying the separating hyperplane theorem to each element of the sequence ensures that
there exists a sequences {vk}k∈N non zero in Rd and {ck}k∈N in R, such that for all k ∈ N and all
x ∈ X ,

vTk zk
‖vk‖

<
ck
‖vk‖

<
vTk x

‖vk‖
.

Let v be any accumulation point of vk
‖vk‖ , the left hand side of tends to 0 hence lim infk→∞

ck
‖vk‖ ≥ 0

and vTx ≥ 0 for all x ∈ X .

If 0 ∈ cl(X), the vector v defines a supporting hyperplane which provides a notion of tangent
to a set convex set.

Theorem 4.5.4 (Supporting hyperplane). Let X ⊂ Rd be a convex set such that 0 is on the
boundary of X , then there exists a vector v ∈ Rd, v 6= 0 such that vTx ≥ 0, for all x ∈ X .

Proof. If 0 6∈ X then the result follows from Theorem 4.5.3, we assume that 0 ∈ X .
If the interior of X is empty, then, by Lemma 4.5.1, X is contained in a lower dimensional

affine space which turns out to be a linear subspace since 0 ∈ cl(X) any vector orthogonal to this
subspace will work.

If int(X) is not empty since it is convex by Lemma 4.5.1, we may apply Theorem 4.5.3 to 0
and int(X) and obtain v ∈ Rp such that vTx ≥ 0 for all x ∈ int(X). Lemma 4.5.1 ensures that
cl(int(X)) = cl(X) so that vTx ≥ 0 for all x ∈ cl(X) ⊃ X and the result follows.

More generally, a supporting hyperplane of X at x is a closed half space which contains X and
x on its boundary. There is a partial converse.

Theorem 4.5.5. Let X be a closed set with nonempty interior, such that for every point x on the
boundary of X admits a supporting hyperplane. Then X is convex.

Proof. X is contained in the set S consisting of intersection of all the half spaces given by all
the supporting hyperplanes at each point of the boundary of X . S is convex and closed as the
intersection of closed convex sets. Fix any s ∈ S, and assume that s 6∈ X , choose x in the interior
of X , the line segment between s an x crosses the boundary of X at y ∈ X . The supporting
hyperplane at y provides an affine function A which is positive on X . Restriction of this affine
function to the line segment [x, s] is still affine with A(x) > 0, A(y) = 0 and y ∈ (x, s), and hence
A(s) < 0 which contradicts the fact that s ∈ S. Therefore, S = X .

There is a stronger notion of separating hyperplane.

Theorem 4.5.6 (Separating hyperplane). Let X ,Y ⊂ Rd be two disjoint convex sets, then there
exists a vector v ∈ Rd, v 6= 0 and a number c ∈ R such that xT v ≥ c for all x ∈ X and yT v ≤ c
for all y ∈ Y.

Extreme points, polyhedra and polytopes
Definition 4.5.2. Let X ⊂ Rd be a convex set and x ∈ X . x is an extreme point of X if for any
x1, x2 ∈ X , x = (x1 + x2)/2 implies that x1 = x2 = x.

Any nonempty compact convex subset of Rd contains at least one extreme point (any point of
maximal norm). The convex hull of a set S is the set of all convex combinations of elements of S,
denoted by

conv(S) =

{
x, ∃n ∈ N∗, (xi)ni=1 ∈ Sn, (λi)

n
i=1 ∈ Rn+,

n∑
i=1

λi = 1, x =

n∑
i=1

λixi

}
.

4.5. RECAP ON CONVEXITY 41

It is seen from the definition that the extreme points of conv(S) are contained in S. The interest
of extreme points is that linear optimization attains its optima at extreme points.

Lemma 4.5.2. Let X be a closed convex set, x ∈ X such that there exists c 6= 0 and cTx =
infy∈X c

T y. Then setting A =
{
y ∈ X , yT c = xT c

}
, any extreme point of A is an extreme point

of X .

Proof. Take p̃ to be one extreme point of A, and suppose that we have x1, x2 ∈ X such that
(x1 + x2)/2 = p̃. We have xT1 c ≥ xT c, xT2 c ≥ xT c and 1

2 (x1 + x2)T c = p̃T c = xT c, the average of
two non negative numbers is 0 if and only if both are null and hence xT1 c = xT2 c = p̃T c and x1 ∈ A
and x2 ∈ A. Hence x1 = x2 = p̃.

Lemma 4.5.3. Let c ∈ Rd, c 6= 0 and X be a convex and compact set. Then minx ∈ X cTx is
attained then the optimum is attained at an extreme point x̄ ∈ X .

Proof. If c = 0, any extreme point of X is a solution. If c 6= 0, by the compactness of X , the
optimum of the problem is attained. Take x∗ to be one solution. The set {x ∈ Rd, xT c = (x∗)T c}
is compact and convex, it contains an extreme point which by Lemma 4.5.2 is an extreme point
of X .

Theorem 4.5.7 (Krein Millman). Let X be a compact convex set, then X ⊂ Rd is the convex hull
of its extreme points.

Proof. Let S denote the set of extreme points of X , we have conv(S) ⊂ X . Let x ∈ X , we show
that x is in conv(S). First, we may assume that X has non empty interior, by reducing the
ambiant space to the smallest affine subspace containing X . The proof is now by recursion on d.
For d = 0, the result is obvious, assume that the result holds for Rd−1, d ≥ 1. Consider any line
passing through x, the restriction of X to this line is compact convex set of dimension 1, that is
a segment of the form [a, b] where a ∈ X , b ∈ X . Both a and b are on the boundary of X . There
is a supporting hyperplane Ha at a and Hb at b. Both sets X ∩ Ha and X ∩ Hb are compact
convex sets of dimension d − 1. The induction hypothesis ensures that both a and b are convex
combinations extreme points of Ha and Hb which are extreme points of X by Lemma 4.5.2 and
the result follows because m is a convex combination of a and b.

Definition 4.5.3. A polyhedra is a set X ⊂ Rd which can be described by linear equalities: there
exists A ∈ Rm×d, b ∈ Rm such that X = x ∈ Rd, Ax ≤ b, where the inequality is understood
entry-wise. This representation is called canonical form.

Adding slack variables s ∈ Rm and considereing x+ and x− the entry-wise positive and negative
part of x, one may equivalently describe X = {(x+, x−, s) ∈ R2n+m, s = b − A(x+ − x−), s ≥
0, x+ ≥ 0, x− ≥ 0}. Hence, one may equivalently consider polyhedra expressed as X = {x ∈
Rd, Ax = b, x ≥ 0} for a matix A and a vector b which is called standard form.

Lemma 4.5.4. Let X =
{
x ∈ Rd, Ax = b, x ≥ 0

}
be non empty. Then X has at least one extreme

point and we have the following equivalence

• x is an extreme point of X

• the columns of A corresponding to non zero entries of x are independent.

Proof. The existence of extreme points follow from the characterization. If A = 0, then x = 0
is an extreme point. Suppose that A 6= 0, for any x ∈ Rd, denote by Ax the matrix which
columns correspond to the non zero entries of x. For any x, x1, x2 ∈ X , if x = x1+x2

2 , then
supp(x1) ⊂ supp(x) and supp(x2) ⊂ supp(x) and Ax(x1−x2) = 0 hence, if the columns of Ax are
independent, x1 = x2 and x is an extreme point. On the other hand, if the columns of Ax are not
independant, choosing d ∈ Rd such that supp(d) = supp(x) and Ad = 0, one has, for sufficiently
small alpha that x+ αd ∈ X and x− αd ∈ X so that x is not an extreme point of X .

42 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

As a result, polyhedra have only finitely many extreme points. A polytope is a compact
polyhedra. Krein-Millman theorem ensures that X is a polytope if and only if it is the convex hull
of finitely many points.

Example 4.5.2. The `1 ball used to define the `− 1 constrained least squares estimator:

θ̂LSK ∈ arg min
‖θ‖1≤1

‖Xθ − y‖22

is a polytope which has 2d extreme points corresponding to plus or minus the elements of the
canonical basis. Linear fuction over the `1 ball attains their optimum at one of these extreme
points which have a support of size 1. This illustrates the sprasity promoting role of this constraint.

4.6 Conic programming

4.6.1 Conic hierarchy

Definition 4.6.1. K ⊂ Rd is a cone if it satisfies for any x ∈ K and α ≥ 0, αx ∈ K.

Given a closed convex cone K, one can define the corresponding conic program, for any A ∈
Rm×d, b ∈ Rm, c ∈ Rd,

p∗ = inf
x∈Rd

cTx s.t. Ax = b, x ∈ K. (P)

This gives rise to the following classes of optimization problems.

Linear programs: Choosing K = Rd+, we obtain a linear program in standard form. The
problem of computing θ̂`1CS can be expressed as a linear program as

min
θ∈Rd

‖θ‖1 s.t. Xθ = y

= min
θ+∈Rd,θ−∈Rd

1T (θ+ + θ−) s.t. X(θ+ − θ−) = y, θ+ ∈ K, θ− ∈ K.

which is a linear program (LP).

Second order cone: The second order cone in Rd+1 is given by K =
{

(x, t) ∈ Rd+1, ‖x‖2 ≤ t
}
.

This allows to express linear optimization over convex quadratic constraints such as balls or ellipses
and their intersection. Such a problem is called a second order cone program (SOCP).

Semidefinite cone: The set of symmetric positive semidefinite is called the semidefinite cone.
Given a symmetric matrix C ∈ Rd×d, a linear function A : Rd×d → Rm and b ∈ Rm a semidefinite
program has the form

min
X∈Rd×d

tr(CTX) s.t. A(X) = b, XT = X, X < 0.

Such programs are called semidefinite programs (SDP).

Hierarchy of conic programs These conic programs are standard optimization problems for
which there exists efficient algorithms allowing to solve numerically efficiently moderate size pro-
grams of this type. The term hierarchy refers to the fact that linear programs can be expressed
as second order cone programs and second order cone programs can be expressed as semidefinite
programs.

4.6. CONIC PROGRAMMING 43

4.6.2 Conic duality

Definition 4.6.2. Let K ⊂ Rd be a convex cone, the dual cone of K is denoted by

K∗ =
{
y ∈ Rd, xT y ≥ 0, ∀x ∈ K

}
If K = K∗, we say that K is self dual

All the cones given in the previous section are self-dual. The Lagrangian of problem (P) is
given for any x ∈ Rd, µ ∈ Rd, ν ∈ Rm, by

L(x, µ) = cTx+ µT (b−Ax) (4.1)

The dual problem to (P) is obtained by minimizing the Lagrangian over x ∈ K. If cT −ATµ 6∈ K∗,
the infimum of the Lagrangian over x ∈ K is −∞. On the other hand, if c−ATµ ∈ K∗, then the
minimizer of the Lagrangian is µT b. Hence the dual problem has the form

d∗ = sup bTµ s.t. c−ATµ ∈ K∗. (D)

We have the following relation between primal (P) and dual problems (D).

Theorem 4.6.1. It holds that d∗ ≤ p∗. Furthermore, if rank(A) = m, and there exists x̄ such
that Ax̄ = b and x̄ is in the interior of K and p∗ > −∞, then p∗ = d∗ and the dual problem has
a solution. In this case, x is primal optimal if and only if it is primal feasible and there exists a
dual feasible µ such that

xT (c−ATµ) = 0 or xT c = bTµ.

Proof. If either the primal (P) or the dual problem (D) are not feasible, then the result is obvious
as p∗ = +∞ or d∗ = −∞.

Assuming that both are feasible, for any x feasible for (P) and µ feasible for (D), we have

cTx = cTx+ µT (b−Ax) = L(x, µ) = µT b+ (c−ATµ)Tx ≥ µT b (4.2)

where the first equality is from primal feasibility, and the last inequality is because x ∈ K and
c−ATµ ∈ K∗ so that the dot product is nonnegative. This implies that p∗ ≥ d∗

To obtain strong duality (not assuming dual feasibility), consider the sets

S1 =
{

(u− x), b−Ax, cTx+ t) ∈ Rd+m+1, x ∈ Rd, u ∈ K, t ≥ 0
}

S2 = {(0, 0, s), s < p∗}

It holds that both S1 and S2 are convex. Furthermore, they are disjoint since an element of the
intersection would provide a primal feasible x with cTx < p∗. Theorem 4.5.6 ensures that there
exists α1 ∈ Rd, α2 ∈ Rm, α3 ∈ R, not all equal to 0, and α4 ∈ R such that for all x ∈ Rd, u ∈ K,
t ≥ 0, s < p∗

αT1 (u− x) + αT2 (b−Ax) + α3(cTx+ t) ≥ α4 (4.3)
α3s ≤ α4

It must hold that α3 ≥ 0 and α1 ∈ K∗, otherwise, the left hand side of the first inequality is
unbounded from below. From the second inequality, we obtain α3p

∗ ≤ α4. We are going to show
that the strict feasibility condition ensures that α3 > 0. First note that if x ∈ int(K), then for
any nonzero µ ∈ K∗, we have xTµ > 0. Second assuming that α3 = 0, choosing x̄ as given in the
hypothesis and u = 0, one has

−αT1 x̄ ≥ α3p
∗ = 0,

44 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

and since αT1 6= 0 implies αT1 x̄ > 0 we have α1 = 0. Furthermore, we have α2 6= 0 and αT2 (b−Ax) ≥
0, for all x ∈ Rd. This is impossible as it would imply αT2 A = 0 with α2 6= 0 which contradicts
the rank assumption on A.

Finally, α3 > 0 and we obtain from (4.3), for any x ∈ K

αT2
α3

(b−Ax) + cTx ≥ p∗ +
αT1
α3
x ≥ p∗,

where the last inequality follows because α1 ∈ K∗. This implies that c − ATα2/α3 ∈ K∗ as
otherwise, the right hand side would be unbounded from below. Hence µ = α2/α3 is dual feasible.
Minimizing over x, we obtain that bTµ ≥ p∗. Hence d∗ ≥ p∗ and by weak duality, d∗ = p∗ and µ
is dual optimal.

The last statement follows from the existence of a dual optimal µ and inequality (4.2).

4.6.3 Interior point methods
Interior point methods were discovered in the 80’s, Karmarkar polynomail time (and empirically
efficient) algorithm for linear programing was based on interior point methods. There has been
an important activity around interior point methods in the 90’s. We refer to [10] for a detailed
presentation. In this section, we will only briefly touch the topic and describe the main ideas on
a simple problem.

4.6.4 Strong convexity
This notion will be important to develop algorithmic ideas to solve the optimization problems
which we have seen.

Definition 4.6.3. A function f : Rd 7→ R is µ strongly convex, if f − µ
2 ‖ · ‖ is convex. The

following provide sufficient conditions:

• If f is differentiable, f(y) ≥ f(x) + (y − x)T∇f(x) + µ
2 ‖y − x‖

2
2, for all x, y.

• If f is differentiable, (∇f(x)−∇f(y))
T

(x− y) ≥ µ‖y − x‖22 for all x, y.

• If f is twice differentiable, the matrix ∇2f(x)− µI is positive semidefinite for all x.

Exercise 4.6.1. Prove that the function f : x 7→ − log(1−‖x‖2) is strongly convex (when restricted
to the unit Euclidean ball).

Newton’s method

Newton’s method is famously used to solve equations of the form g(x) = 0. In the context of
convex optimization, one actually solves f ′(x) = 0. Application of this method to find a zero of
the gradient operator of a strongly convex function f : Rd 7→ R, can be implemented as follows:
choose x0 and iterate for k ∈ N,

xk+1 = xk − α
(
∇2f(xk)

)−1∇f(xk). (4.4)

Where α is a positive stepsize, determined algorithmically. Note that this equation is well defined
since by strong convexity, the Hessian is always positive definite and invertible. One intuition about
this method is that it minimizes the second order Taylor expansion: f(y) ' f(x) +∇f(x)T (y −
x) + (y − x)T∇2f(x)(y − x).

A detailed convergence rate analysis of Newton’s method can be found in [10, 13, 20]. We
prove a local quadratic convergence result which illustrate the fast asymptotic convergence of the
method. A more refined analysis is more involved and requires to analyse backtracking line search
procedures. We limit ourselves here to a local result stating that when initialized close to the
optimum, Newton’s method with unit step sizes is extremely fast.

4.6. CONIC PROGRAMMING 45

Theorem 4.6.2. Let f be µ-strongly convex, twice continuoulsy differentiable, with L-Lipschitz
Hessian (operator norm) and x̄ be the (unique) minimum of f . Newton’s method with unit step
size satisfy, for all k ∈ N,

L

2µ2
‖∇f(xk)‖2 ≤

(
L

2µ2
‖∇f(x0)‖2

)2k

,

In particular, if ‖∇f(x0)‖2 < L
2µ2 , we obtain extremely fast convergence for Newton’s method with

unit step size.

Proof. Fix k ∈ N. From the Newton iterate, we have ∇2f(xk)(xk+1 − xk) = −∇f(xk). Hence
integrating along the segment [xk+1, xk], we have

∇f(xk+1) = ∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

=

∫ 1

t=0

(
∇2f(xk + t(xk+1 − xk))−∇2f(xk)

)
(xk+1 − xk)dt

Using the Lipschitz assumption, we obtain

‖∇f(xk+1)‖2 ≤
L

2
‖xk+1 − xk‖22 =

L

2
‖∇2f(xk)−1∇f(xk)‖22 ≤

L

2µ2
‖∇f(xk)‖22

By a simple recursion, we have

L

2µ2
‖∇f(xk+1)‖2 ≤

(
L

2µ2
‖∇f(xk)‖2

)2

≤
(
L

2µ2
‖∇f(x0)‖2

)2k

Interior point method

We refer to [10] for a more detailed overview. We illustrate the idea of interior point methods for
the follwing toy problem, for a given a ∈ Rd, b ∈ R, and f : Rd 7→ R, convex differentiable

f∗ = min
x∈Rd

f(x) s.t. ‖x‖2 ≤ 1, aTx ≤ b (4.5)

We only use this problem to illustrate the main idea of interior point methods. The main idea
of interior points methods is to replace this problem by an unconstrained problem using a barier
function, for any t ≥ 0,

min
x∈Rd

tf(x)− log(1− ‖x‖22)− log(b− aTx) (4.6)

Note that we need to restrict the domain of definition of the objetctive, since the logarithms
explode on the boundary of the feasible set. By example 4.6.1, the objective in (4.6) is 2 strongly
convex. Denoting by xt the minimal value of (4.6) for a given t ≥ 0, this defines the notion of
central path, a quick argument shows that

f(xt) →
t→∞

f∗

and furthermore for each t, xt can be computed efficiently using Newton’s method. This provides
an algorithm to solve problem (4.6). A detailled complexity analysis of these types of methods is
found for example in [46]. Let us mention that the optimality conditions for (4.6), ensure that

t∇f(xt) + 2xt
1

1− ‖xt‖2
+ a

1

b− aTxt

46 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

so that xt minimizes also

x 7→ tf(x) +
1

1− ‖xt‖2
(
‖x‖22 − 1

)
+

1

b− aTxt
(
aTx− b

)
This entails that for any feasible x, we have

tf(xt)− 2 ≤ tf(x) +
1

1− ‖xt‖2
(
‖x‖22 − 1

)
+

1

b− aTxt
(
aTx− b

)
≤ f(x),

so that f(xt) ≤ f∗ + 2
t and an ε suboptimal solution for (4.5) can be found by choosing t = 2/ε.

General purpose solvers

One of the most important topics in Optimization during the 90’s was interior point methods.
These developments led to theoretical and practical results which materialize in the existence of
efficient numerical solvers for the classes of conic problems which were discussed in this section.

4.6.5 Polynomial time LP solvers over Q
Algorithms to solve the LP problem date back to Fourier, Kantorovitch and Dantzig who proposed
the simplex method still used in many numerical solvers.

Theorem 4.6.3 (Khachiyan,Karmarkar). Given inputs A ∈ Qn×d, b ∈ Qn and c ∈ Qd consider
the problem of computing

ρ = inf
x∈Qd

cTx s.t. Ax ≤ b. (4.7)

This problem is in P.

Proof sketch. We only sketch the main ideas, a full detailed proof is very tedious. We refer to
Schiver’s book [57] for more details.

• First if the infimum is not attained, either the original problem or its dual are unfeasible
and there polynomial time certificates for this can be found in polynomial time.

• If the problem attains its optimum, then it must attain its optimum at one of the vertices
of the polyhedra described by the linear inequalities. There are only finitely many of them.

• There are only polynomially many candidate optimal values for ρ. This is because we have
finitely many candidate solutions and the size of the input allows to estimate size of largest
common denominators and condition numbers of A.

• Local search methods such as ellipsoid method (for Khachiyan’s algorithm) or interior point
methods (for Karmarkar’s algorithm) converge exponentially fast to ρ (see interior point
methods).

• Carefully controling the magnitude of accumulated errors allong the local search path and
the degree of approximation required to dicriminate between any two candidate optimal
values allow to conclude.

Historically, the ellipsoid method was the first polynomial time algorithm for linear program-
ming, it has been studied by various authors in the 70’s including Shor, Yudin and Nemirovski.
It was proved to be polynomial time by Khachiyan [35] but is quite inefficient in practice. Kar-
markar proposed the first polynomial time algorithm which was efficient empirically, based on
interior point methods [34].

4.6. CONIC PROGRAMMING 47

Corollary 4.6.1. Assuming the model 3.10 holds and θ∗ ∈ Qd, θ̂`1CS in (3.12) is computable
exactly using a number of operations which is at most polynomial in n, d and the number of bits
required to encode X and Xθ∗.

Remark 4.6.1. Such a result cannot hold for second order cone programs and semidefinite pro-
grams. This is because the solution of such programs may not be in Q eventhough the data is in
Q. For example

min
x
‖x‖2 s.t. x1 ≥ 1, x2 ≥ 2

= min
x,t

t s.t. x1 ≥ 1, x2 ≥ 2, t ≥ ‖x‖2

is a second order cone program which value is attained only for x1 = x2 = 1 and t =
√

2. Hence
the solution of this program cannot be found over Q and one must switch to computation over
R, in particular, the program cannot be solved exactly by finite precision numerical methods. As
we have seen, computation over R has different formulations and connections with practice on
physical computers is sometimes a bit far fetched. Hence when one talks about polynomial time
solvability of general convex program, this is not in the classical Church-Turing thesis sense but in
a different sense such as: polynomial time approximation to a any fixed precision, or polynomial
time computation over real machines (which do not exist in the physical world).

Another remark of the same kind goes as follows, the matrix(
1 y
y x

)
being semidefinite positive implies that x ≥ y2 and pilling up k such equalities allows to express
numbers of the order 22

k

which bit representation size is exponential in k. Hence such a number
cannot be approximated in time polynomial in k using standard numerical integer encoding.

Remark 4.6.2. In the context of linear programing (LP), since the number of candidate solution is
finite (extreme points of the undelying polyhedra), and we have explicit description of these points
(lemma 4.5.4), one could try to build an algorithm for finding an optimal extreme point. This is
the basis for the Simplex method proposed by Dantzig in 1947 and still used in many numerical
softwares. We do not describe it here, but mention that it is an efficient method in practice.
However there do not exist polynomial time worst case bounds for these types of algorithm. There
exist polynomial time bounds for average instances of linear programs and the simplex method is
one of the candidate polynomial time algorithm to solve linear programing over the reals. It also
motivate many questions about the geometry of polyhedra such as the Hirsh conjecture.

48 CHAPTER 4. COMPUTATION, COMPLEXITY, CONIC PROGRAMMING

Exercises
Exercise 4.6.2. Prove that Lemma 4.5.1, for any convex set X ⊂ Rd we have

• The closure of X is convex.

• The interior of X is convex.

• For any u ∈ int(X) and v ∈ cl(X), [u, v) ⊂ int(X).

• If the interior of X is non empty, then cl(X) = cl(int(X)).

• The interior of X is empty if and only if it is contained in a lower dimensional affine
subspace.

Exercise 4.6.3. Prove Theorem 4.5.1, et f : Rd → R:

1. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, f(y) ≥
f(x) +∇f(x)T (y − x).

2. If f is continuously differentiable, then f is convex if and only if or any x, y ∈ Rd, (∇f(x)−
∇f(y))T (y − x) ≥ 0.

3. If f is twice continuously differentiable, then f is convex if and only if or any x ∈ Rd,
∇2f(x) is positive semidefinite.

Exercise 4.6.4. Prove Theroem 4.5.6, let X ,Y ⊂ Rd be two disjoint convex sets, then there exists
a vector v ∈ Rd, v 6= 0 and a number c ∈ R such that xT v ≥ c for all x ∈ X and yT v ≤ c for all
y ∈ Y.

Exercise 4.6.5. Prove that the different conditions for strong convexity are indeed equivalent to
f − µ‖ · ‖22:

• If f is differentiable, f(y) ≥ f(x) + (y − x)T∇f(x) + µ
2 ‖y − x‖

2
2, for all x, y.

• If f is differentiable, (∇f(x)−∇f(y))
T

(y − x) ≥ µ‖y − x‖22 for all x, y.

• If f is twice differentiable, the matrix ∇2f(x)− µI is positive semidefinite for all x.

Exercise 4.6.6. Prove that the function f : x 7→ − log(1−‖x‖2) is strongly convex (when restricted
to the unit Euclidean ball).

Exercise 4.6.7. Let S+d denote the cone of positive semidefinite matrices in Rd×d. We consider
the function h : S 7→ log (det (S)) over S++

d the cone of positive definite matrices.

• Compute the gradient of det over S++
d (Hint: use the relation between S−1, det(S) and C

the adjugate matrix of S).

• Compute the gradient of h.

• Show that h is convex.

• Explain how h could be used as a barrier function for interior point methods in semi-definite
programming.

Chapter 5

First order methods

The preceeding chapter was the occasion to describe one of the a fundamental difference between
statistical estimation problems which can or cannot be solved in polynomial time. Efficient nu-
merical solvers exist for NP-hard problems and their use in high dimensional statistics is explored
[14]. Nontheless, we will focus on algorithms which are less computationally demanding, and
better scale in very large dimensions.

We have seen that large families of convex optimization problems can be solved via generic
purpose solvers which have efficient implementations. These solvers have the following properties,
in dimension d:

• The cost of a single iteration is of the order of d3

• They lead to fast converging sequences allowing to obtain very accurate solutions.

In very large dimensions d3 may be too big to be considered as reasonable and we need cheaper
algorithms. This observation motivated the rise of first order methods as efficient alternatives in
high dimensional statistics and signal processing. These methods have a long history in applied
mathematics and the recent trends in data analysis bolstered new developments.

Sources for this chapter include the classic book of Rockafellar [55], the book of Nesterov [45] as
well as elements presented in Sébastien Bubeck’s book [21]. Good references on this topic include
the surveys [26, 6] which is very close to the statistical matters presented in these notes.

5.1 Gradient descent

In this section f denotes a continuously differentiable function. The gradient descent algorithm
can be described as follows, choose x0 ∈ Rd and iterate for k ∈ N:

xk+1 = xk − sk∇f(xk) (5.1)

Each iteration costs a call to the gradient with a vector addtion which. A vector addition costs of
the order of d operations. Hence it is much cheaper than the d3 operations required to run interior
point methods. For example, if one is given a computational budget of the order of d2, then one
can implement d steps of gradient descent while Newton step simply cannot be considered. We
review basic theoretical results known for the gradient method for convex optimization.

5.1.1 Dynamical systems intuition

The minimizing properties of gradient descent are easily seen in continuous time.

49

50 CHAPTER 5. FIRST ORDER METHODS

Proposition 5.1.1. Let f : Rp 7→ R be twice differentiable with compact sublevel sets. Consider
the differential equation, for x0 ∈ Rp,

ẋ(t) = −∇f(x(t)) (5.2)
x(0) = x0. (5.3)

Then, there exists a solution to the initial value problem defined for all t > 0.

•
∫ +∞
0
‖∇f(x(t))‖22dt < +∞ and limt→∞ ‖∇f(x(t))‖ = 0.

• Any accumulation point x̄ of the trajectory satisfies ∇f(x̄) = 0.

• If in addition f is convex, set f∗ = infx∈Rp f(x) and assume that it is attained at x∗, we
have for any t ∈ R, t > 0,

f(x(t))− f∗ ≤ ‖x0 − x
∗‖22

2t
.

And x(t) →
t→∞

x̄ where x̄ is a global minimizer of f .

Proof. First note that ∇f is continuous and locally Lipschitz so that there is a unique maximal
solution to the initial value problem (Cauchy-Lipschitz). By differentiation, we obtain, for any t
in the interval of definition of the solution,

d

dt
(f(x(t))) = ẋ(t)T∇f(x(t)) = −‖∇f(x(t))‖22.

We deduce that f(x(t)) ≤ f (x0) and by compacity the trajectory remains bounded and is defined
for all t > 0 (sortie de tout compact). Integrating between 0 and T > 0, we obtain f(x(T)) =

f(x(0))−
∫ T
0
‖∇f(x(t))‖22dt. The function f is decreasing allong the trajectory and bounded below

by compacity. This proves the first point. Since f has bounded level sets, the trajectory remains
bounded so that both ∇f and x can be considered to be Lipschtiz. Square integrable Lipschitz
function converge to 0 and this proves that the gradient goes to 0.

The second point is a direct consequence.
For the third point, using convexity of f , we obain

d

dt
‖x(t)− x∗‖22 = −2 〈∇f(x(t)), x(t)− x∗〉 ≤ 2 (f(x∗)− f(x(t))) < 0.

Integrading between 0 and t > 0, we obtain

t(f(x(t))− f∗) ≤
∫ t

0

f(x(s))− f∗ds ≤ 1

2
‖x(0)− x∗‖22

where the first inequality follows because f is decreasing allong the trajectory. For the convergence
of x(t), we have

d

dt
‖x(t)− x∗‖22 ≤ 2 (f(x∗)− f(x(t))) < 0,

so that ‖x(t)−x∗‖22 is decreasing and the trajectory remains bounded. Since x(t) has at least one
accumulation point which attains the minimum of f , x(t) must converge to this point (Opial’s
Lemma).

5.1. GRADIENT DESCENT 51

5.1.2 Convergence of gradient descent

We start with the following Lemma which proof is left as an exercise.

Lemma 5.1.1. Let f : Rp 7→ R be continuously differentiable with L-Lipschitz gradient (L > 0),
then for any x, y ∈ Rp,

|f(y)− f(x)− 〈∇f(x), y − x〉 | ≤ L

2
‖y − x‖22.

Proof. Using the fundamental theorem of calculus, we have, for any x, y

f(y)− f(x) =

∫
t∈[0,1]

〈∇f((1− t)x+ ty), y − x〉 dt

=

∫
t∈[0,1]

〈∇f((1− t)x+ ty)−∇f(x) +∇f(x), y − x〉 dt

= 〈∇f(x), y − x〉+

∫
t∈[0,1]

〈∇f((1− t)x+ t(y))−∇f(x), y − x〉 dt.

We deduce that

|f(y)− f(x)− 〈∇f(x), y − x〉 | =

∣∣∣∣∣
∫
t∈[0,1]

〈∇f((1− t)x+ ty)−∇f(x), y − x〉 dt

∣∣∣∣∣
≤
∫
t∈[0,1]

|〈∇f((1− t)x+ ty)−∇f(x), y − x〉| dt

≤
∫
t∈[0,1]

‖f((1− t)x+ ty)−∇f(x)‖ × ‖y − x‖dt

≤
∫
t∈[0,1]

tL× ‖y − x‖2dt

=
L

2
‖y − x‖2,

which proves the result.

The gradient descent algorithm can be seen as an explicit discretisation of the differential
equation (5.3). It preserves the same qualitative properties as seen in the following proposition.

Proposition 5.1.2. Let f : Rp 7→ R be continuously differentiable with L-Lipschitz gradient and
such that infx∈Rp f(x) > −∞. Consider the algorithm, for x0 ∈ Rp and

xk+1 = xk −
1

L
∇f(xk). (5.4)

Then

• limk→∞ ‖∇f(xk)‖ = 0, (any accumulation point x̄ of the trajectory satisfies ∇f(x̄) = 0).

• If in addition f is convex, set f∗ = infx∈Rp f(x) and assume that it is attained at x∗, we
have for any k ∈ N, k > 0,

f(xk)− f∗ ≤ L‖x0 − x∗‖22
2k

.

Furthermore xk converges to x̄ a global minimum of f

52 CHAPTER 5. FIRST ORDER METHODS

• If in addition f is µ-strongly convex, then we have for any k ∈ N

f(xk+1)− f∗ ≤
(

1− µ

L

)
(f(xk)− f∗).

Proof. The ideas are the same, first, the descent Lemma ensures that for any k ∈ N

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22

= f(xk)− 1

2L
‖∇f(xk)‖22. (5.5)

Note that that f is decreasing allong the iterates of the algorithm. We have

xk+1 = arg min
y∈Rp

f(xk) + 〈∇f(xk), y − xk〉+
L

2
‖y − xk‖22, (5.6)

so that for all y ∈ Rd,

f(xk) + 〈∇f(xk), y − xk〉+
L

2
‖y − xk‖22 (5.7)

= f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22 +

L

2
‖y − xk+1‖22. (5.8)

We obtain

f(x∗) +
L

2
‖x∗ − xk‖22

≥ f(xk) + 〈∇f(xk), x∗ − xk〉+
L

2
‖x∗ − xk‖22 convexity

= f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22 +

L

2
‖xk+1 − x∗‖22 (5.8)

≥ f(xk+1) +
L

2
‖xk+1 − x∗‖22, (5.5)

By summing up, we obtain for any K ∈ N, K ≥ 1,

L

2
‖x∗ − x0‖22 ≥

K∑
k=1

f(xk)− f∗ ≥ K(f(xK)− f∗).

For the last point we have by strong convexity for any x ∈ Rd,

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+
µ

2
‖x∗ − x‖22 ≥ f(x)− 1

2µ
‖∇f(x)‖22

‖∇f(x)‖22 ≥ 2µ(f(x)− f∗)

We have for all k ∈ N,

f(xk+1)− f∗ ≤ f(xk)− f∗ − 1

2L
‖∇f(xk)‖22 ≤ (f(xk)− f∗)

(
1− µ

L

)
.

5.2 Recap on nonsmooth analysis
The following content is treated in greater generality in [55]. In what follows f denotes a lower
semi-continuous convex function on Rp which is finite at least at one point. Lower semi-continuity
refers to the fact that the epigraph is closed:

epif =
{

(x, z) ∈ Rp+1, z ≥ f(x)
}
.

5.2. RECAP ON NONSMOOTH ANALYSIS 53

which is expressed equivalently as for any x ∈ Rp

lim inf
y→x

f(y) ≥ f(x).

The function f is allowed to take value +∞, we denote its domain by

domf = {x ∈ Rp, f(x) < +∞} ,

which is a convex set.

Exercise 5.2.1. Show that a convex function is continuous on the interior of its domain.

5.2.1 Notion of subgradient
Definition 5.2.1. For any x ∈ domf , the subgradient of f denotes the set

∂f(x) = {v ∈ Rp, f(y) ≥ f(x) + 〈v, y − x〉 , ∀y ∈ Rp} .

For x 6∈ domf , ∂f(x) is set to be empty.

We deduce from the definition the generalization of Fermat rule

Theorem 5.2.1. x∗ ∈ arg minx f(x) if and only if 0 ∈ ∂f(x∗).

Proposition 5.2.1. For any x ∈ Rp, ∂f(x) is a closed convex set. Furthermore, at any x ∈
int(domf), ∂f(x) is non empty and bounded

Proof. Closedness and convexity follow from the definition. Take x ∈ Rp and assume that x is in
the interior of the domain of f this means that f is finite around x. The set epif is convex in
Rp+1, and (x, f(x)) belongs to the boundary of epif . Consider a suporting hyperplane of epif at
(x, f(x)) as given by Theorem 4.5.4, this provides a vector v ∈ Rp and a number a ∈ R such that
for all y ∈ domf

az + vT y ≥ af(x) + vTx, ∀z ≥ f(y).

If a = 0 then v is different from 0 and this provides a supporting hyperplane to domf at x which
contradicts the fact that f is finite around x. Hence a 6= 0. It must holda that a > 0 and −va
provides a subgradient for f . Boundedness follows because for any v ∈ ∂f(x),

f

(
x+ v

1

‖v‖3/22

)
≥ f(x) + ‖v‖1/22 ,

if the set of such v was unbounded, the left hand side should remain finite while the right hand
side should diverge to +∞.

Exercise 5.2.2. Let f : Rp 7→ R be a convex function, show that ∂f is sequentialy closed in the
sence that, for any x̄{

v ∈ Rp, ∃ (xk, vk)k∈N , xk → x̄, vk → v, vk ∈ ∂f(xk), f(xk)→ f(x̄)
}
⊂ ∂f(x̄)

Exercise 5.2.3. Let f : Rp 7→ R, show that f is L-Lipschitz if and only if supx∈Rp, v∈∂f(x) ‖v‖2 ≤
L.

Theorem 5.2.2. Let f be convex and lower semicontinuous and finite at least at one point, then
f is the supremum of all its affine minorants: for any x ∈ Rp

f(x) = sup
r∈R,v∈Rp

r + vTx s.t. f(y) ≥ r + vT y, ∀y ∈ Rp.

54 CHAPTER 5. FIRST ORDER METHODS

Proof. epif is a closed set in Rp+1. Reducing the dimension if necessary and restricting to
affine subspaces, we may consider that int(domf) 6= ∅. Fix (x, µ) 6∈ epif , this means that
µ < min{f(x),+∞}. From the separating hyperplane theorem, there exists, v ∈ Rp, β ∈ R
and a ∈ R such that

vT y + βz − a ≤ 0 ∀y ∈ domf , z ≥ f(y)

vTx+ βµ− a > 0.

If β = 0, this means that x 6∈ domf . Consider x̄ ∈ int(domf) and ṽ ∈ ∂f(x̄) (non empty by
Proposition 5.2.1), for any λ ≥ 0 and any y ∈ domf

λ(vT y − a) + ṽT (y − x̄) + f(x̄) ≤ f(y),

So that we have a family of affine minorants of f parametrized by λ ≥ 0. Furthermore, λ(vTx−
a) + ṽT (x− x̄) + f(x̄) can be chosen arbitrarily big as λ→∞ and the supremum is +∞.

Assume that β 6= 0, then β < 0 and we have for any y ∈ domf

1

−β
(vT y − a) ≤ f(y)

and furthermore 1
−β (vTx− a) > µ. We obtain

1

−β
(vT y − a) ≤ f(y), ∀y ∈ domf

µ <
1

−β
(vTx− a) ≤ min{f(x),+∞}

since µ is arbitrary, if f(x) is finite, the supremum over all affine lower bounds is f(x), if it is not
finite, the supremum is +∞.

The following is due to Moreau and Rockafellar

Theorem 5.2.3. For any x ∈ int(domf) and any h ∈ Rp,

Dhf(x) = sup
v∈∂f(x)

〈v, h〉 ,

where Dh denotes the directional derivative of f ,

Dhf(x) = lim
t>0,t→0

f(x+ th)− f(x)

t
.

Proof. By convexity of f , t 7→ (f(x+ th)− f(x))/t is an increasing function of t > 0. Indeed, for
any s > t,

f(x+ th) = f

((
1− t

s

)
x+

t

s
(x+ sh)

)
≤
(

1− t

s

)
f(x) +

t

s
f(x+ sh),

so that

f(x+ th)− f(x)

t
≤ f(x+ sh)− f(x)

s
,

Using the Definition 5.2.1, we have for any v ∈ ∂f(x), any h ∈ Rp and t > 0,

f(x+ th)− f(x)

t
≥ 〈v, h〉

5.2. RECAP ON NONSMOOTH ANALYSIS 55

which shows by letting t→ 0 and taking the supremum on v that

Dhf(x) ≥ sup
v∈∂f(x)

〈v, h〉 .

Hence Dhf(x) is well defined for all h and we have one inequality. The function g : h 7→ Dhf(x)
is convex, has full domain and is positively homogeneous. By Theorem 5.2.2, we have for any h

Dhf(x) = sup
r,v

r + vTh s.t. Dh′(x) ≥ r + vTh′, ∀h′ ∈ Rp.

From positive homogeneity of g, the constraint enforce that for any t > 0, Dth′f(x) = tDh′ ≥
r + tvTh′, ∀h′ ∈ Rp and Dh′f(x) ≥ vTh′, letting t → ∞, so that r may be chosen to be 0. We
deduce that

Dhf(x) = sup
v

vTh s.t. Dh′f(x) ≥ vTh′, ∀h′ ∈ Rp.

We notice that if Dh′f(x) ≥ vTh′, ∀h′ ∈ Rp, then f(x+ h′)− f(x) ≥ vTh′ for all h′ ∈ Rp so that
v is a subgradient of f at x. We obtain

Dhf(x) = sup
v

vTh s.t. Dh′f(x) ≥ vTh′, ∀h′ ∈ Rp

≤ sup
v∈∂f(x)

vTh.

We deduce from this result that f is differentiable at x ∈ int(domf) if and only if ∂f(x) =
{∇f(x)}.

5.2.2 Legendre transform
Definition 5.2.2. Given f convex, the Fenchel-Legendre transform of f is given as follows

f∗ : z 7→ sup
y∈Rp

zT y − f(y)

Theorem 5.2.4. For any f convex, f∗ is convex and for any x, z ∈ Rp

f(x) + f∗(z) ≥ zTx

and the preceeding inequality holds if and only if z ∈ ∂f(x). This is called Fenchel-Young’s
inequality. Furthermore, if f is lower semicontinuous if and only if (f∗)∗ = f .

Proof. Convexity follows because f∗ is the pointwise supremum of affine functions which are convex
and convexity is preserved by pointwise suprema. If we have equality, this means that x attains
the minimum of the convex function y 7→ f(y)− yT z and we must have zero in the subdifferential
of this function at x.

From Fenchel-Young’s inequality, we have that f(x) ≥ zTx − f∗(z) for all z so that taking
the supremum over z, we obtain f(x) ≥ (f∗)∗(x) to get equality, we use Theorem 5.2.2. For any
x ∈ Rp

(f∗)∗(x) = sup
v∈Rp

vTx− f∗(v)

= sup
v∈Rp

vTx− sup
y∈Rp

vT y − f(y)

= sup
v∈Rp

vTx+ inf
y∈Rp

f(y)− vT y

= sup
v∈Rp

vTx+ sup
r∈R

r, s.t. f(y)− vT y ≥ r, ∀y ∈ Rp

= sup
v,r∈Rp

vTx+ r, s.t. f(y) ≥ r + vT y, ∀y ∈ Rp

56 CHAPTER 5. FIRST ORDER METHODS

Hence f∗∗ is the supremum of all affine lower bounds of f . As such it is always lower-semicontinuous
since its graph is an intersection of closed sets which is closed. Furthermore, when f is lower-
semicontinuous, we obtain f∗∗ = f .

Example 5.2.1. Let f : x 7→ maxi xi, compute the subgradient of this function.

5.3 Subgradient descent
Subgradient descent generalizes gradient descent to nonsmooth functions.

Proposition 5.3.1. Let f : Rp 7→ R be a convex function which attains its infimum and has full
domain. Consider the algorithm, for x0 ∈ Rp, a sequence of positive numbers αk > 0, k ∈ N,
iterate

xk+1 = xk − αkvk (5.9)
vk ∈ ∂f(xk). (5.10)

Then for any global minimizer x∗, setting, yk =
∑k
i=0 αixi/

(∑k
i=0 αi

)
min

i=1,...,k
f(xk)− f∗ ≤

‖x0 − x∗‖2 +
∑k
i=0 α

2
i ‖vi‖22

2
∑k
i=0 αi

f(yk)− f∗ ≤
‖x0 − x∗‖2 +

∑k
i=0 α

2
i ‖vi‖22

2
∑k
i=0 αi

.

Proof. We have for any k ∈ N

1

2
‖xk+1 − x∗‖22 =

1

2
‖xk − αkvk − x∗‖22

=
1

2
‖xk − x∗‖22 + αkv

T
k (x∗ − xk) +

α2
k

2
‖vk‖22

≤ 1

2
‖xk − x∗‖22 + αk(f(x∗)− f(xk)) +

α2
k

2
‖vk‖22.

By summing up, we obtain∑k
i=0 αi(f(xi)− f∗)∑k

i=0 αi
≤
‖x0 − x∗‖2 +

∑k
i=0 α

2
i ‖vi‖22

2
∑k
i=0 αi

and the result follows from convexity of f .

Corollary 5.3.1. If f is L-Lipschitz, we have the following convergence result for subgradient
method.

• If αk = α is constant, we have

min
i=1,...,k

f(xk)− f∗ ≤ ‖x0 − x
∗‖2

2(k + 1)α
+
L2α

2
.

• In particular, choosing αi = ‖x0−x∗‖/L√
k+1

, we have

min
i=1,...,k

f(xk)− f∗ ≤ ‖x0 − x
∗‖L√

k + 1
.

5.4. COMPOSITE OPTIMIZATION 57

• Choosing αk = ‖x0 − x∗‖/(L
√
k) for all k, we obtain for all k

min
i=1,...,k

f(xk)− f∗ = O

(
‖x0 − x∗‖2L(1 + log(k))√

k

)
.

Remark 5.3.1. We have for any k ∈ N

1

2
‖xk+1 − x∗‖22 ≤

1

2
‖xk − x∗‖22 +

α2
k

2
‖vk‖22.

If f is Lipschitz, choosing αk = 1/(1 + k)
1
2+ε with ε > 0 small, for all k, we have that (xk)k∈N

converges. Indeed, for any x∗ solution, for any k ∈ N, set uk = ‖xk − x∗‖2, we have,

Sk =

k∑
i=1

(ui − ui−1)+

converges. Setting Rk =
∑k
i=1(ui − ui−1)−, we have uk = Sk +Rk + u0 and since uk ≥ 0 Rk also

converges and finally uk converges.

5.4 Composite optimization
The subgradient method is slow in practice. Furthermore, convergence depends a lot on step size
tuning. In favorable situations there exists better suited algorithms. Good introduction to the
topic of proximal algorithms with connection to statistics and signal processing are found in [26, 6].

5.4.1 Motivation
The Lasso estimator is given by

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1.

This is the solution of a nonsmooth convex optimization problem. The subgradient method can be
used to solve this problem as it can be used to solve any continuous convex optimization problem
for which subgradients are available. However, this method is slow and hard to tune in practice.
It turns out that the objective function has additional structure which can be leveraged to devise
more powerful and easier to implements algorithms. Indeed the objective function is of the form
f + g where f is a smooth (quadratic) convex function and g is the `1 norm, a nonsmooth convex
function. Objective functions falling in this classe are sometimes called “composite objectives”.
Under additional restriction on g (easily computable proximity operator), there exists numerical
algorithm which efficiency is comparable to the that of gradient descent for smooth optimization.

5.4.2 Proximity operator
The construction of the following object is due to Jean-Jacques Moreau [40].

Definition 5.4.1. Given a closed convex function, f : Rd 7→ R, the proximity operator of f is
defined as follows

proxf : z 7→ arg min
y∈Rd

f(y) +
1

2
‖y − z‖22.

By strong convexity, the minimum is attained and is strict.

Note that we have x = proxf (z) if and only if z = ∂f(x) + x and the proximity operator is
someties denoted (∂f + I)−1.

58 CHAPTER 5. FIRST ORDER METHODS

Exercise 5.4.1. Describe the prox applications for the following functions:

• A constant

• A linear function

• The indicator of a closed convex set C:

δ : x 7→
{

0 if x ∈ C
+∞ otherwise

• The function x 7→ 1
2‖x‖

2
2

• The function x 7→ ‖x‖2

• The function x 7→ ‖x‖1
Exercise 5.4.2. Let f and g be convex. Show that ∂(f + g)(x) ⊃ ∂f(x) + ∂g(x) for every x such
that ∂f(x) and ∂g(x) are non empty.

Lemma 5.4.1. Let f : Rp 7→ R be convex continuously differentiable with L-Lipschitz gradient
and g be convex lower semicontinuous. Fix any x ∈ Rp and set

y = proxg/L

(
x− 1

L
∇f(x)

)
.

Then, for any z ∈ Rd,

f(z) + g(z) +
L

2
‖x− z‖22 ≥ f(y) + g(y) +

L

2
‖y − z‖22.

Proof. First, the descent Lemma ensures that for any k ∈ N

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22

(5.11)

We have

y = arg min
y∈Rp

f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22 + g(y), (5.12)

so that by strong convexity, for all z ∈ Rd,

f(x) + 〈∇f(x), z − x〉+
L

2
‖z − x‖22 + g(z)

≥ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22 + g(y) +

L

2
‖z − y‖22. (5.13)

Combining (5.11) and (5.13), we obtain

f(z) + g(z) +
L

2
‖z − x‖22

≥ f(x) + 〈∇f(x), z − x〉+
L

2
‖z − x‖22 + g(z) convexity

≥ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22 + g(y) +

L

2
‖y − z‖22 (5.13)

≥ f(y) + g(y) +
L

2
‖y − z‖22, (5.11)

5.5. ACCELERATION 59

Proposition 5.4.1. Let f : Rp 7→ R be convex continuously differentiable with L-Lipschitz gradient
and g be convex lower semicontinuous such that ρ = infx∈Rp f(x) + g(x) > −∞ is attained at x∗.
Consider the algorithm, for x0 ∈ Rp and

xk+1 = proxg/L

(
xk −

1

L
∇f(xk)

)
. (5.14)

Then xk converges to a global minimum and we have for any k ∈ N, k > 0,

f(xk) + g(xk)− ρ ≤ L‖x0 − x∗‖22
2k

.

If in addition f + g is µ-strongly convex, we have in addition

‖xk+1 − x∗‖22 ≤
L

L+ µ
‖xk − x∗‖22.

Proof. From Lemma 5.4.1 with x = xk = z and y = xk+1 we read that f + g is decreasing along
the sequence. From Lemma 5.4.1 with x = xk z

∗ and y = xk+1 we read that for any k ∈ N

f(x∗) + g(x∗) +
L

2
‖xk − x∗‖22 ≥ f(xk+1) + g(xk+1) +

L

2
‖xk+1 − x∗‖22.

By summing up, we obtain for any K ∈ N, K ≥ 1,

L

2
‖x∗ − x0‖22 ≥

K∑
k=1

f(xk) + g(xk)− ρ ≥ K(f(xK) + g(xK)− ρ).

We also have that ‖xk − x∗‖22 is decreasing and the convergence follows (this is Opial’s Lemma).
For the last statement, Lemma 5.4.1 with y = xk+1, z = x∗ and x = xk combined with µ-strong
convexity gives

f(x∗) + g(x∗) +
L

2
‖xk − x∗‖22 ≥ f(xk+1) + g(xk+1) +

L

2
‖xk+1 − x∗‖22

≥ f(x∗) + g(x∗) +
L+ µ

2
‖xk+1 − x∗‖22,

which is the desired result.

5.5 Acceleration

We have obtained 1/k convergence rates for the gradient algorithm and the proximal gradient
algorithm. Could we do better?

5.5.1 A lower bound

This is taken from Bubeck’s book [21] and originally due to Nesterov [45]. Such results first
appeared in the litterature in Newmirovski and Yudin [43].

Definition 5.5.1. A first order method to minimize a smooth convex function f when initiated
at x0 = 0, produces a sequence of points (xi)i∈N such that for any k ∈ N,

xk+1 ∈ span (∇f(x0), . . . ,∇f(xk)) .

60 CHAPTER 5. FIRST ORDER METHODS

Theorem 5.5.1. Let k ≤ (d − 1)/2, L > 0. There exists a convex function f with L-Lipschitz
gradient over Rd, such that for any first order method satisfying definition (5.5.1),

min
1≤s≤k

f(xs)− f(x∗) ≥ 3L

32

‖x0 − x∗‖2

(k + 1)2
.

Proof. In this proof for h : Rd → R we denote h∗ = infx∈Rd h(x). For k ≤ d let Ak ∈ Rd×d be the
symmetric and tridiagonal matrix defined by

(Ak)i,j =

 2, i = j, i ≤ k
−1, j ∈ {i− 1, i+ 1}, i ≤ k, j 6= k + 1
0, otherwise.

We verify that 0 � Ak � 4I since

x>Akx = 2

k∑
i=1

x(i)2 − 2

k−1∑
i=1

x(i)x(i+ 1) = x(1)2 + x(k)2 +

k−1∑
i=1

(x(i)− x(i+ 1))2 ≤ 4

k∑
i=1

x(i)2.

We consider now the following convex function:

f(x) =
L

8
x>A2k+1x−

L

4
x>e1.

For any s = 1, . . . , k, xs must lie in the linear span of e1, . . . , es−1 (because of our assumption on
the black-box procedure). In particular for s ≤ k we necessarily have xs(i) = 0 for i = s, . . . , n,
which implies x>s A2k+1xs = x>s Akxs. In other words, if we denote

fk(x) =
L

8
x>Akx−

L

4
x>e1,

We proved that, for all s ≤ k

f(xs)− f∗ = fk(xs)− f∗2k+1 ≥ f∗k − f∗2k+1.

Thus it simply remains to compute the minimizer x∗k of fk, its norm, and the corresponding
function value f∗k .

The point x∗k is the unique solution in the span of e1, . . . , ek of Akx = e1. One can verify
(Exercise) that it is defined by x∗k(i) = 1− i

k+1 for i = 1, . . . , k. Thus we have:

f∗k =
L

8
(x∗k)>Akx

∗
k −

L

4
(x∗k)>e1 = −L

8
(x∗k)>e1 = −L

8

(
1− 1

k + 1

)
.

Furthermore note that

‖x∗k‖2 =

k∑
i=1

(
1− i

k + 1

)2

=

k∑
i=1

(
i

k + 1

)2

≤ k + 1

3
.

Thus one obtains:

f∗k − f∗2k+1 =
L

4

(
1

k + 1
− 1

2k + 2

)
≥ 3L

32

‖x∗2k+1‖2

(k + 1)2
,

5.5.2 Accelerated algorithm
The previous lower bound shows that there is a gap between the convergence speed of gradient
descent for smooth convex functions and the and the lower bound. It remained an open question
if the gap was due to gradient descent or if it was due to the fact that the lower bound is loose
until Nesterov published in 1983 an algorithm which achieves 1/k2 rate [47]. We extend bellow
the original proof of Nesterov. An extension to the proximal setting has been developped by Beck
and Teboulle in [9].

5.5. ACCELERATION 61

Theorem 5.5.2. Let f : Rp 7→ R be convex continuously differentiable with L-Lipschitz gradient
infx∈Rp f(x) > −∞. Consider the algorithm, for x−1 ∈ Rp, set y0 = x−1, t1 = 1 and for k ∈ N,

xk = yk −
1

L
∇f(yk)

tk+1 =
1 +

√
1 + 4t2k
2

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1). (5.15)

Then for any k ∈ N

f(xk)− f∗ ≤ 4L‖x0 − x∗‖22
(k + 2)2

.

Proof. We introduce the following notation which is taken from the original proof, for any k ∈ N,

pk := (tk − 1)(xk−1 − xk) so that yk+1 = xk −
pk
tk+1

First, we have for any k ≥ 1

tk ≥
1 +

√
4t2k−1 + 1

2
≥ tk−1 +

1

2
≥ t0 +

k

2
= 1 +

k

2
. (5.16)

(t2k+1 − tk+1) = t2k. (5.17)

The main argument of the proof is the following. The sequence {zk}k∈N defined as

zk :=
2t2k
L

(f(xk)− f∗) + ‖pk − xk + x∗‖2, (5.18)

is non-increasing and z0 ≤ 2||x0 − x∗||2. The result can be deduced by combining (5.16) and
(5.18).

We have a series of three inequalities.

pk+1 − xk+1 = pk − xk +
tk+1

L
∇f(yk+1)

pk+1 − xk+1 = (tk+1 − 1)(xk − xk+1)− xk+1

= (tk+1 − 1)xk − tk+1xk+1

= (tk+1 − 1)xk − tk+1

(
yk+1 −

1

L
∇f(yk+1)

)
= (tk+1 − 1)xk − tk+1xk − (tk − 1)(xk − xk−1)− tk+1

L
∇f(yk+1)

= pk − xk +
tk+1

L
∇f(yk+1)

62 CHAPTER 5. FIRST ORDER METHODS

This implies

‖pk+1 − xk+1 + x∗‖22 = ‖pk − xk +
tk+1

L
∇f(yk+1) + x∗‖22

= ‖pk − xk + x∗‖22 + 2

〈
pk − xk + x∗,

tk+1

L
∇f(yk+1)

〉
+
t2k+1

L2
‖∇f(yk+1)‖22

yk+1 = xk −
pk
tk+1〈

pk − xk + x∗,
tk+1

L
∇f(yk+1)

〉
=

〈
pk − yk+1 −

pk
tk+1

+ x∗,
tk+1

L
∇f(yk+1)

〉
=

(tk+1 − 1)

L
〈pk,∇f(yk+1)〉+

tk+1

L
〈x∗ − yk+1,∇f(yk+1)〉

‖pk+1 − xk+1 + x∗‖22 = ‖pk − xk + x∗‖22 + 2
(tk+1 − 1)

L
〈pk,∇f(yk+1)〉

+ 2
tk+1

L
〈x∗ − yk+1,∇f(yk+1)〉+

t2k+1

L2
‖∇f(yk+1)‖22

From the Lipschitz gradient assumption, we obtain

f(xk+1)− f∗ ≤ f(yk+1)− f∗ − 1

2L
‖∇f(yk+1)‖22 ≤ 〈∇f(yk+1), yk+1 − x∗〉 −

1

2L
‖∇f(yk+1)‖22

1

2L
‖∇f(yk+1)‖22 ≤ f(yk+1)− f(xk+1) ≤ f(xk)− f(xk+1)− 1

tk+1
〈pk,∇f(yk+1)〉

Using the last three identities, we obtain

‖pk+1 − xk+1 + x∗‖22 − ‖pk − xk + x∗‖22

= 2
(tk+1 − 1)

L
〈pk,∇f(yk+1)〉+ 2

tk+1

L
〈x∗ − yk+1,∇f(yk+1)〉+

t2k+1

L2
‖∇f(yk+1)‖22

≤ 2tk+1
(tk+1 − 1)

L

(
f(xk)− f(xk+1)− 1

2L
‖∇f(yk+1)‖22

)
+ 2

tk+1

L

(
f∗ − f(xk+1)− 1

2L
‖∇f(yk+1)‖22

)
+
t2k+1

L2
‖∇f(yk+1)‖22

= 2tk+1
(tk+1 − 1)

L
(f(xk)− f∗ + f∗ − f(xk+1)) + 2

tk+1

L
(f∗ − f(xk+1))

= 2
t2k
L

(f(xk)− f∗)− 2
t2k+1

L
(f(xk+1 − f∗))

where we used (5.16) for the last step. This proves that the sequence (zk)k∈N is non increasing.
It remains to compute z0,

z0 =
2

L
(f(x0)− f∗) + ‖x∗ − x0‖2 ≤ 2‖x0 − x∗‖22.

Putting things together

f(xk)− f∗ ≤ Lz0
2t2k
≤ 4L‖x0 − x∗‖22

(k + 2)2
.

5.6. NON CONVEX PROBLEMS 63

5.6 Non convex problems
Most algorithm described in this chapter have extensions to nonconvex problems. In this set-
ting, the only hope is to find first order critical points instead of global minima. The notion of
subgradient in this case has to be treated with a lot of care. A reference on the topic is [54].

64 CHAPTER 5. FIRST ORDER METHODS

Exercises
Exercise 5.6.1. Show that if f : Rd 7→ R is C2 then any accumulation point of the system ẋ =
−∇f(x) is a critical point of f .

Exercise 5.6.2. Let f : Rp 7→ R be a convex function,

• Show that ∂f is sequencialy closed in the sence that, for any x̄{
v ∈ Rp, ∃ (xk, vk)k∈N , xk → x̄, vk → v, f(xk)→ f(x̄)

}
⊂ ∂f(x̄)

• Let f : Rp 7→ R, show that f is L-Lipschitz if and only if supx∈Rp, v∈∂f(x) ‖v‖2 ≤ L.

Exercise 5.6.3.

• Let f : R 7→ R be convex (with full domain), show that for any s < t < u,

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

• Deduce that f is continuous on R.

Exercise 5.6.4.

• Let f : Rp 7→ R be convex (with full domain), show that for any x ∈ Rd and h ∈ Rd∗, with
‖h‖1 < 1, we have

f(x+ h) ≤ (1− ‖h‖1)f (x) + ‖h‖1 max
i=1,...,d

f(x± ei)

where ei are elements of the canonical basis.

• Deduce that f is continuous at x.

• What can you say about an extended valued convex function which domain has nonempty
interior?

Exercise 5.6.5. Let ‖ · ‖ be a norm, it is then convex. Its dual norm is defined by

‖z‖∗ = sup zTx such that ‖x‖ ≤ 1.

Consider the function f : x 7→ ‖x‖, compute the Legendre transform of f .

Exercise 5.6.6. Let fi : Rd 7→ R be convex and differentiable on Rd for i = 1 . . . n. Set F : x 7→
maxi fi(x). Show that

∂F (x) = conv ({∇fi(x), fi(x) = F (x)}) .

How does this result extend to non differentiable convex functions?

Exercise 5.6.7. Let f : Rd 7→ R be convex with full domain. Show that f is upper bounded if and
only if f is constant.

Exercise 5.6.8. Describe the prox applications for the following functions: a constant, a linear
function, the indicator of a closed convex set C:

δ : x 7→
{

0 if x ∈ C
+∞ otherwise

The function x 7→ 1
2‖x‖

2
2, the function x 7→ ‖x‖2, the function x 7→ ‖x‖1

Exercise 5.6.9. Let f and g be convex. Show that ∂(f + g)(x) ⊃ ∂f(x) + ∂g(x) for every x such
that ∂f(x) and ∂g(x) are non empty. What do you think about the reverse inclusion?

Chapter 6

Stochastic approximation

This chapter is dedicated to stochastic approximation for large sums. Stochastic approximation
has a long history starting with Robbins-Monro algorithm [53] with the ODE method [38] from
Ljung and latter extensions, see [11] for a complete exposition and [16]. The idea of using stochastic
approximation in large scale setting gained significance interest in the machine learning littera-
ture see for example [17]. We provide example of non asymptotic convergence rate analyses for
stochastic subgradient and stochastic proximal gradient for finite sums.

6.1 Motivation, large n

6.1.1 Lasso estimator

The Lasso estimator is given as follows:

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1.

We have seen that the optimization problem has a favorable structure which allow to devise efficient
algorithms. Another way to write the same optimization problem is to consider

θ̂`1 ∈ arg min
θ∈Rd

1

n

n∑
i=1

1

2
(xTi θ − yi)2 + λ‖θ‖1,

which actually exhibits an additional sum structure. In this chapter we will be considering opti-
mization problems of the form

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x) + g(x). (6.1)

where fi and g are convex lower semicontinuous convex functions.

6.1.2 Stochastic approximation

To solve problem (6.1), one may use first order methods such as the ones described in the previous
chapter. Computing a subgradient in this case require to compute subgradient of fi, i = 1, . . . , n
and average them. The computational cost is of the order of n subgradient computation and n
vector operations. When n is very large, or even infinite, this could be prohibitive. Intuitively, if
there is redundancy in the elements of the sum, one should be able to take advantage of it. For
example, suppose that fi = f , for all i, then blindly computing the gradient of F has a cost of the
order n× d, while only d operations (computing one gradient would suffice).

65

66 CHAPTER 6. STOCHASTIC APPROXIMATION

More generally, one could rewrite the objective function in (6.1) in the following form:

F : x 7→ E [fI(x)] + g(x),

where I denotes a uniform random variable over {1, . . . , n}. Stochastic approximation, or stochas-
tic optimization algorithm allow to handle such objectives. The main algorithmic step is as follows:

• For any x ∈ Rd,

• Sample i uniformly at random in {1, . . . , n}.

• Perform an algorithmic step using only the value of fi(x) and∇fi(x) or eventually v ∈ ∂fi(x)

The simple example can be extended to more general random variables I and under proper in-
tegrability and domination conditions, one can invert gradient (or subgradient) and expectation,
assuming g = 0 for simplicity

• If for each value of I, fI is continuously differentiable, we then have for any x ∈ Rd,

E [∇fI(x)] = ∇E [fI(x)] = ∇F (x)

• Assume that fI is convex for all realizations of I. Assume that we have access to a random
variable vI such that vI ∈ ∂fI(x) almost surely, then the expectation is convex and

E [vI] ∈ ∂E [fI(x)] = ∂F (x).

Hence the process of using a single element of the sum in an algorithm can be seen as performing
optimization based on noisy unbiased estimates of the gradient, or subgradient, of the objective.
This intuition is described more formaly in the coming section.

6.2 Prototype stochastic approximation algorithm
This section describes Robbins-Monro algorithm for stochastic approximation. Consider a Lips-
chitz map h : Rp 7→ Rp, the goal is to find a zero of h. The operator only has access to unbiased
noisy estimates of h. The Robins-Monro algorithm is described as follows, (Xk)k∈N is a sequence
of random variables such that for any k ∈ N

Xk+1 = Xk + αk (h(Xk) +Mk+1) (6.2)

where

• (αk)k∈N is a sequence of positive step sizes satisfying

n∑
i=1

αk = +∞

n∑
i=1

α2
k < +∞

• (Mk)k∈N is a martingale difference sequence with respect to the increasing family of σ-fields

Fk = σ(Xm,Mm,m ≤ k) = σ(X0,M1, . . . ,Mk).

This means that E [Mk+1|Fk] = 0, for all k ∈ N.

• In addition, we assume that there exists a positive constant C such that

sup
k∈N

E
[
‖Mk+1‖22|Fk

]
≤ C.

6.3. THE ODE APPROACH 67

The intuition here is that our hypotheses on the step size ensure that the quantity
∑+∞
k=0 E

[
α2
k‖Mk+1‖2|Fk

]
is finite and hence the zero mean martingale

∑K
k=0 αkMk+1 has square summable increments and

converges to a square integrable random varible M in Rp both almost surely and in L2 (see for
example [29, Section 5.4]).

The long term behaviour of such recursions is at the heart of the field of stochastic approx-
imation. The fact that the step sizes tends to 0 and that the sum of perturbation stabilizes
suggests that in the limit one obtains trajectories of a continuous time differential equation. This
is formalized in the next section.

6.3 The ODE approach

For optimization we may choose h = −∇F (x) assuming that F has Lispchitz gradient. We consider
Robbins-Monro algorithm in this setting. This idea dates back to Ljung [38], see also [11] for an
advanced presentation. An accessible exposition of the following result is found in [16],

Theorem 6.3.1. Conditioning on boundedness of {Xk}k∈N, almost surely, the (random) set of
accumulation point of the sequence is compact connected and invariant by the flow generated by
the continuous time limit:

ẋ = h(x).

This theorems means that for any x̄ accumulation point of the algorithm, the unique solution
x : t 7→ Rp of the continuous time ODE satisfying x(0) = x̄ remains bounded for all t ∈ R. This
allows to conclude in the convex case.

Corollary 6.3.1. If F is convex, differentiable and attains its minimum, setting h = −∇F ,
conditioning on the event that supk∈N ‖Xk‖ is finite, almost surely, all the accumulation points of
Xk are critical points of F .

Proof. Fix x̄ ∈ Rp such that ∇F (x̄) 6= 0, this means that F (x̄)−F ∗ > 0. Consider the solution to

ẋ = ∇F (x),

starting at x̄, we have

∂

∂t
F (x(t)) = ‖∇F (x(t))‖22 ≥ 0

∂

∂t
‖x(t)− x∗‖22 = 〈∇F (x(t)), x(t)− x∗〉 ≥ F (x(t))− F ∗ ≥ F (x̄)− F ∗ > 0.

We deduce that F is increasing along the trajectory and diverges, hence the solution escapes any
compact set which means that x̄ does not belong to a compact invariant set.

The power of the ODE approach lies in the fact that it allows to treat much more complicated
situations beyond convexity and differentiability.

6.4 Rates for convex optimization

In the context of convex optimization problems of the form described in the introduction of this
chapter, one can obtain precise covergence rate estimates using elementary arguments.

68 CHAPTER 6. STOCHASTIC APPROXIMATION

6.4.1 Stochastic subgradient descent
Proposition 6.4.1. Consider the problem

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x),

where each fi is convex and L-Lipschitz. Choose x0 ∈ R and a sequence of random variables
(ik)k∈N independently identically distributed uniformly on {1, . . . , n} and a sequence of positive
step sizes (αk)k∈N. Consider the recursion

xk+1 = xk − αkvk (6.3)
vk ∈ ∂fik(xk) (6.4)

Then for all K ∈ N, K ≥ 1

E [F (x̄K)− F ∗] ≤
L‖x0 − x∗‖22 + L2

∑K
k=0 α

2
k

2
∑K
k=0 αk

where x̄K =
∑K
k=0 αkxk∑K
k=0 αk

.

Proof. We fix k ∈ N and condition on i1, . . . , ik so that xk and xk+1 are fixed. We have for any
k ∈ N

1

2
‖xk+1 − x∗‖22 =

1

2
‖xk − αkvk − x∗‖22

=
1

2
‖xk − x∗‖22 + αkv

T
k (x∗ − xk) +

α2
k

2
‖vk‖22

≤ 1

2
‖xk − x∗‖22 + αk(fik(x∗)− fik(xk)) +

α2
k

2
L2.

Conditioning on xk and taking expectation with respect to ik,

E
[

1

2
‖xk+1 − x∗‖22|xk

]
≤ E

[
1

2
‖xk − x∗‖22|xk

]
+
α2
kL

2

2
+ E [αk(fik(x∗)− fik(xk))|xk]

=
1

2
‖xk − x∗‖22 +

α2
kL

2

2
+ αk(F (x∗)− F (xk)).

Taking expectation with respect to xk, using tower property of conditional expectation, we have

E
[

1

2
‖xk+1 − x∗‖22

]
≤ E

[
1

2
‖xk − x∗‖22

]
+
α2
kL

2

2
+ αkE [(F (x∗)− F (xk))] .

By summing up, we obtain, for all K ∈ N, K ≥ 1∑K
k=0 αkE [F (xk)− F ∗]∑k

i=0 αi
≤
‖x0 − x∗‖2 + L2

∑K
k=0 α

2
k

2
∑K
k=0 αi

and the result follows from convexity of f .

Corollary 6.4.1. Under the hypotheses of Proposition 6.4.1, we have the following

• If αk = α is constant, we have

E [F (x̄k)− F ∗] ≤ ‖x0 − x
∗‖2

2(k + 1)α
+
L2α

2
.

6.4. RATES FOR CONVEX OPTIMIZATION 69

• In particular, choosing αi = ‖x0−x∗‖/L√
k+1

, we have

E [F (x̄k)− F ∗] ≤ ‖x0 − x
∗‖L√

k + 1
.

• Choosing αk = ‖x0 − x∗‖/(L
√
k) for all k, we obtain for all k

E [F (x̄k)− F ∗] = O

(
‖x0 − x∗‖2L(1 + log(k))√

k

)
.

6.4.2 Stochastic proximal gradient descent
This method is sometimes called FOBOS in the litterature. I could not find a reference for the
following result.

Proposition 6.4.2. Consider the problem

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x) + g(x)

where each fi is convex with L-Lipschitz gradient and g is convex. Choose x0 ∈ R and a sequence
of random variables (ik)k∈N independently identically distributed uniformly on {1, . . . , n} and a
sequence of positive step sizes (αk)k∈N. Consider the recursion

xk+1 = proxαkg/L (xk − αk/L∇fik(xk)) . (6.5)

Assume the following

• 0 < αk ≤ 1, for all k ∈ N.

• fi and g are G-Lipschitz for all i = 1, . . . , n;

Then for all K ∈ N, K ≥ 1

E [F (x̄K)− F ∗] ≤
L‖x0 − x∗‖22 + 2G2

L

∑K
k=0 α

2
k

2
∑K
k=0 αk

where x̄K =
∑K
k=0 αkxk∑K
k=0 αk

.

Proof. We fix k ∈ N and condition on i1, . . . , ik so that xk and xk+1 are deterministic. Note that
the prox iteration gives

αk
L
∂g(xk+1) + xk+1 = xk −

αk
L
∇fik(xk)

‖xk+1 − xk‖2 ≤ 2G
αk
L

Fix k ∈ N, applying Lemma 5.4.1 with x = xk, z = x∗ and y = xk+1, using the fact that fik has
L/αk Lipschitz gradient,

fik(x∗) + g(x∗) +
L

2αk
‖x∗ − xk‖22 −

L

2αk
‖xk+1 − x∗‖22

≥ fik(xk+1) + g(xk+1)

≥ fik(xk) + g(xk)− 2G‖xk+1 − xk‖2

≥ fik(xk) + g(xk)− 4G2αk
L

70 CHAPTER 6. STOCHASTIC APPROXIMATION

And

αk
L

(fik(xk) + g(xk)− F ∗) ≤ 1

2
‖x∗ − xk‖22 −

1

2
‖xk+1 − x∗‖22 + 4G2α

2
k

L2

We have, considering tower expectation, with respect to ik first and the remaining randomness in
a second step

E
[αk
L

(fik(xk) + g(xk)− F ∗)
]

= E
[
E
[αk
L

(fik(xk) + g(xk)− F ∗)|xk
]]

= E
[
E
[αk
L

(F (xk)− F ∗)|xk
]]

= E
[αk
L

(F (xk)− F ∗)
]

≤ E
[

1

2
‖x∗ − xk‖22

]
− E

[
1

2
‖xk+1 − x∗‖22

]
+ 4G2α

2
k

L2

By summing, we obtain, for any K ∈ N

E
[∑K

k=0 αk(F (xk)− F ∗)
]

∑K
k=0 αk

≤
L‖x0 − x∗‖22 + 2G2

L

∑K
k=0 α

2
k

2
∑K
k=0 αk

and the result follows by Jensen’s inequality.

Corollary 6.4.2. Under the hypotheses of Proposition 7.4.1.

• If αk = α is constant, we have for all k ≥ 1

F (x̄k)− F ∗ ≤ L‖x0 − x∗‖2

2(k + 1)α
+
G2α

L
.

• In particular, choosing αi = 1√
2k+2

, for i = 1 . . . , k, for some k ∈ N, we have

F (x̄k)− F ∗ ≤
L‖x0 − x∗‖22 + G2

L√
2k + 2

.

• Choosing αk = 1/
√

2k + 2 for all k, we obtain for all k

F (xk)− F ∗ = O

(
L‖x0 − x∗‖22 + G2

L log(k)
√

2k + 2

)
.

6.5 Minimizing the population risk
The methods which we have seen can be used to minimize functions of the form

x 7→ EZ [f(x, Z)]

where x denotes some model parameters and Z denotes a random variable describing our popula-
tion. In this case, Z could the input output pair (X,Y) of a regression problem, for which we try
to minimize the exepected prediction error over a certain parametric regression function class F .

R(f) = E
[
(f(X)− Y)2

]
=

∫
X×Y

(f(x)− y))2P (dx, dy).

6.5. MINIMIZING THE POPULATION RISK 71

This can be done by replacing the finite sum by an expectation and sampling of independant
indices by iis samples of the random variable Z. The results are exactly the same.

Such a procedure are usually called “single pass” procedure: given a dataset (xi, yi)
n
i=1 for a

regression problem, performing one pass of a stochastic algorithm, looking at each data point only
once amount to perform n step of the same stochastic algorithm on the population risk.

This illustrates a strong relation between stochastic optimization and statistics. We have seen
that in the linear regression setting, there is no hope to obtain estimators with statistical rates
much faster than 1/n in terms of mean squared error. Similarly, the rates which we obtained for
stochastic algorithms are of the order of 1/

√
k. This is also optimal in a precise sense. These

algorithms provide estimator with statistical efficiency of the order of 1/
√
n.

The gap stands because we considered regression problems with squared loss, a very special
structure, while here the convex functions which we considered are arbitrary. For strongly convex
functions, stochastic optimization algorithms may show faster convergence rate of the order 1/k.

72 CHAPTER 6. STOCHASTIC APPROXIMATION

Chapter 7

Block coordinate methods

Block decomposition methods appeared as alternatives to solve optimization problems involving
large number of dimensions. The idea is to reduce the complexity of a single iteration by updating
only a few coordinates at a time. The use of such methods was advocated by Nesterov [44],
extensions such as [50] appeared in the continuity of these works. The survey [64] is a good entry
point to the litterature.

7.1 Motivation, large d

The Lasso estimator is given as follows:

θ̂`1 ∈ arg min
θ∈Rd

1

2n
‖Xθ − Y ‖2 + λ‖θ‖1.

We have seen that the optimization problem has a favorable structure which allow to devise
efficient algorithms. The cost of each iteration is depends on the dimension (here d2) which for
some problems may be limiting. A possible alternative is to update coordinates independantly,
reducing the cost of each iteration.

In general, this approach is not convergent for nonsmooth functions (can you see why?), how-
ever, the Lasso problem, despite being nonsmooth, fits coordinate descent methods because the
nonsmooth part is separable. We shall see two variations of such algorithms, deterministic and
random, with convergence rate estimates in both cases. A good introduction to the topic cand be
found in [64] and a pioneering work in optimization is described in [44]. The litterature on the
subject has completely exploded in the past years.

7.2 Description of the algorithm
We consider optimization problems of the form

min
x∈Rp

F (x) = f(x) +

p∑
i=1

gi(xi),

where f : Rp 7→ R has L-Lipschitz gradient and gi : R 7→ R are convex lower semicontinuous
univariate functions. We denote by e1, . . . , ep the elements of the canonical basis. Block coordinate
descent algorithms are given a sequence of coordinate indices (ik)k∈N, and, starting at x0 ∈ Rp
updates coordinates one by one at each iteration. For example

xk+1 = arg miny=xk+teik
f(xk) + 〈∇f(xk), y − xk〉+

L

2
‖y − xk‖22 + gik(y)

xk+1 = arg miny=xk+teik
f(y) + gik(y).

73

74 CHAPTER 7. BLOCK COORDINATE METHODS

The first option corresponds to a block proximal gradient algorithm, the second option corresponds
to exact block minimization. Block coordinate descent algorithms are usualy analysed under
coercvity assumptions:

Assumption 7.2.1. The sublevelset {y ∈ Rp, F (y) ≤ F (x0)} is compact, for any y ∈ Rp such
that F (y) ≤ F (x0), ‖y − x∗‖2 ≤ R.

7.3 Convergence rate analysis using random blocks

7.3.1 Smooth setting
The following technical Lemma is classical.

Lemma 7.3.1. Let (Ak)k∈N be a sequence of positive real numbers and γ > 0 be such that

Ak −Ak+1 ≥ γA2
k

then for all k ∈ N, k ≥ 1, Ak ≤ (γk)−1.

Proof. We have for all k ∈ N,

1

Ak+1
− 1

Ak
=
Ak −Ak+1

AkAk+1
≥ γ A2

k

Ak+1Ak
= γ

Ak
Ak+1

≥ γ.

Hence for all k ∈ N,

1

Ak
≥ 1

A0
+ γk ≥ kγ.

Proposition 7.3.1. Consider the problem

min
x∈Rp

f(x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient. Choose x0 ∈ R and a sequence
of random variables (ik)k∈N independently identically distributed uniformly on {1, . . . , p} and a
sequence of positive step sizes. Consider the recursion

xk+1 = xk −
1

L
∇ikf(xk) (7.1)

Then for all k ∈ N, k ≥ 1

E [f(xk)− f∗] ≤ 2pLR2

k
.

Proof. Fix, k ∈ N, and condition on xk and i0, . . . , ik so that xk+1 is deterministic. We remark
that t 7→ f(xk+teik) is convex with L-Lipschitz gradient. Applying Lemma 7.3.1 with x = z = xk,
y = xk+1,

f(xk) ≥ f(xk+1) +
L

2
‖xk+1 − xk‖22 = f(xk+1) +

1

2L
‖∇if(xk)‖22,

and in particular f is decreasing along the sequence. Taking expectation with respect to ik, we
obtain

E [f(xk+1)|xk] ≤ f(xk)− 1

2pL
‖∇f(xk)‖22 (7.2)

7.3. CONVERGENCE RATE ANALYSIS USING RANDOM BLOCKS 75

From convexity, we have f∗ ≥ f(x) − ‖∇f(x)‖‖x − x∗‖ and using the fact that f is decreasing
along the sequence, ‖xk − x∗‖ remains bounded. We have

‖∇f(x)‖22 ≥
(f(xk)− f∗)2

R2

and

E [f(xk+1)|xk]− f∗ ≤ f(xk)− f∗ − 1

2pL
‖∇f(xk)‖22

f(xk)− f∗ − (f(xk)− f∗)2

2pLR2

Taking expectation with respect to xk and using the fact that E
[
Z2
]
≥ E [Z]

2, we obtain

E [f(xk+1)− f∗] ≤ E [f(xk)− f∗]− E [f(xk)− f∗]2

2pLR2
.

Applying Lemma 7.3.1, we obtain for all k ∈ N, k ≥ 1,

E [f(xk)− f∗] ≤ 2pLR2

k
.

7.3.2 Extension to the nonsmooth setting

The following is a simplification of the arguments given in [50].

Proposition 7.3.2. Consider the problem

min
x∈Rd

F (x) := f(x) +

p∑
i=1

gi(x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient, each gi : Rp 7→ R is convex and
lower semicontinuous and only depends on coordinate i. Choose x0 ∈ R and a sequence of random
variables (ik)k∈N independently identically distributed uniformly on {1, . . . , p} and a sequence of
positive step sizes. Consider the recursion

xk+1 = arg minyf(xk) + 〈∇ikf(xk), y − xk〉+
L

2
‖y − xk‖22 + gik(y) (7.3)

= proxgik/L

(
xk −

1

L
∇ikf(xk)

)
. (7.4)

Set C = max
{
LR2, F (x0)− F ∗

}
, where R is given in Assumption 7.2.1, we have, for all k ≥ 1,

E [F (xk)− F ∗] ≤ 2pC

k
.

Proof. Fix, k ∈ N, and condition on xk and i0, . . . , ik so that xk+1 is deterministic. We remark
that t 7→ f(xk+teik) is convex with L-Lipschitz gradient. Noting that the iteration actually solves
a univariate problem, applying Lemma 7.3.1 with x = z = xk, y = xk+1,

f(xk) + gik(xk) ≥ f(xk+1) + gik(xk+1) +
L

2
‖xk+1 − xk‖22.

76 CHAPTER 7. BLOCK COORDINATE METHODS

By assumption, gi depends only on coordinate i so that, gi(xk) = gi(xk+1) for i 6= ik.

F (xk) ≥ F (xk+1) +
L

2
‖xk+1 − xk‖22,

So that F is non increasing along the sequence and for any k ∈ N, ‖xk−x∗‖22 ≤ R2, almost surely.
We write g =

∑p
i=1 gi. From the definition of the proximity operator, we have

f(xk+1) + gik(xk+1) ≤ f(xk) + 〈∇ikf(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22 + gik(xk+1)

F (xk+1) ≤ f(xk) + 〈∇ikf(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22 + gik(xk+1) +

∑
i6=ik

gi(xk).

Since each gi only depends on coordinate i, proxg can be computed coordinate by coordinate.
Taking expectation with respect to ik and setting zk = proxg/L

(
xk − 1

L∇f(xk)
)
, we obtain

E [F (xk+1)|xk] ≤ 1

p

(
f(xk) + 〈∇f(xk), zk − xk〉+

L

2
‖zk − xk‖22 + g(zk)

)
+
p− 1

p
F (xk). (7.5)

By definition of the proximity operator, we have for any y ∈ Rp,

f(xk) + 〈∇f(xk), zk − xk〉+
L

2
‖zk − xk‖22 + g(zk)

≤ f(xk) + 〈∇f(xk), y − xk〉+
L

2
‖y − xk‖22 + g(y)

≤ F (y) +
L

2
‖y − xk‖22

In particular, for any α ∈ [0, 1],

f(xk) + 〈∇f(xk), zk − xk〉+
L

2
‖zk − xk‖22 + g(zk)

≤ F (αx∗ + (1− α)xk) +
α2L

2
‖x∗ − xk‖22

≤ αF (x∗) + (1− α)F (xk) +
α2C

2

The minimum is attained for α = (F (xk)− F ∗)/C ≤ 1 so that

f(xk) + 〈∇f(xk), zk − xk〉+
L

2
‖zk − xk‖22 + g(zk)− F ∗

≤
(

1− F (xk)− F ∗

2C

)
(F (xk)− F ∗)

Pluging this in (7.5), we obtain

E [F (xk+1)|xk]− F ∗ ≤ F (xk)− F ∗

p

(
1− F (xk)− F ∗

2C

)
+
p− 1

p
(F (xk)− F ∗)

= (F (xk)− F ∗)
(

1− F (xk)− F ∗

2pC

)
(7.6)

Taking expectation with respect to xk and using the fact that E[Z2] ≥ E[Z]2, we have

E [F (xk+1)− F ∗] ≤ E[F (xk)− F ∗]− 1

2pC
E[F (xk)− F ∗]2. (7.7)

The result follows from Lemma 7.3.1.

7.4. CONVERGENCE RATES USING DETERMINISTIC BLOCKS 77

7.4 Convergence rates using deterministic blocks
Deterministic block selection may lead to similar theoretical guaranties, there is some computa-
tional overhead, but as we should see, this is affordable for Lasso instances. A broader discussion
on this aspect is found in [48].

Proposition 7.4.1. Consider the problem

min
x∈Rd

f(x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient. Choose x0 ∈ R, and consider
the recursion

xk+1 = xk −
1

L
∇ikf(xk) (7.8)

where ik is the largest block of ∇f(xk) in Euclidean norm. Then for all k ∈ N, k ≥ 1

f(xk)− f∗ ≤ 2pLR2

k
.

Proof. The proof is essentially the same as in Proposition 7.3.1, we have for any k ∈ N,

‖∇f(xk)‖22 ≤ p‖∇if(xk)‖22

and one obtain using the same arguments as in (7.2)

f(xk+1) ≤ f(xk)− 1

2pL
‖∇f(xk)‖22 (7.9)

and the rest of the analysis is the same.

Using similar ideas, one obtains the same behaviour for deterministic block proximal gradient
algorithm.

Proposition 7.4.2. Consider the problem

min
x∈Rd

F (x) := f(x) +

p∑
i=1

gi(x)

where f : Rp 7→ R is convex differentiable with L-Lipschitz gradient, each gi : Rp 7→ R is convex
and lower semicontinuous and only depends on coordinate i. Choose x0 ∈ R and consider the
recursion

xk+1 = arg minyf(xk) + 〈∇ikf(xk), y − xk〉+
L

2
‖y − xk‖22 + gik(y) (7.10)

= proxgik/L

(
xk −

1

L
∇if(xk)

)
. (7.11)

where ik is given by

arg mini

{
〈y − xk,∇if(xk)〉+

L

2
‖y − xk‖22 + g(y)− gi(xk), y = proxgi/L

(
xk −

1

L
∇if(xk)

)}
Set C = max

{
LR2, F (x0)− F ∗

}
, where R is given in Assumption 7.2.1, we have, for all k ≥ 1,

F (xk)− F ∗ ≤ 2pC

k
.

78 CHAPTER 7. BLOCK COORDINATE METHODS

Proof. Using the same arguments as in the proof of Proposition 7.3.2, we obtain for any k ∈ N,

F (xk+1) ≤ f(xk) + 〈∇ikf(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22 + gik(xk+1) +

∑
i 6=ik

gi(xk)

= F (xk) + 〈∇ikf(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖22 + gik(xk+1)− gik(xk).

Since each gi only depends on coordinate i, proxg can be computed coordinate by coordinate.
Setting zk = proxg/L

(
xk − 1

L∇f(xk)
)
, and g =

∑
i gi, we deduce from the definition of ik,

F (xk+1) ≤ F (xk) +
1

p

(
〈∇f(xk), xk+1 − xk〉+

L

2
‖zk − xk‖22 + g(zk+1)− g(xk)

)
= F (xk) +

1

p

(
f(xk) + 〈∇f(xk), zk − xk〉+

L

2
‖zk − xk‖22 + g(zk)− g(xk)− f(xk)

)
=
p− 1

p
F (xk) +

1

p

(
f(xk) + 〈∇f(xk), zk − xk〉+

L

2
‖zk − xk‖22 + g(zk)

)
This is similar to (7.5) and the result follows from the same arguments.

7.5 Comments on complexity for quadratic problems
The Lasso problem is a special case for block descent methods since the objective is quadratic.
This leads to the following remark

• Computing the gradient of the Lasso problem costs a matrix vector product which complexity
is of the order of d2.

• Given θ ∈ Rd and β = XT (Xθ − Y), choosing θ̃ differing from θ in at most one coordinate,
computing XT (Xθ̃ − Y) given β costs only of the order of d operations by only considering
the corresponding column of XTX.

As a consequence the cost of performing one iteration of full proximal gradient for the Lasso
problem is roughly equivalent to the cost of performing d iterations of random block proximal
gradient.

Given the value of the gradient, the added complexity of computing the deterministic block
is of the order of d as it requires only one path through the coordinates of the gradient and the
current estimate θ. Hence the deterministic rule has similar complexity per iteratation as the
random block rules.

Chapter 8

Further reading

We provides a non exhaustive list of themes and references which are connex to the matter treated
in these notes.

• Learning theory [63, 19, 17].

• Compressed sensing [22, 28, 23].

• Conditions for consistency of `1 norm minimization [7, 22, 62, 25].

• Model selection consistency of Lasso [65, 60, 61].

• Stochastic approximation [11, 49, 16, 41].

• Variance reduction in stochastic approximation for finite sums [56, 32, 27].

• Dual methods in learning [58, 5, 31].

• First order methods for nonconvex problems [4, 2? , 30].

• Polynomial optimization [36, 37].

• Tradeoffs in large scale learning and lower bounds [17, 12, 3, 24].

79

80 CHAPTER 8. FURTHER READING

References

Bibliography
[1] Scott Aaronson. Np-complete problems and physical reality. ACM Sigact News, 36(1):30–52,

2005.

[2] Pierre-Antoine Absil, Robert Mahony, and Benjamin Andrews. Convergence of the iterates of
descent methods for analytic cost functions. SIAM Journal on Optimization, 16(2):531–547,
2005.

[3] Alekh Agarwal, Martin J Wainwright, Peter L Bartlett, and Pradeep K Ravikumar.
Information-theoretic lower bounds on the oracle complexity of convex optimization. In Ad-
vances in Neural Information Processing Systems, pages 1–9, 2009.

[4] Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized gauss–seidel methods. Mathematical Programming, 137(1-2):91–129, 2013.

[5] Francis Bach. Duality between subgradient and conditional gradient methods. SIAM Journal
on Optimization, 25(1):115–129, 2015.

[6] Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization
with sparsity-inducing penalties. Foundations and Trends R© in Machine Learning, 4(1):1–106,
2012.

[7] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof of
the restricted isometry property for random matrices. Constructive Approximation, 28(3):
253–263, 2008.

[8] Alexander Barvinok. A course in convexity, volume 54. American Mathematical Soc., 2002.

[9] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[10] Ahron Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis,
algorithms, and engineering applications, volume 2. Siam, 2001.

[11] Michel Benaïm. Dynamics of stochastic approximation algorithms. In Seminaire de proba-
bilites XXXIII, pages 1–68. Springer, 1999.

[12] Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse principal
component detection. In Conference on Learning Theory, pages 1046–1066, 2013.

[13] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[14] Dimitris Bertsimas, Angela King, Rahul Mazumder, et al. Best subset selection via a modern
optimization lens. The annals of statistics, 44(2):813–852, 2016.

81

82 CHAPTER 8. FURTHER READING

[15] Lenore Blum, Mike Shub, Steve Smale, et al. On a theory of computation and complexity
over the real numbers: np-completeness, recursive functions and universal machines. Bulletin
(New Series) of the American Mathematical Society, 21(1):1–46, 1989.

[16] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48.
Springer, 2009.

[17] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in
neural information processing systems, pages 161–168, 2008.

[18] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[19] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning
theory. In Advanced lectures on machine learning, pages 169–207. Springer, 2004.

[20] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[21] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends R© in Machine Learning, 8(3-4):231–357, 2015.

[22] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions
on information theory, 51(12):4203–4215, 2005.

[23] Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. IEEE
signal processing magazine, 25(2):21–30, 2008.

[24] Venkat Chandrasekaran and Michael I Jordan. Computational and statistical tradeoffs via
convex relaxation. Proceedings of the National Academy of Sciences, page 201302293, 2013.

[25] Venkat Chandrasekaran, Benjamin Recht, Pablo A Parrilo, and Alan S Willsky. The convex
geometry of linear inverse problems. Foundations of Computational mathematics, 12(6):805–
849, 2012.

[26] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and engineering, pages
185–212. Springer, 2011.

[27] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in neural
information processing systems, pages 1646–1654, 2014.

[28] David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):
1289–1306, 2006.

[29] Rick Durrett. Probability: theory and examples. Cambridge university press, 2010.

[30] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[31] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML
(1), pages 427–435, 2013.

[32] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[33] Sudeep Kamath. Concentration of measure. Nexus of Information and Computation Theories
Tutorial Week at CIRM, 2016. URL http://www.youtube.com/watch?v=mpbWQbkl8_g#t=
20m15s.

http://www.youtube.com/watch?v=mpbWQbkl8_g#t=20m15s
http://www.youtube.com/watch?v=mpbWQbkl8_g#t=20m15s

BIBLIOGRAPHY 83

[34] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceed-
ings of the sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM,
1984.

[35] Leonid G Khachiyan. Polynomial algorithms in linear programming. Zhurnal Vychislitel’noi
Matematiki i Matematicheskoi Fiziki, 20(1):51–68, 1980.

[36] Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on optimization, 11(3):796–817, 2001.

[37] Jean-Bernard Lasserre. Moments, positive polynomials and their applications, volume 1.
World Scientific, 2010.

[38] Lennart Ljung. Analysis of recursive stochastic algorithms. IEEE transactions on automatic
control, 22(4):551–575, 1977.

[39] David G Luenberger. Optimization by vector space methods. John Wiley & Sons, 1997.

[40] Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math.
France, 93(2):273–299, 1965.

[41] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems,
pages 451–459, 2011.

[42] Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24(2):227–234, 1995.

[43] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983.

[44] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[45] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[46] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex pro-
gramming, volume 13. Siam, 1994.

[47] Yurii E Nesterov. A method for solving the convex programming problem with convergence
rate o (1/kˆ 2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983.

[48] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Co-
ordinate descent converges faster with the gauss-southwell rule than random selection. In
International Conference on Machine Learning, pages 1632–1641, 2015.

[49] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[50] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Mathematical Programming, 144(1-2):
1–38, 2014.

[51] Phillippe Rigollet and Jan-Christian Hütter. High dimensional statistics. Lecture notes (MIT),
2017.

[52] Omar Rivasplata. Subgaussian random variables: An expository note. Unpublished notes,
2012.

84 CHAPTER 8. FURTHER READING

[53] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[54] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 1998.

[55] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 1970.

[56] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[57] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.

[58] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regu-
larized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

[59] Steve Smale. Mathematical problems for the next century. The mathematical intelligencer,
20(2):7–15, 1998.

[60] Samuel Vaiter, Gabriel Peyré, Charles Dossal, and Jalal Fadili. Robust sparse analysis regu-
larization. IEEE Transactions on information theory, 59(4):2001–2016, 2013.

[61] Samuel Vaiter, Gabriel Peyré, and Jalal Fadili. Model consistency of partly smooth regular-
izers. IEEE Transactions on Information Theory, 64(3):1725–1737, 2018.

[62] Sara A Van De Geer, Peter Bühlmann, et al. On the conditions used to prove oracle results
for the lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

[63] Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE transactions
on neural networks, 10(5):988–999, 1999.

[64] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,
2015.

[65] Peng Zhao and Bin Yu. On model selection consistency of lasso. Journal of Machine learning
research, 7(Nov):2541–2563, 2006.

	Introduction
	Motivation
	Overview of regression and learning

	Sub Gaussian random variables
	Introduction and characterization
	Maximal inequalities

	Linear regression
	Introduction
	Least squares and constrained least squares with fixed design
	Finite sample bounds for least squares
	Penalized estimators
	Incoherence and fast rates for Lasso
	Compressed sensing

	Computation, Complexity, Conic Programming
	Introduction
	Computation over Q.
	Karp reduction and NP completeness
	Computation over the reals
	Recap on convexity
	Conic programming

	First order methods
	Gradient descent
	Recap on nonsmooth analysis
	Subgradient descent
	Composite optimization
	Acceleration
	Non convex problems

	Stochastic approximation
	Motivation, large n
	Prototype stochastic approximation algorithm
	The ODE approach
	Rates for convex optimization
	Minimizing the population risk

	Block coordinate methods
	Motivation, large d
	Description of the algorithm
	Convergence rate analysis using random blocks
	Convergence rates using deterministic blocks
	Comments on complexity for quadratic problems

	Further reading

