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Outlier /anomaly detection problems

Data cleaning

Attack / intrusion detection (IT security)

Fraud detection (banking, insurance).

Medical diagnosis and monitoring of unusual symptoms

Industrial monitoring, damage detection, predictive maintenance

Image processing, video surveillance

Text mining (news detection)

Sensor networks, fault / attack

etc. . .
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What is an outlier ?

Often used interchangably with anomaly

Hawkins (1980) :

An observation that deviates so much from other observations as to arouse suspicion that it was
generated by a different mechanism.

Johnson (1992) :

An observation in a data set which appears to be inconsistent with the remainder of that set of
data.

Barnett and Lewis (1994) :

An observation that appears to deviate markedly from other members of the sample in which it
occurs

Main ideas :

Need a reference distribution, sample.

Outliers and non outliers are mixed in the same sample.

The proportion of outliers is small
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Illustration
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Different paradigms

Input space : X = Rp, n ∈ N, Sn = (xi )
n
i=1, xi ∈ X , i = 1, . . . , n.

Supervised :
Binary classification with labels (yi )

n
i=1 describing the status (anomaly or not).

Unballanced classes.

Semi-supervised : knowledge only of the normal class
▶ Sn consists only of points which are not anomalies.
▶ PU learning : Sn has some point labeled as normal and the rest could be eigher normal

or abnormal.

Unsupervised :
Sn consists in a mixture of normal and a few abnormal examples, we wish to detect
them automatically

We will consider only unsupervised anomaly detection
We will still have labels : evaluate methods performances, only used for test purposes.
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Outline

1. What is an outlier ?

2. Score based detection

3. Univartiate methods

4. Multivariate approaches

5. Practical
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Score based approaches

Setting :

Training data : Sn = (xi )1≤i≤n,

Goal : predict y ∈ {0, 1} (anomaly or not).

Scoring : Compute a scoring function sn : X 7→ R. sn : x 7→ h(x , x1, . . . , xn).

Ground truth : (yi )1≤i≤n, 0 or 1 (outlier or not), not used for training.

Evaluation : Need an annotated sample of outliers.

In sample outlier detection : compare s(xi ) and yi , i = 1, . . . , n.

Out of sample intrusion / change detection : compare score and class on unseen data
sn(x̃), ỹ .

We will focus on in sample detection : fix a threshold s̄ ∈ R and predict for i = 1, . . . , n,

Anomaly if sn(xi ) ≥ s̄.

Normal otherwise.

Compare prediction and ground truth (yi )1≤i≤n

Remark : All the methods which we will see can be used for out of sample anomaly
detection. The evaluation is then close to what is done in supervised learning settings.
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Evaluation metrics : precision and recall

Reality
Abnormal Normal Total

Prediction
Abnormal TP FP TP + FP
Normal FN TN FN + TN
Total TP + FN FP + TN n

Precision TP
TP+FP

= TP
|predicted anomalies| .

Recall TP
TP+FN

= TP
|real anomalies| .

F1 score F1 = 2× Pr×Rec
Pr+Rec
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Evaluation metrics : precision and recall

In fact : Prediction(s̄) depends on chosen threshold,

TP(s̄), FP(s̄), FN(s̄), TN(s̄)
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|real anomalies(s̄)| (=TPR(s̄)).

FPR(s̄) : FP(s̄)
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|real normal(s̄)| .
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Evaluation metrics : F1 score

Score dependant evaluation :

Choose s̄.

Compute F1-score 2× Pr(s̄)×Rec(s̄)
Pr(s̄)+Rec(s̄)

.

Question : How to choose s̄ ?

No universal rule, depends on the regime considered.

Ex : known proportion of outliers.
▶ You know that 10% of the data are outliers.
▶ You computed s(xi ), i = 1, . . . , n.

Ex : known outlier free dataset.
▶ You know that x̃1, . . . , x̃m which are not outliers.
▶ You computed s(x̃i ), i = 1, . . . ,m.

Ex : semi-supervised approach.
▶ Choose s̄ which has the largest F1-score.
▶ Evaluate using cross validation.
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Evaluation metrics : PR curves

Score independant evaluation : sort examples by score (degree of outlyingness)

Plot precision and recall as function of s̄.
Precision recall curve : Precision(s̄) as a function of Recall(s̄) for varying s̄.
Compute AUPR (Area Under the PR curve).

Comments :
Compare methods ability to order by degree of outlyingness.
Allows to compare methods without having to select s̄
More general but less taylored to certain regimes.
In any case : s̄ will be needed in practice.
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Evaluation metrics, hyperparameters and generalization

Hyperparameters : number of neighbors, polynomial degree . . .

Scoring : Compute a scoring function

sn : X 7→ R
sn : x 7→ h(x , x1, . . . , xn, params).

Question : How to tune params ?

Can be score dependent or independent (F1 score or AUPR).

Cannot use data twice : for hyper parameter tuning and for model evaluation.

Unsupervised detection : less prone to overfitting (does not use labels for training).

Tools from supervised learning : cross validation, validation set.
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Practical session

TP PR ROC
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Outline

1. What is an outlier ?

2. Score based detection

3. Univartiate methods

4. Multivariate approaches

5. Practical
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What could we do in the univariate case ?

Interquartile range :

min
q0.25 q0.5 q0.75

q0.75 + 1.5 IQ

IQ

Outliers

Z-score :

sn : t 7→
|t − x̄ |
σx

Shortcomings and limitations ?
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A case for more advanced methods

A bimodal distribution, Z-score in red.

bimodal distribution
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Bi-variate ̸= 2 × univariate
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5. Practical
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Distance based

Distance to the k-th neighbor :

sn : x 7→ kdist(x) := dist(x , xI )

where xI is the k-th neirest neighbor of x in Sn = (xi )
n
i=1.

19 / 36



Distance to the k-th neighbor

Variation of k
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Local Outlier Factor

A

Nk(x) k nearest neighbors of x

REACHk(x , y) = max {kdist(y),dist(x , y)} reachability

LRDk(x) =

 1

k

∑
y∈Nk (x)

REACHk(x , y)

−1

Local Reachability Density

LOFk(x) =
1

k

∑
y∈Nk (x)

LRDk(y)

LRDk(x)
Local Outlier Factor

LOF > 1 implies smaller density as neighbors. The LOF is used as a score sn.
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Local Outlier Factor

Variation of k
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K-means detection

k clusters

Perform clustering using

sn : x 7→ dist(x , c), where c is the centroid the closest to x .
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K-means detection

Variation of the number of clusters
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Likelihood based outlier detection

Family of parametrized models density functions pθ :

Maximum likelihood : θ̂ ∈ argmaxθ
∑n

i=1 log(pθ(xi )).

Score using likelihood : sn : x 7→ pθ̂(x).

Mahalanobis distance and Gaussian model :

sn : x 7→ exp
(
− (x − x̄n)Σ

−1
n (x − x̄n)

)
where x̄n is the empirical mean and Σn is the emprirical covariance matrix.
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Mahalanobis

No tuning parameter
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Gaussian mixture model

Density of the form

pθ : x 7→
K∑
i=1

τip(x |µi ,Σi )

where τi > 0,
∑

i τi = 1,
p(x |µΣ) is the density of the multivariate Gaussian with mean µ and covariance Σ.

Maximum likelihood : using EM algorithm (∼ extension of k-means).
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Gaussian mixture model

Density of the form

pθ : x 7→
K∑
i=1

τip(x |µi ,Σi )

where τi > 0,
∑

i τi = 1,
p(x |µΣ) is the density of the multivariate Gaussian with mean µ and covariance Σ.
Maximum likelihood : using EM algorithm (∼ extension of k-means).
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Gaussian mixture model

Density of the form

pθ : x 7→
K∑
i=1

τip(x |µi ,Σi )

where τi > 0,
∑

i τi = 1,
p(x |µΣ) is the density of the multivariate Gaussian with mean µ and covariance Σ.
Maximum likelihood : using EM algorithm (∼ extension of k-means).
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Gaussian Mixture model

Variation of the number of clusters
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Density based

Gaussian kernel with bandwidth σ

k(x , y) =
1√
2πσ

e
∥y−x∥2

σ2

Kernel density estimator :

pσ : x 7→ 1

n

n∑
i=1

k(x , xi )
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Kernel density estimation

Variation of the bandwidth
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Isolation forest

A tree induces a partition of the space
A tree is grown randomly by induction.
Given a rectangle which contains more than 1 point, we split it in two by chosing
one variable and one threshold randomly.
Stop when points are alone in their rectangle.

A tree provides a notion of depth which can be used as a score to measure abnormality.
An isolation forest consists of several such trees, sn is the average depth across trees.
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Isolation forest

No parameter (number of trees in the forest)
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One class SVM

Main idea, find a ball of minimal radius which encloses all the points :

min
r∈R,c∈Rp

r 2

s.t. ∥xi − c∥2 ≤ r 2, i = 1 . . . , n.

Too restrictive, add slack, ν > 0

min
r∈R,c∈Rp

r 2 +
1

nν

n∑
i=1

ξi

s.t. ∥xi − c∥2 ≤ r 2 + ξi , i = 1 . . . , n.

sn is roughly the distance to the center.

Kernel trick : ϕ : x 7→ X ∈ RP sends x to a high (infinite) dimensional feature space.
Implicitely : xi → ϕ(xi ), i = 1, . . . , n.
Positive definite kernel (ex : Gaussian) implicitely encodes ϕ.
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One class SVM

Gaussian kernel with varying bandwidth
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Take away

Outliers correspond roughly to boundary of the cloud or low density regions.

Many methods

Some algorithms are very complex, some are very simple

The output of some methods is random.

Many parameters.

Caveats :

Many ways to choose (or not) the score threshold.

Tune hyperparameters, similar as supervised learning.

Exercise : For each method that we have seen describe

How many parameters ?

Is the computed score random?
▶ if you run the algorithm twice, do you get the same result ?

Do anomaly correspond to large or small values of the score ?
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Outline

1. What is an outlier ?

2. Score based detection

3. Univartiate methods

4. Multivariate approaches

5. Practical
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