Outlier detection

EDOUARD PAUWELS

M2-MAT SID

1/36



Outlier /anomaly detection problems

@ Data cleaning

@ Attack / intrusion detection (IT security)

o Fraud detection (banking, insurance).

@ Medical diagnosis and monitoring of unusual symptoms

@ Industrial monitoring, damage detection, predictive maintenance
@ Image processing, video surveillance

@ Text mining (news detection)

@ Sensor networks, fault / attack

@ etc...
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What is an outlier?

Often used interchangably with anomaly

Hawkins (1980) :

An observation that deviates so much from other observations as to arouse suspicion that it was
generated by a different mechanism.

Johnson (1992) :

An observation in a data set which appears to be inconsistent with the remainder of that set of
data.

Barnett and Lewis (1994) :

An observation that appears to deviate markedly from other members of the sample in which it
occurs
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What is an outlier?

Often used interchangably with anomaly

Hawkins (1980) :

An observation that deviates so much from other observations as to arouse suspicion that it was
generated by a different mechanism.

Johnson (1992) :

An observation in a data set which appears to be inconsistent with the remainder of that set of
data.

Barnett and Lewis (1994) :

An observation that appears to deviate markedly from other members of the sample in which it
occurs

Main ideas :
@ Need a reference distribution, sample.
@ Outliers and non outliers are mixed in the same sample.

@ The proportion of outliers is small
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Different paradigms

Input space : X =R”, neN, S, =(x)_,, xx € X, i=1,...,n.
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Different paradigms

Input space : X =R”, neN, S, =(x)_,, xx € X, i=1,...,n.

@ Supervised :
Binary classification with labels (y;)7_; describing the status (anomaly or not).

Unballanced classes.

o Semi-supervised : knowledge only of the normal class

> S, consists only of points which are not anomalies.
» PU learning : S, has some point labeled as normal and the rest could be eigher normal

or abnormal.

@ Unsupervised :
S, consists in a mixture of normal and a few abnormal examples, we wish to detect

them automatically

We will consider only unsupervised anomaly detection
We will still have labels : evaluate methods performances, only used for test purposes.
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1. What is an outlier?

2. Score based detection
3. Univartiate methods

4. Multivariate approaches

5. Practical
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Score based approaches

Setting :
Training data : S, = (Xi)1<i<n,
Goal : predict y € {0,1} (anomaly or not).
Scoring : Compute a scoring function s,: X — R. sp: x = h(x, x1,...,Xn).
Ground truth : (yi)i<i<n, 0 or 1 (outlier or not), not used for training.
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sn(X), ¥.
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Setting :
Training data : S, = (Xi)1<i<n,
Goal : predict y € {0,1} (anomaly or not).
Scoring : Compute a scoring function s,: X — R. sp: x = h(x, x1,...,Xn).
Ground truth : (yi)i<i<n, 0 or 1 (outlier or not), not used for training.

Evaluation : Need an annotated sample of outliers.

In sample outlier detection : compare s(x;) and y;, i=1,...,n.
Out of sample intrusion / change detection : compare score and class on unseen data
sa(X), .
We will focus on in sample detection : fix a threshold 5 € R and predict for i = 1,...,n,

Anomaly if s,(x;) > 3.
Normal otherwise.

Compare prediction and ground truth (y;)i<i<n

Remark : All the methods which we will see can be used for out of sample anomaly
detection. The evaluation is then close to what is done in supervised learning settings.
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Evaluation metrics : precision and recall

Reality
Abnormal Normal Total
Prediction Abnormal TP FP TP + FP
Normal FN N FN + TN

Total TP+ FN FP+ TN n
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Evaluation metrics : precision and recall

Reality
Abnormal Normal Total
Prediction Abnormal TP FP TP + FP
Normal FN N FN + TN
Total TP+ FN FP+ TN n
Precision TPTFP = \predictedT:nomaliesr
Recall TPTFN = |real a;ll—:malies| .

_ Prx Rec
F1 score F1 =2 x Pror Rec
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Evaluation metrics : precision and recall

In fact : Prediction(5) depends on chosen threshold, TP(3), FP(5), FN(5), TN(3)

Reality
Abnormal Normal Total
... . | Abnormal TP(5) FP(3) TP(5) + FP(5)
Prediction(3) I —Ngrmal 26 TNG) FN(3) + TN(3)
Total TP(5)+ FN(5) FP(5) + TN(5) n
TP(5 TP(s
Preusuon(s) )+(F)P( 5) 7 |predicted an(oznalles(s)|
o . TPE) TP(3)
Recall(s) * TP(5)+FN(5) — |real anomalies(s)| ( TPR( ))
FP(s FP(s
FPR(S) +(T)N( 3) = |real nor(m)al(§)|'
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Evaluation metrics : F1 score

Score dependant evaluation :

@ Choose 5.
Pr(3) X Rec(5)

o Compute Fl-score 2 x Pr(§)+Rec(;)
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Evaluation metrics : F1 score

Score dependant evaluation :

@ Choose 5.

o Compute Fl-score 2 x

Pr(5) X Rec(5)
Pr(5)+Rec(3) *

Question : How to choose 57

No universal rule, depends on the regime considered.

Ex :

>
>

Ex :

>
>

Ex

>
>

known proportion of outliers.

You know that 10% of the data are outliers.
You computed s(x;), i =1,...,n.

known outlier free dataset.

You know that Xi,...,Xn which are not outliers.
You computed s(X;), i =1,...,m.

: semi-supervised approach.

Choose § which has the largest F1-score.
Evaluate using cross validation.

10/36



Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

11/36



Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)
@ Plot precision and recall as function of 5.
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Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)
@ Plot precision and recall as function of 5.
@ Precision recall curve : Precision(5) as a function of Recall(5) for varying 5.
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Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)
@ Plot precision and recall as function of 5.
@ Precision recall curve : Precision(5) as a function of Recall(5) for varying 5.
o Compute AUPR (Area Under the PR curve).
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Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)
@ Plot precision and recall as function of 5.
@ Precision recall curve : Precision(5) as a function of Recall(5) for varying 5.
o Compute AUPR (Area Under the PR curve).

Comments :
@ Compare methods ability to order by degree of outlyingness.
@ Allows to compare methods without having to select §
@ More general but less taylored to certain regimes.
@ In any case : 5 will be needed in practice.
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Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ...

Scoring : Compute a scoring function

Sn: X — R

Sn: X+ h(Xx, X1, ..., Xn, params).
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Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ...

Scoring : Compute a scoring function

Sn: X — R

Sn: X+ h(Xx, X1, ..., Xn, params).

Question : How to tune params?
@ Can be score dependent or independent (F1 score or AUPR).
o Cannot use data twice : for hyper parameter tuning and for model evaluation.

o Unsupervised detection : less prone to overfitting (does not use labels for training).

Tools from supervised learning : cross validation, validation set.
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Practical session

TP_PR_ROC
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1. What is an outlier?
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4. Multivariate approaches

5. Practical
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What could we do in the univariate case ?
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What could we do in the univariate case ?

Interquartile range :

—IQg——

* rrrrr | 2929 99 o
min Msia W
Qo2s  Jos Go.75 Go7s Oultliers

Z-score :

|t = X|

Tx

Sp: t—

Shortcomings and limitations ?
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A case for more advanced methods

A bimodal distribution, Z-score in red.

bimodal distribution

wn
hal
o
o
z 3
c o
0.)
o
Yol
=
o
[=]
=
o I T 1

16/36



(O]
-
(3}
o
@
2
c
3
X
N
h
(O]
fract
(3}
=
()
T
&

J
° -uaa\ l-u'-‘-'
© < N °

K

17/36



4. Multivariate approaches
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Distance based

Distance to the k-th neighbor :
snt x — kdist(x) 1= dist(x, x;)

where x; is the k-th neirest neighbor of x in S, = (xi)i_;.
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Distance to the k-th neighbor

Variation of k

outlier
> 5 o) -~ FALSE
8 R 4 TRUE

e .
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Local Outlier Factor

Ni(x) k nearest neighbors of x
REACH(x, y) = max{kdist(y), dist(x, y)} reachability
-1
1
LRDy(x) = | ¢ > REACH(x,y) Local Reachability Density
YENK(x)
LRD«(y) .
LOF Local lier F
OF«(x) = GNZ( ) LRD: () ocal Outlier Factor
y
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Local Outlier Factor

Ni(x) k nearest neighbors of x
REACH(x, y) = max{kdist(y), dist(x, y)} reachability
-1
LRD(x) = % > REACH(x,y) Local Reachability Density
YENK(x)
LOFk(x) = GNZ( iﬁgi(i) Local Outlier Factor
y k(X

LOF > 1 implies smaller density as neighbors. The LOF is used as a score s,.
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Local Outlier Factor

Variation of k

outlier
FALSE

4 TRUE
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K-means detection

k clusters
@ Perform clustering using

@ s,: x — dist(x, ¢), where c is the centroid the closest to x.
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K-means detection

Variation of the number of clusters
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Likelihood based outlier detection

Family of parametrized models density functions pg :
o Maximum likelihood : 8 € arg maxg 3.7, log(ps(x;))-

@ Score using likelihood : s,: x = ps(x).
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Likelihood based outlier detection

Family of parametrized models density functions pg :
o Maximum likelihood : 8 € arg maxg 3.7, log(ps(x;))-

@ Score using likelihood : s,: x = ps(x).

Mahalanobis distance and Gaussian model :
Sni X > exp (— (x = %) Tyt (x — )‘(,,))

where X, is the empirical mean and %, is the emprirical covariance matrix.
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Gaussian mixture model

Density of the form
K
po: x = Y Tip(x|pi, i)
i=1

where 7, >0, >, 7 =1,
p(x|ux) is the density of the multivariate Gaussian with mean p and covariance X.
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p(x|ux) is the density of the multivariate Gaussian with mean p and covariance X.
Maximum likelihood : using EM algorithm (~ extension of k-means).
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Gaussian Mixture model

Variation of the number of clusters
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Density based

Gaussian kernel with bandwidth o

k(x,y) =

lly=x|
P

1
—e
V2ro

Kernel density estimator :

1 n
e k(x, xi
poi X ?_1 (x, xi)
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Density based

Gaussian kernel with bandwidth o

k(x,y) =

lly=xI12
2

1
—e
V2ro

Kernel density estimator :

1 n
Poi X ;§k(x,x,-)
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Kernel density estimation

Variation of the bandwidth

outlier
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Isolation forest




Isolation forest

@ A tree induces a partition of the space
o A tree is grown randomly by induction.

@ Given a rectangle which contains more than 1 point, we split it in two by chosing
one variable and one threshold randomly.

@ Stop when points are alone in their rectangle.
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Isolation forest

@ A tree induces a partition of the space
o A tree is grown randomly by induction.

@ Given a rectangle which contains more than 1 point, we split it in two by chosing
one variable and one threshold randomly.

@ Stop when points are alone in their rectangle.

A tree provides a notion of depth which can be used as a score to measure abnormality.
An isolation forest consists of several such trees, s, is the average depth across trees.
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Isolation forest

No parameter (number of trees in the forest)

10

outlier
- FALSE
A TRUE
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One class SVM

Main idea, find a ball of minimal radius which encloses all the points :

. 2
min r
reR,ceRP

st |xi—clP<ri=1...,

3
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One class SVM

Main idea, find a ball of minimal radius which encloses all the points :

. 2
min r
reR,ceRP

st |xi—clP<ri=1...,

3

Too restrictive, add slack, v > 0

n
. 5 1
min [l — E &
reR,ceRP ny 4
i—

s.t. ||x,-—c||2§r2—|—£,-, i=1...,n
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One class SVM

Main idea, find a ball of minimal radius which encloses all the points :

. 2
min r
r€R,cERP

st |xi—clP<ri=1...,

3

Too restrictive, add slack, v > 0
1 n
. 2
min r — i
reR,ceRP + nv ,Zlg'
i—
2 2 .
st. |xi—cl"<r+&,i=1...,n

sn is roughly the distance to the center.

33/36



One class SVM

Main idea, find a ball of minimal radius which encloses all the points :

. 2
min r
reR,ceRP

st |xi—clP<ri=1...,

3

Too restrictive, add slack, v > 0
1 n
. 2
min r — i
reR,ceRP + nv ,Zlg'
i—
2 2 .
st. |xi—cl"<r+&,i=1...,n

sn is roughly the distance to the center.

Kernel trick : ¢: x — X € R” sends x to a high (infinite) dimensional feature space.
Implicitely : x; = &(xi), i =1,...,n.
Positive definite kernel (ex : Gaussian) implicitely encodes ¢.
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One class SVM

Gaussian kernel with varying bandwidth

outlier

. FALSE

4 TRUE
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Outliers correspond roughly to boundary of the cloud or low density regions.
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@ The output of some methods is random.
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Outliers correspond roughly to boundary of the cloud or low density regions.
o Many methods
@ Some algorithms are very complex, some are very simple
@ The output of some methods is random.
°

Many parameters.

Caveats :
@ Many ways to choose (or not) the score threshold.

@ Tune hyperparameters, similar as supervised learning.

Exercise : For each method that we have seen describe

© How many parameters?
@ |s the computed score random ?
> if you run the algorithm twice, do you get the same result ?

@ Do anomaly correspond to large or small values of the score ?
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5. Practical
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