
Exam M2RI 02/2019: Statistics and optimization (3h)

1 Introduction

Most of this problem is based on the lecture notes and on the following article which provides an
algorithmic view of sparse recovery.

T. Blumensath & M.E. Davies (2009). Iterative hard thresholding for compressed sensing. Applied and
computational harmonic analysis, 27(3), 265-274.

Lecture notes and handwritten notes are allowed. You can answer in english or in french. All sections
will be evaluated independantly, you can use results from one section in another section. Some notations
are slightly different from what have been seen in class. Comments and interpretation of the results are
part of the evaluation.

Notations:

• ‖ · ‖0 denotes the `0 pseudo norm: the number of nonzero entries of a vector. For θ ∈ Rd,
supp(θ) ⊂ {1, . . . , d} is the set of indices of the nonzero entries of θ. Letting | · | denote the size of
a set, we have ‖θ‖0 = |supp(θ)| for any θ ∈ Rd.

• For any S ⊂ {1, . . . , d}, and θ ∈ Rd, we denote by θS ∈ Rd the vectors such that θi = θSi for any
i ∈ S and θSj = 0 for any j 6∈ S.

• For any S ⊂ {1, . . . , d} and X ∈ Rn×d, we denote by XS ∈ Rn×d the matrix which columns indexed
by S are the same as in X and the others are set to 0.

• With these notations, for any S ⊂ {1, . . . , d}, denoting by Sc the complement of S in {1, . . . , d},
we have for any θ ∈ Rd

Xθ = XSθS + XS
c

θS
c

‖θ‖22 = ‖θS‖22 + ‖θSc‖22
supp

(
(XS)Tx

)
⊂ S, ∀x ∈ Rn.

• In particular if supp(θ) ⊂ S, we have Xθ = XSθS and ‖θ‖2 = ‖θS‖2.

1.1 Linear regression with fixed design

Assumption 1.1 (Sparse linear model).

• Denote by X ∈ Rn×d the design matrix. We have:

Y = Xθ∗ + ε ∈ Rn (LM)

• ε is a subgaussian random vector with variance proxy σ2 > 0.

• ‖θ∗‖0 ≤ s for some s ∈ N, s < d/3.

Given the knowledge of X and Y ∈ Rn, our goal is to find θ ∈ Rd with small Mean Squared Error:

MSE(θ) =
1

n
‖X (θ − θ∗) ‖22.
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1.2 RIP condition and Iterative Hard Thresholding algorithm

Definition 1.1 (Restricted isometry property (RIP)). X satisfies the Restricted Isometry Property (RIP)
if for all θ ∈ Rd, with ‖θ‖0 ≤ 3s, it holds that

7

8
‖θ‖22 ≤ ‖Xθ‖22 ≤ ‖θ‖22 (1)

Algorithm 1.1 (Iterative Hard Thresholding). Let Ps : Rd 7→ Rd denotes the projection on the set of
s-sparse vectors,

Ps(θ) ∈ arg min
y∈Rd

‖y − θ‖22 s.t. ‖y‖0 ≤ s. (2)

Given X, Y and s as in Assumption 1.1, we consider the following iterative algorithm. Set θ0 = 0 ∈ Rp
and iterate for k ∈ N.

γk = θk − XT (Xθk − Y ) (3)

θk+1 = Ps(γk) (4)

2 Preliminary on restricted isometry property

In this section we assume that X satisfies the RIP condition as in Assumption 1.1.

2.1 Deterministic results

The RIP condition in Definition 1.1 ensures that the nonzero eigenvalues of (XS)TXS are in [7/8, 1] for
any S ⊂ {1, . . . , d} such that |S| ≤ 3s. In this section S ⊂ {1, . . . , d} with |S| ≤ 3s is fixed, prove the
following

1. For any x ∈ Rn,

‖(XS)Tx‖2 ≤ ‖x‖2 (5)

2. For any θ ∈ Rd,

‖(I − (XS)TXS)θS‖2 ≤
1

8
‖θS‖2 (6)

3. Given S2 ⊂ {1, . . . , d} such that |S2 ∪ S| ≤ 3s and S2 ∩ S = ∅, for any θ ∈ Rd

‖(XS2)TXSθS‖2 ≤
1

8
‖θS‖2. (7)

(Hint: Setting S3 = S2 ∪ S, use the fact that ‖(I − (XS3)TXS3)θS‖22 ≤ 1
64‖θ

S‖22).

2.2 RIP and randomness

In this section ε ∈ Rn denotes a subgaussian random vector with variance proxy σ2 as in Assumption
1.1.

4. For any S ⊂ {1, . . . , d} with |S| ≤ 3s, show that for any t > 0,

P
[
‖(XS)T ε‖22 ≥ t

]
≤ 6|S| exp

(
−t
8σ2

)
(Hint: diagonalize the matrix XS(XS)T ).

5. Deduce that for all t > 0

P
[

max
|S|≤3s

‖(XS)T ε‖22 ≥ t
]
≤
(
d

3s

)
63s exp

(
−t
8σ2

)
. (8)

6. Deduce that for any δ > 0 with probability 1− δ at least, we have

max
|S|≤3s

‖(XS)T ε‖22 ≤ 8σ2 (3s log(6d/s) + log(1/δ)) (9)
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3 Convergence under RIP condition

This section is devoted to the proof of the following result:

Theorem 3.1. Under Assumption 1.1, assuming that X satisfies the RIP condition in Definition 1.1,

for any δ > 0, setting k ≥ max
{

log2

(
‖θ∗‖22
128σ2

)
, 1
}

, we have with probability at least 1− δ

MSE(θk) ≤ 128σ2 (1 + 3s log(6d/s) + log(1/δ))

n
.

For any k ∈ N, we set Sk = supp(θ∗) ∪ supp(θk). Note that |Sk| ≤ 2s for all k ∈ N. We assume that
X satisfies the RIP condition in definition 1.1.

7. Using (2), show that for all k ∈ N

‖θ∗ − θk+1‖2 ≤ 2‖γSk+1

k − θSk+1
∗ ‖2. (10)

8. For all k ∈ N, using γ
Sk+1

k = θ
Sk+1

k −
(
(XSk+1)T (Xθk − Y )

)
deduce that

‖θ∗ − θk+1‖2 ≤ 2‖(I − (XSk+1)TXSk+1)(θ
Sk+1

k − θSk+1
∗ )‖2

+ 2‖(XSk+1)TXSk\Sk+1(θ
Sk\Sk+1

k − θSk\Sk+1
∗ )‖2

+ 2‖(XSk+1)T ε‖2. (11)

9. Using the results of Sections 2.1 and 2.2, show that for any δ > 0, with probability at least 1 − δ
over the random draw of ε in Assumption 1.1, we have for any k ∈ N

‖θ∗ − θk+1‖22 ≤
1

2
‖θ∗ − θk‖22 + 64σ2 (3s log(6d/s) + log(1/δ)) . (12)

10. Prove that for any δ > 0, with probability at least 1− δ over the random draw of ε in Assumption
1.1, for all k ∈ N

‖θk − θ∗‖22 ≤
1

2k
‖θ∗‖22 + 128σ2 (3s log(6d/s) + log(1/δ))

11. Prove Theorem 3.1.

12. Comment on the statistical efficiency of the estimator θ̂ = θk with k as in the previous question.
Make connections with the estimators seen in class.

4 RIP and sparse integral solution to linear systems

We consider the following decision problem: given X and Y fixed, find θ ∈ Zd with ‖θ‖0 ≤ s such that
Xθ = Y . We are interested in the following theorem

Theorem 4.1. There exists an algorithm such that, if X satisfies the RIP condition and Y = Xθ∗ with
θ∗ ∈ Zd, ‖θ∗‖0 ≤ s, then the algorithm computes θ∗ based on the input X and Y in polynomial time.

13. We have seen in class a hardness result for these types of decision problems. Recall this hardness
result and comment on what it implies regarding the possibility to solve the decision problem
efficiently.

14. Let s ∈ N is as in Assumption 1.1 and θ ∈ Rd. Projecting θ on the set of s-sparse vectors amounts
to solve the optimization problem (2). Decribe a polynomial time algorithm to compute Ps(θ).
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15. Assuming that X satisfies the RIP condition as in Assumption 1.1, use (11) and the analysis in
Section 2.1 to show that if a solution θ∗ to the decision problem exists, then after k iteration of
the hard thresholding algorithm.

‖θk − θ∗‖2 ≤
1

2k
‖θ∗‖2.

16. Prove Theorem 4.1.

17. Explain why this is not in contradiction with the first question of this section. Make connec-
tions with estimators seen in class. Comment on the interplay between statistical and algorithmic
efficiency.

5 A descent algorithm

In the following, we set

f : Rd 7→ R

θ 7→ 1

2
‖Xθ − Y ‖22

where X and Y are given in (LM). The goal of this section is to prove that f is decreasing along the
sequence generated by the iterative hard thresholding algorithm.

18. Prove the following identity, for any α, β ∈ Rd:

1

2
αXTXα+ αTXTX(β − α)− 1

2
βTXTXβ = −1

2
(β − α)

T XTX (β − α)

19. Deduce that if X satisfies the RIP property in Definition 1.1, we have for all k ∈ N:

1

2
θTk+1XTXθk+1 ≤

1

2
θTk XTXθk + θTk XTX(θk+1 − θk) +

1

2
‖θk+1 − θk‖22

f(θk+1) ≤ f(θk) +
(
XT (Xθk − Y )

)T
(θk+1 − θk) +

1

2
‖θk+1 − θk‖22

20. Combine the preceeding question with the identity given in (2) to show that f is decreasing along
the sequence (θk)k∈N. Which result of the course does this remind you? What is the difference?
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