Outlier detection

Edouard Pauwels

M2-MAT SID

Outlier /anomaly detection problems

- Data cleaning
- Attack / intrusion detection (IT security)
- Fraud detection (banking, insurance).
- Medical diagnosis and monitoring of unusual symptoms
- Industrial monitoring, damage detection, predictive maintenance
- Image processing, video surveillance
- Text mining (news detection)
- Sensor networks, fault / attack
- etc. .

What is an outlier?

Often used interchangably with anomaly

Hawkins (1980) :

An observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism.
Johnson (1992) :
An observation in a data set which appears to be inconsistent with the remainder of that set of data.

Barnett and Lewis (1994) :

An observation that appears to deviate markedly from other members of the sample in which it occurs

What is an outlier?

Often used interchangably with anomaly

Hawkins (1980) :

An observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism.

Johnson (1992) :
An observation in a data set which appears to be inconsistent with the remainder of that set of data.

Barnett and Lewis (1994) :

An observation that appears to deviate markedly from other members of the sample in which it occurs

Main ideas:

- Need a reference distribution, sample.
- Outliers and non outliers are mixed in the same sample.
- The proportion of outliers is small

Illustration

Different paradigms

Input space : $\mathcal{X}=\mathbb{R}^{p}, n \in \mathbb{N}, S_{n}=\left(x_{i}\right)_{i=1}^{n}, x_{i} \in \mathcal{X}, i=1, \ldots, n$.

Different paradigms

Input space : $\mathcal{X}=\mathbb{R}^{p}, n \in \mathbb{N}, S_{n}=\left(x_{i}\right)_{i=1}^{n}, x_{i} \in \mathcal{X}, i=1, \ldots, n$.

- Supervised :

Binary classification with labels $\left(y_{i}\right)_{i=1}^{n}$ describing the status (anomaly or not). Unballanced classes.

Different paradigms

Input space: $\mathcal{X}=\mathbb{R}^{p}, n \in \mathbb{N}, S_{n}=\left(x_{i}\right)_{i=1}^{n}, x_{i} \in \mathcal{X}, i=1, \ldots, n$.

- Supervised :

Binary classification with labels $\left(y_{i}\right)_{i=1}^{n}$ describing the status (anomaly or not). Unballanced classes.

- Semi-supervised : knowledge only of the normal class
- S_{n} consists only of points which are not anomalies.
- PU learning : S_{n} has some point labeled as normal and the rest could be eigher normal or abnormal.

Different paradigms

Input space : $\mathcal{X}=\mathbb{R}^{p}, n \in \mathbb{N}, S_{n}=\left(x_{i}\right)_{i=1}^{n}, x_{i} \in \mathcal{X}, i=1, \ldots, n$.

- Supervised :

Binary classification with labels $\left(y_{i}\right)_{i=1}^{n}$ describing the status (anomaly or not). Unballanced classes.

- Semi-supervised : knowledge only of the normal class
- S_{n} consists only of points which are not anomalies.
- PU learning : S_{n} has some point labeled as normal and the rest could be eigher normal or abnormal.
- Unsupervised :
S_{n} consists in a mixture of normal and a few abnormal examples, we wish to detect them automatically

We will consider only unsupervised anomaly detection

Different paradigms

Input space : $\mathcal{X}=\mathbb{R}^{p}, n \in \mathbb{N}, S_{n}=\left(x_{i}\right)_{i=1}^{n}, x_{i} \in \mathcal{X}, i=1, \ldots, n$.

- Supervised :

Binary classification with labels $\left(y_{i}\right)_{i=1}^{n}$ describing the status (anomaly or not). Unballanced classes.

- Semi-supervised : knowledge only of the normal class
- S_{n} consists only of points which are not anomalies.
- PU learning : S_{n} has some point labeled as normal and the rest could be eigher normal or abnormal.

- Unsupervised :

S_{n} consists in a mixture of normal and a few abnormal examples, we wish to detect them automatically

We will consider only unsupervised anomaly detection We will still have labels : evaluate methods performances, only used for test purposes.

Outline

1. What is an outlier?
2. Score based detection
3. Univartiate methods
4. Multivariate approaches
5. Practical

Score based approaches

Setting :

Training data: $S_{n}=\left(x_{i}\right)_{1 \leq i \leq n,}$
Goal : predict $y \in\{0,1\}$ (anomaly or not).
Scoring: Compute a scoring function $s_{n}: \mathcal{X} \mapsto \mathbb{R}$. $s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}\right)$. Ground truth : $\left(y_{i}\right)_{1 \leq i \leq n}, 0$ or 1 (outlier or not), not used for training.

Score based approaches

Setting :

Training data: $S_{n}=\left(x_{i}\right)_{1 \leq i \leq n}$,
Goal : predict $y \in\{0,1\}$ (anomaly or not).
Scoring: Compute a scoring function $s_{n}: \mathcal{X} \mapsto \mathbb{R}$. $s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}\right)$.
Ground truth : $\left(y_{i}\right)_{1 \leq i \leq n}, 0$ or 1 (outlier or not), not used for training.

Evaluation : Need an annotated sample of outliers.
In sample outlier detection: compare $s\left(x_{i}\right)$ and $y_{i}, i=1, \ldots, n$.
Out of sample intrusion / change detection : compare score and class on unseen data $s_{n}(\tilde{x}), \tilde{y}$.

Score based approaches

Setting :

Training data: $S_{n}=\left(x_{i}\right)_{1 \leq i \leq n}$,
Goal : predict $y \in\{0,1\}$ (anomaly or not).
Scoring: Compute a scoring function $s_{n}: \mathcal{X} \mapsto \mathbb{R} . s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}\right)$.
Ground truth : $\left(y_{i}\right)_{1 \leq i \leq n}, 0$ or 1 (outlier or not), not used for training.

Evaluation : Need an annotated sample of outliers.
In sample outlier detection: compare $s\left(x_{i}\right)$ and $y_{i}, i=1, \ldots, n$.
Out of sample intrusion / change detection : compare score and class on unseen data

$$
s_{n}(\tilde{x}), \tilde{y}
$$

We will focus on in sample detection: fix a threshold $\bar{s} \in \mathbb{R}$ and predict for $i=1, \ldots, n$,
Anomaly if $s_{n}\left(x_{i}\right) \geq \bar{s}$.
Normal otherwise.
Compare prediction and ground truth $\left(y_{i}\right)_{1 \leq i \leq n}$

Score based approaches

Setting :

Training data: $S_{n}=\left(x_{i}\right)_{1 \leq i \leq n}$,
Goal : predict $y \in\{0,1\}$ (anomaly or not).
Scoring: Compute a scoring function $s_{n}: \mathcal{X} \mapsto \mathbb{R} . s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}\right)$.
Ground truth : $\left(y_{i}\right)_{1 \leq i \leq n}, 0$ or 1 (outlier or not), not used for training.

Evaluation : Need an annotated sample of outliers.
In sample outlier detection: compare $s\left(x_{i}\right)$ and $y_{i}, i=1, \ldots, n$.
Out of sample intrusion / change detection : compare score and class on unseen data

$$
s_{n}(\tilde{x}), \tilde{y}
$$

We will focus on in sample detection: fix a threshold $\bar{s} \in \mathbb{R}$ and predict for $i=1, \ldots, n$,
Anomaly if $s_{n}\left(x_{i}\right) \geq \bar{s}$.
Normal otherwise.
Compare prediction and ground truth $\left(y_{i}\right)_{1 \leq i \leq n}$

Remark : All the methods which we will see can be used for out of sample anomaly detection. The evaluation is then close to what is done in supervised learning settings.

Evaluation metrics : precision and recall

Prediction		Reality		Total$T P+F P$
		Abnormal	Normal	
	Abnormal	TP	$F P$	
	Normal	$F N$	TN	$F N+T N$
	Total	$T P+F N$	$F P+T N$	n

Evaluation metrics : precision and recall

$$
\begin{aligned}
& \text { Precision } \frac{T P}{T P+F P}=\frac{T P}{\mid \text { predicted anomalies } \mid} . \\
& \text { Recall } \frac{T P}{T P+F N}=\frac{T P}{\mid \text { real anomalies } \mid} . \\
& \text { F1 score } \mathrm{F} 1=2 \times \frac{P r \times \text { Rec }}{P r+R e c}
\end{aligned}
$$

Evaluation metrics : precision and recall

In fact : Prediction (\bar{s}) depends on chosen threshold,

Evaluation metrics : precision and recall

In fact : Prediction($\bar{s})$ depends on chosen threshold, $\operatorname{TP}(\bar{s}), F P(\bar{s}), F N(\bar{s}), T N(\bar{s})$

Evaluation metrics : precision and recall

In fact : Prediction($\bar{s})$ depends on chosen threshold, $\operatorname{TP}(\bar{s}), F P(\bar{s}), F N(\bar{s}), T N(\bar{s})$

Evaluation metrics : precision and recall

In fact : Prediction($\bar{s})$ depends on chosen threshold, $\operatorname{TP}(\bar{s}), F P(\bar{s}), F N(\bar{s}), T N(\bar{s})$

Prediction (\bar{s})		Reality		Total$T P(\bar{s})+F P(\bar{s})$
		Abnormal	Normal	
	Abnormal	$T P(\bar{s})$	$F P(\bar{s})$	
	Normal	$F N(\bar{s})$	TN(\bar{s})	$F N(\bar{s})+T N(\bar{s})$
	Total	$P(\bar{s})+F N(\bar{s}$	$(\bar{s})+T N(\bar{s})$	n

$\operatorname{Precision}(\bar{s}): \frac{T P(\bar{s})}{T P(\bar{s})+F P(\bar{s})}=\frac{T P(\bar{s})}{\mid \text { predicted anomalies }(\bar{s}) \mid}$.
$\operatorname{Recall}(\bar{s}): \frac{T P(\bar{s})}{T P(\bar{s})+F N(\bar{s})}=\frac{T P(\bar{s})}{\mid \text { real anomalies }(\bar{s}) \mid}(=\operatorname{TPR}(\bar{s}))$.
$\operatorname{FPR}(\bar{s}): \frac{F P(\bar{s})}{F P(\bar{s})+T N(\bar{s})}=\frac{F P(\bar{s})}{\mid \text { real normal }(\bar{s}) \mid}$.

Evaluation metrics: F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\bar{s})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Evaluation metrics: F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\bar{s})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Question :

Evaluation metrics : F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\bar{s})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Question : How to choose \bar{s} ?

Evaluation metrics : F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\overline{(})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Question : How to choose \bar{s} ?

- No universal rule, depends on the regime considered.

Evaluation metrics: F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\bar{s})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Question : How to choose \bar{s} ?

- No universal rule, depends on the regime considered.
- Ex: known proportion of outliers.
- You know that 10% of the data are outliers.
- You computed $s\left(x_{i}\right), i=1, \ldots, n$.

Evaluation metrics: F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\bar{s})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Question : How to choose \bar{s} ?

- No universal rule, depends on the regime considered.
- Ex: known proportion of outliers.
- You know that 10% of the data are outliers.
- You computed $s\left(x_{i}\right), i=1, \ldots, n$.
- Ex: known outlier free dataset.
- You know that $\tilde{x}_{1}, \ldots, \tilde{x}_{m}$ which are not outliers.
- You computed $s\left(\tilde{x}_{i}\right), i=1, \ldots, m$.

Evaluation metrics: F1 score

Score dependant evaluation :

- Choose \bar{s}.
- Compute F1-score $2 \times \frac{\operatorname{Pr}(\bar{s}) \times \operatorname{Rec}(\bar{s})}{\operatorname{Pr}(\bar{s})+\operatorname{Rec}(\bar{s})}$.

Question : How to choose \bar{s} ?

- No universal rule, depends on the regime considered.
- Ex: known proportion of outliers.
- You know that 10% of the data are outliers.
- You computed $s\left(x_{i}\right), i=1, \ldots, n$.
- Ex: known outlier free dataset.
- You know that $\tilde{x}_{1}, \ldots, \tilde{x}_{m}$ which are not outliers.
- You computed $s\left(\tilde{x}_{i}\right), i=1, \ldots, m$.
- Ex: semi-supervised approach.
- Choose \bar{s} which has the largest F1-score.
- Evaluate using cross validation.

Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

- Plot precision and recall as function of \bar{s}.

Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

- Plot precision and recall as function of \bar{s}.
- Precision recall curve : Precision (\bar{s}) as a function of $\operatorname{Recall}(\bar{s})$ for varying \bar{s}.

Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

- Plot precision and recall as function of \bar{s}.
- Precision recall curve : Precision (\bar{s}) as a function of Recall($\bar{s})$ for varying \bar{s}.
- Compute AUPR (Area Under the PR curve).

Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

- Plot precision and recall as function of \bar{s}.
- Precision recall curve: Precision (\bar{s}) as a function of $\operatorname{Recall}(\bar{s})$ for varying \bar{s}.
- Compute AUPR (Area Under the PR curve).

Comments :

- Compare methods ability to order by degree of outlyingness.
- Allows to compare methods without having to select \bar{s}
- More general but less taylored to certain regimes.
- In any case : \bar{s} will be needed in practice.

Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ...
Scoring : Compute a scoring function

$$
\begin{aligned}
& s_{n}: \mathcal{X} \mapsto \mathbb{R} \\
& s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}, \text { params }\right) .
\end{aligned}
$$

Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ..
Scoring : Compute a scoring function

$$
\begin{aligned}
& s_{n}: \mathcal{X} \mapsto \mathbb{R} \\
& s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}, \text { params }\right)
\end{aligned}
$$

Question :

Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ...
Scoring : Compute a scoring function

$$
\begin{aligned}
& s_{n}: \mathcal{X} \mapsto \mathbb{R} \\
& s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}, \text { params }\right) .
\end{aligned}
$$

Question : How to tune params ?

Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ...
Scoring : Compute a scoring function

$$
\begin{aligned}
& s_{n}: \mathcal{X} \mapsto \mathbb{R} \\
& s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}, \text { params }\right)
\end{aligned}
$$

Question : How to tune params ?

- Can be score dependent or independent (F1 score or AUPR).
- Cannot use data twice : for hyper parameter tuning and for model evaluation.
- Unsupervised detection : less prone to overfitting (does not use labels for training).

Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree ...
Scoring : Compute a scoring function

$$
\begin{aligned}
& s_{n}: \mathcal{X} \mapsto \mathbb{R} \\
& s_{n}: x \mapsto h\left(x, x_{1}, \ldots, x_{n}, \text { params }\right)
\end{aligned}
$$

Question : How to tune params ?

- Can be score dependent or independent (F1 score or AUPR).
- Cannot use data twice : for hyper parameter tuning and for model evaluation.
- Unsupervised detection : less prone to overfitting (does not use labels for training).

Tools from supervised learning : cross validation, validation set.

Practical session

TP_PR_ROC

Outline

1. What is an outlier?
2. Score based detection
3. Univartiate methods
4. Multivariate approaches
5. Practical

What could we do in the univariate case?

What could we do in the univariate case?

Interquartile range :

What could we do in the univariate case?

Interquartile range :

Z-score :

$$
s_{n}: t \mapsto \frac{|t-\bar{x}|}{\sigma_{x}}
$$

What could we do in the univariate case?

Interquartile range :

$9_{0.75}+1.5 \mathrm{IQ}$

Z-score :

$$
s_{n}: t \mapsto \frac{|t-\bar{x}|}{\sigma_{x}}
$$

Shortcomings and limitations?

A case for more advanced methods

A bimodal distribution, Z-score in red.
bimodal distribution

Bi-variate $\neq 2 \times$ univariate

Outline

1. What is an outlier?

2. Score based detection
3. Univartiate methods
4. Multivariate approaches
5. Practical

Distance based

Distance to the k-th neighbor :

$$
s_{n}: x \mapsto k \operatorname{dist}(x):=\operatorname{dist}\left(x, x_{l}\right)
$$

where x_{l} is the k-th neirest neighbor of x in $S_{n}=\left(x_{i}\right)_{i=1}^{n}$.

Distance to the k-th neighbor

Variation of k

Local Outlier Factor

$$
\begin{aligned}
N_{k}(x) & \\
\operatorname{REACH}_{k}(x, y) & =\max \{k \operatorname{dist}(y), \operatorname{dist}(x, y)\} \\
\operatorname{LRD}_{k}(x) & =\left(\frac{1}{k} \sum_{y \in N_{k}(x)} \operatorname{REACH}_{k}(x, y)\right)^{-1} \\
\operatorname{LOF}_{k}(x) & =\frac{1}{k} \sum_{y \in N_{k}(x)} \frac{\operatorname{LRD}_{k}(y)}{\operatorname{LRD}_{k}(x)}
\end{aligned}
$$

k nearest neighbors of x reachability

Local Outlier Factor

Local Outlier Factor

$$
\begin{aligned}
N_{k}(x) & \\
\operatorname{REACH}_{k}(x, y) & =\max \{k \operatorname{dist}(y), \operatorname{dist}(x, y)\} \\
\operatorname{LRD}_{k}(x) & =\left(\frac{1}{k} \sum_{y \in N_{k}(x)} \operatorname{REACH}_{k}(x, y)\right)^{-1} \\
\operatorname{LOF}_{k}(x) & =\frac{1}{k} \sum_{y \in N_{k}(x)} \frac{\operatorname{LRD}_{k}(y)}{\operatorname{LRD}_{k}(x)}
\end{aligned}
$$

k nearest neighbors of x reachability

$$
\begin{array}{rlr}
\operatorname{LRD}_{k}(x)=\left(\frac{1}{k} \sum_{y \in N_{k}(x)} \operatorname{REACH}_{k}(x, y)\right)^{-1} & \text { Local Reachability Density } \\
\operatorname{LOF}_{k}(x) & =\frac{1}{k} \sum_{y \in N_{k}(x)} \frac{\operatorname{LRD}_{k}(y)}{\operatorname{LRD}_{k}(x)} & \text { Local Outlier Factor }
\end{array}
$$

LOF >1 implies smaller density as neighbors. The LOF is used as a score s_{n}.

Local Outlier Factor

Variation of k

K-means detection

k clusters

- Perform clustering using
- $s_{n}: x \mapsto \operatorname{dist}(x, c)$, where c is the centroid the closest to x.

K-means detection

Variation of the number of clusters

Likelihood based outlier detection

Family of parametrized models density functions p_{θ} :

- Maximum likelihood : $\hat{\theta} \in \arg \max _{\theta} \sum_{i=1}^{n} \log \left(p_{\theta}\left(x_{i}\right)\right)$.
- Score using likelihood : $s_{n}: x \mapsto p_{\hat{\theta}}(x)$.

Likelihood based outlier detection

Family of parametrized models density functions p_{θ} :

- Maximum likelihood : $\hat{\theta} \in \arg \max _{\theta} \sum_{i=1}^{n} \log \left(p_{\theta}\left(x_{i}\right)\right)$.
- Score using likelihood : $s_{n}: x \mapsto p_{\hat{\theta}}(x)$.

Mahalanobis distance and Gaussian model :

Likelihood based outlier detection

Family of parametrized models density functions p_{θ} :

- Maximum likelihood : $\hat{\theta} \in \arg \max _{\theta} \sum_{i=1}^{n} \log \left(p_{\theta}\left(x_{i}\right)\right)$.
- Score using likelihood : $s_{n}: x \mapsto p_{\hat{\theta}}(x)$.

Mahalanobis distance and Gaussian model :

$$
s_{n}: x \mapsto \exp \left(-\left(x-\bar{x}_{n}\right) \Sigma_{n}^{-1}\left(x-\bar{x}_{n}\right)\right)
$$

where \bar{x}_{n} is the empirical mean and Σ_{n} is the emprirical covariance matrix.

Mahalanobis

No tuning parameter

Gaussian mixture model

Density of the form

$$
p_{\theta}: x \mapsto \sum_{i=1}^{K} \tau_{i} p\left(x \mid \mu_{i}, \Sigma_{i}\right)
$$

where $\tau_{i}>0, \sum_{i} \tau_{i}=1$, $p\left(x \mid \mu_{\Sigma}\right)$ is the density of the multivariate Gaussian with mean μ and covariance Σ.

Gaussian mixture model

Density of the form

$$
p_{\theta}: x \mapsto \sum_{i=1}^{K} \tau_{i} p\left(x \mid \mu_{i}, \Sigma_{i}\right)
$$

where $\tau_{i}>0, \sum_{i} \tau_{i}=1$, $p\left(x \mid \mu_{\Sigma}\right)$ is the density of the multivariate Gaussian with mean μ and covariance Σ. Maximum likelihood : using EM algorithm (\sim extension of k-means).

Gaussian mixture model

Density of the form

$$
p_{\theta}: x \mapsto \sum_{i=1}^{K} \tau_{i} p\left(x \mid \mu_{i}, \Sigma_{i}\right)
$$

where $\tau_{i}>0, \sum_{i} \tau_{i}=1$, $p\left(x \mid \mu_{\Sigma}\right)$ is the density of the multivariate Gaussian with mean μ and covariance Σ. Maximum likelihood : using EM algorithm (\sim extension of k-means).

Gaussian Mixture model

Variation of the number of clusters

Density based

Gaussian kernel with bandwidth σ

$$
k(x, y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{\|y-x\|^{2}}{\sigma^{2}}}
$$

Kernel density estimator :

$$
p_{\sigma}: x \mapsto \frac{1}{n} \sum_{i=1}^{n} k\left(x, x_{i}\right)
$$

Density based

Gaussian kernel with bandwidth σ

$$
k(x, y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{\|y-x\|^{2}}{\sigma^{2}}}
$$

Kernel density estimator :

$$
p_{\sigma}: x \mapsto \frac{1}{n} \sum_{i=1}^{n} k\left(x, x_{i}\right)
$$

Kernel density estimation

Variation of the bandwidth

Isolation forest

X_{1}

Isolation forest

- A tree induces a partition of the space
- A tree is grown randomly by induction.
- Given a rectangle which contains more than 1 point, we split it in two by chosing one variable and one threshold randomly.
- Stop when points are alone in their rectangle.

Isolation forest

- A tree induces a partition of the space
- A tree is grown randomly by induction.
- Given a rectangle which contains more than 1 point, we split it in two by chosing one variable and one threshold randomly.
- Stop when points are alone in their rectangle.

A tree provides a notion of depth which can be used as a score to measure abnormality. An isolation forest consists of several such trees, s_{n} is the average depth across trees.

Isolation forest

No parameter (number of trees in the forest)

One class SVM

Main idea, find a ball of minimal radius which encloses all the points:

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}, i=1 \ldots, n .
\end{aligned}
$$

One class SVM

Main idea, find a ball of minimal radius which encloses all the points:

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}, i=1 \ldots, n .
\end{aligned}
$$

Too restrictive, add slack, $\nu>0$

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

One class SVM

Main idea, find a ball of minimal radius which encloses all the points:

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}, i=1 \ldots, n .
\end{aligned}
$$

Too restrictive, add slack, $\nu>0$

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

s_{n} is roughly the distance to the center.

One class SVM

Main idea, find a ball of minimal radius which encloses all the points:

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}, i=1 \ldots, n .
\end{aligned}
$$

Too restrictive, add slack, $\nu>0$

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

s_{n} is roughly the distance to the center.

Kernel trick : $\phi: x \mapsto X \in \mathbb{R}^{P}$ sends x to a high (infinite) dimensional feature space. Implicitely : $x_{i} \rightarrow \phi\left(x_{i}\right), i=1, \ldots, n$.
Positive definite kernel (ex: Gaussian) implicitely encodes ϕ.

One class SVM

Gaussian kernel with varying bandwidth

Take away

Outliers correspond roughly to boundary of the cloud or low density regions.

Take away

Outliers correspond roughly to boundary of the cloud or low density regions.

- Many methods
- Some algorithms are very complex, some are very simple
- The output of some methods is random.
- Many parameters.

Take away

Outliers correspond roughly to boundary of the cloud or low density regions.

- Many methods
- Some algorithms are very complex, some are very simple
- The output of some methods is random.
- Many parameters.

Caveats :

- Many ways to choose (or not) the score threshold.
- Tune hyperparameters, similar as supervised learning.

Take away

Outliers correspond roughly to boundary of the cloud or low density regions.

- Many methods
- Some algorithms are very complex, some are very simple
- The output of some methods is random.
- Many parameters.

Caveats:

- Many ways to choose (or not) the score threshold.
- Tune hyperparameters, similar as supervised learning.

Exercise : For each method that we have seen describe

- How many parameters?
- Is the computed score random?
- if you run the algorithm twice, do you get the same result?
- Do anomaly correspond to large or small values of the score?

Outline

1. What is an outlier?

2. Score based detection
3. Univartiate methods
4. Multivariate approaches
5. Practical
