Kernel methods

Edouard Pauwels

M2-MAT SID

Have you already encountered kernels?

$$
k(x, y)
$$

Learning setting

Suppervised learning

Prediction of a label in $\mathcal{Y} . \mathcal{X}$ is the input feature space.
$\mathcal{D}_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, is the learning sample.
Construct $f_{n}: \mathcal{X} \mapsto \mathcal{Y}$

Unsupervised learning :

Learning sample from the feature space $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$, infer properties of \mathcal{X} (clustering, PCA), construct an oulier detector ...

Learning setting

Suppervised learning

Prediction of a label in $\mathcal{Y} . \mathcal{X}$ is the input feature space.
$\mathcal{D}_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, is the learning sample.
Construct $f_{n}: \mathcal{X} \mapsto \mathcal{Y}$

Unsupervised learning :

Learning sample from the feature space $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$, infer properties of \mathcal{X} (clustering, PCA), construct an oulier detector ...

Kernels :

Induce a new representation of the feature space \mathcal{X} :

- Handle specific characteristics of \mathcal{X} (e.g. non numeric data).
- A general framework for non linear modeling.

Learning setting

Suppervised learning

Prediction of a label in $\mathcal{Y} . \mathcal{X}$ is the input feature space.
$\mathcal{D}_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, is the learning sample.
Construct $f_{n}: \mathcal{X} \mapsto \mathcal{Y}$

Unsupervised learning :

Learning sample from the feature space $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$, infer properties of \mathcal{X} (clustering, PCA), construct an oulier detector...

Kernels :

Induce a new representation of the feature space \mathcal{X} :

- Handle specific characteristics of \mathcal{X} (e.g. non numeric data).
- A general framework for non linear modeling.

Usage :

kernelized supervised learning, kernel smoothing, kernel density estimation, kernel PCA, spectral clustering ...

What is a kernel?

Denote by \mathcal{X} a the space where your intput data lives.

What is a kernel?

Denote by \mathcal{X} a the space where your intput data lives.

- Most often it is \mathbb{R}^{p}.
- More complicated examples :
- Sequences in an alphabet (DNA)
- Graphs (molecules, social networks)
- Large feature space (time series)
- etc...

What is a kernel?

Denote by \mathcal{X} a the space where your intput data lives.

- Most often it is \mathbb{R}^{p}.
- More complicated examples:
- Sequences in an alphabet (DNA)
- Graphs (molecules, social networks)
- Large feature space (time series)
- etc...

What ? A kernel is a symmetric function

$$
k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}
$$

$k(x, z)=k(z, x)$ is a measure of similarity of two inputs x, z (the larger the more similar).

What is a kernel?

Denote by \mathcal{X} a the space where your intput data lives.

- Most often it is \mathbb{R}^{p}.
- More complicated examples:
- Sequences in an alphabet (DNA)
- Graphs (molecules, social networks)
- Large feature space (time series)
- etc...

What ? A kernel is a symmetric function

$$
k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}
$$

$k(x, z)=k(z, x)$ is a measure of similarity of two inputs x, z (the larger the more similar).

Why? Generalize scalar product and Euclidean distances.

What is a kernel?

Denote by \mathcal{X} a the space where your intput data lives.

- Most often it is \mathbb{R}^{p}.
- More complicated examples:
- Sequences in an alphabet (DNA)
- Graphs (molecules, social networks)
- Large feature space (time series)
- etc...

What ? A kernel is a symmetric function

$$
k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}
$$

$k(x, z)=k(z, x)$ is a measure of similarity of two inputs x, z (the larger the more similar).

Why? Generalize scalar product and Euclidean distances.

Kernels are used to

- Extend linear methods (supervised/ unsupervised) to nonlinear methods.
- Handle data which cannot be encoded by vectors (non numeric data, graphs).

Importance of feature space : non linearities

Importance of feature space : non linearities

Main idea : Build a non linear model by constructing a linear model in higher dimension.

Importance of feature space : non numeric data

X

['fndsuninsdunisdissidfundiudsuiffddussusniuifndnfsu',
'idnsudfndidusuiuusidifisfnsdunsiuuuifudnsssfunsidu',
'nddnnfdfnndfudfnfffsnfnfsnsdisnfuisuifsidfundinssn',
'ffsndnunndsdnusidfunisdfiufinnundfdsunnunsudssfffs',
'unudidiifsnndsndsinnuuisnnsnsdsusfuiufdnusdidfdunf',
'suufffiiddiundiiuuudfddsdnsdnnnunddnffnindiuindisd',
'fuisdussudduissufnsnnunsdnufudusfsusiufusiinsnuiid',
'dssisffdnniifidniuffdfdiiisuffduffisfinuusidfundiu',
'isdsuufsuusufnisdsdfsdunnuiididnddiuinsnndduiffuun',
'ifuidfndinufunssunuifunsidffnifdffdsdnsuiffsffffnn',
'uudfsuduufniinnsuiufnsdfdsufnfunsiddsuufifffnfsfnn',
'dundffundfifiiuiuifnuuunuifnisfsuundsffiffsdfufdff',
'fuufdnsinnuddfsnusdfnssfsiiuidfnninfunsidnsfnufusu',
'susufsfinffnddudddsifunidiffnnndddniiunffsidfunnin',

Importance of feature space : non numeric data

X

['fndsuninsdunisdissidfundiudsuiffddussusniuifndnfsu', 'idnsudfndidusuiuusidifisfnsdunsiuuuifudnsssfunsidu', 'nddnnfdfnndfudfnfffsnfnfsnsdisnfuisuifsidfundinssn',
'ffsndnunndsdnusidfunisdfiufinnundfdsunnunsudssfffs',
'unudidiifsnndsndsinnuuisnnsnsdsusfuiufdnusdidfdunf',
'suufffiiddiundiiuuudfddsdnsdnnnunddnffnindiuindisd',
'fuisdussudduissufnsnnunsdnufudusfsusiufusiinsnuiid',
'dssisffdnniifidniuffdfdiiisuffduffisfinuusidfundiu',
'isdsuufsuusufnisdsdfsdunnuiididnddiuinsnndduiffuun',
'ifuidfndinufunssunuifunsidffnifdffdsdnsuiffsffffnn',
'uudfsuduufniinnsuiufnsdfdsufnfunsiddsuufifffnfsfnn',
'dundffundfifiiuiuifnuuunuifnisfsuundsffiffsdfufdff',
'fuufdnsinnuddfsnusdfnssfsiiuidfnninfunsidnsfnufusu',
'susufsfinffnddudddsifunidiffnnndddniiunffsidfunnin',
Main idea : Handle features implicitely only through computation of similarities.

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=
$$

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : Bilinearity :

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$. Bilinearity :

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$.
Bilinearity : $\left\langle x_{1}+x_{2}, z\right\rangle=\left\langle x_{1}, z\right\rangle+\left\langle x_{2}, z\right\rangle, \quad\langle\alpha x, z\rangle=\alpha\langle x, z\rangle, \alpha \in \mathbb{R}$.

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$.
Bilinearity : $\left\langle x_{1}+x_{2}, z\right\rangle=\left\langle x_{1}, z\right\rangle+\left\langle x_{2}, z\right\rangle, \quad\langle\alpha x, z\rangle=\alpha\langle x, z\rangle, \alpha \in \mathbb{R}$.
Design : given a training sample $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p}$ the design matrix represents samples by row :

$$
X=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$.
Bilinearity : $\left\langle x_{1}+x_{2}, z\right\rangle=\left\langle x_{1}, z\right\rangle+\left\langle x_{2}, z\right\rangle, \quad\langle\alpha x, z\rangle=\alpha\langle x, z\rangle, \alpha \in \mathbb{R}$.
Design : given a training sample $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p}$ the design matrix represents samples by row :

$$
X=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

We have for example for $z \in \mathbb{R}^{p}$.
$X z($ size ? $)=$

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$.
Bilinearity : $\left\langle x_{1}+x_{2}, z\right\rangle=\left\langle x_{1}, z\right\rangle+\left\langle x_{2}, z\right\rangle, \quad\langle\alpha x, z\rangle=\alpha\langle x, z\rangle, \alpha \in \mathbb{R}$.
Design : given a training sample $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p}$ the design matrix represents samples by row :

$$
X=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

We have for example for $z \in \mathbb{R}^{p}$.

$$
X z(\text { size ? })=\left(\begin{array}{c}
\left\langle x_{1}, z\right\rangle \\
\left\langle x_{2}, z\right\rangle \\
\vdots \\
\left\langle x_{n}, z\right\rangle
\end{array}\right)
$$

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$.
Bilinearity : $\left\langle x_{1}+x_{2}, z\right\rangle=\left\langle x_{1}, z\right\rangle+\left\langle x_{2}, z\right\rangle, \quad\langle\alpha x, z\rangle=\alpha\langle x, z\rangle, \alpha \in \mathbb{R}$.
Design : given a training sample $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p}$ the design matrix represents samples by row :

$$
X=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

We have for example for $z \in \mathbb{R}^{p}$.

$$
X z\left(\text { size ?) }=\left(\begin{array}{c}
\left\langle x_{1}, z\right\rangle \\
\left\langle x_{2}, z\right\rangle \\
\vdots \\
\left\langle x_{n}, z\right\rangle
\end{array}\right) \quad X X^{T}(\text { size ? })=\right.
$$

Recap on scalar product

x, z vectors in \mathbb{R}^{p}.

$$
\langle x, z\rangle=\sum_{i=1}^{p} x[i] z[i]=x^{T} z
$$

Symmetry : $\langle x, z\rangle=\langle z, x\rangle$.
Bilinearity : $\left\langle x_{1}+x_{2}, z\right\rangle=\left\langle x_{1}, z\right\rangle+\left\langle x_{2}, z\right\rangle, \quad\langle\alpha x, z\rangle=\alpha\langle x, z\rangle, \alpha \in \mathbb{R}$.
Design : given a training sample $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p}$ the design matrix represents samples by row :

$$
X=\left(\begin{array}{ccc}
- & x_{1}^{T} & - \\
- & x_{2}^{T} & - \\
& \vdots & \\
- & x_{n}^{T} & -
\end{array}\right) \in \mathbb{R}^{n \times p}
$$

We have for example for $z \in \mathbb{R}^{p}$.

$$
X z\left(\text { size ?) }=\left(\begin{array}{c}
\left\langle x_{1}, z\right\rangle \\
\left\langle x_{2}, z\right\rangle \\
\vdots \\
\left\langle x_{n}, z\right\rangle
\end{array}\right) \quad X X^{T}(\text { size ? })=\left(\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle & \left\langle x_{1}, x_{2}\right\rangle & \ldots & \left\langle x_{1}, x_{n}\right\rangle \\
\left\langle x_{2}, x_{1}\right\rangle & \left\langle x_{2}, x_{2}\right\rangle & \ldots & \left\langle x_{2}, x_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle x_{n}, x_{1}\right\rangle & \left\langle x_{n}, x_{2}\right\rangle & \ldots & \left\langle x_{n}, x_{n}\right\rangle
\end{array}\right)\right.
$$

Outline

1. Kernels
2. Positive definite kernels
3. Direct application of kernel trick: PCA
4. Kernel methods for supervised prediction : regression
5. Kernel methods for supervised prediction : classification
6. Kernel methods for anomaly detection
7. Conclusion

Gram Matrix

Kernel : throughout $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric function.

Input sample : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,

Gram Matrix

Kernel : throughout $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric function.

Input sample : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,

Exercice (fil rouge) : try to explicit all the notion with the linear kernel $(x, z) \mapsto x^{\top} z$ and \mathcal{D}_{n} given by the design matrix $X \in \mathbb{R}^{n \times p}$.

Gram Matrix

Kernel : throughout $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric function.

Input sample : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,

Exercice (fil rouge) : try to explicit all the notion with the linear kernel $(x, z) \mapsto x^{\top} z$ and \mathcal{D}_{n} given by the design matrix $X \in \mathbb{R}^{n \times p}$.

Gram matrix : representation by pairwise comparison (symmetric ?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Gram Matrix

Kernel : throughout $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric function.

Input sample : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,

Exercice (fil rouge) : try to explicit all the notion with the linear kernel $(x, z) \mapsto x^{\top} z$ and \mathcal{D}_{n} given by the design matrix $X \in \mathbb{R}^{n \times p}$.

Gram matrix : representation by pairwise comparison (symmetric ?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Fil rouge : what is the Gram matrix for the linear kernel (design matrix $X \in \mathbb{R}^{n \times p}$)?

Gram Matrix

Kernel : throughout $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a symmetric function.

Input sample : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,

Exercice (fil rouge) : try to explicit all the notion with the linear kernel $(x, z) \mapsto x^{\top} z$ and \mathcal{D}_{n} given by the design matrix $X \in \mathbb{R}^{n \times p}$.

Gram matrix : representation by pairwise comparison (symmetric ?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Fil rouge : what is the Gram matrix for the linear kernel (design matrix $X \in \mathbb{R}^{n \times p}$) ?

$$
\left(\begin{array}{cccc}
\left\langle x_{1}, x_{1}\right\rangle & \left\langle x_{1}, x_{2}\right\rangle & \ldots & \left\langle x_{1}, x_{n}\right\rangle \\
\left\langle x_{2}, x_{1}\right\rangle & \left\langle x_{2}, x_{2}\right\rangle & \ldots & \left\langle x_{2}, x_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle x_{n}, x_{1}\right\rangle & \left\langle x_{n}, x_{2}\right\rangle & \ldots & \left\langle x_{n}, x_{n}\right\rangle
\end{array}\right)=X X^{T} \in \mathbb{R}^{n \times n}
$$

Representation by pariwise comparison

Representation by pariwise comparison

Example : There is no easy scalar product on the space of strings. But we can measure similarity (number of common substrings).

X
['fndsuninsdunisdissidfundiudsuiffddussusniuifndnfsu', 'idnsudfndidusuiuusidifisfnsdunsiuuuifudnsssfunsidu', 'nddnnfdfnndfudfnfffsnfnfsnsdisnfuisuifsidfundinssn',

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if \ldots

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.
Eigenvalues : If $S \in \mathbb{R}^{n \times n}$ is symmetric then it is \ldots

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.

Eigenvalues : If $S \in \mathbb{R}^{n \times n}$ is symmetric then it is diagonalizable with real eigenvalues

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.

Eigenvalues : If $S \in \mathbb{R}^{n \times n}$ is symmetric then it is diagonalizable with real eigenvalues

Positivity : A symmetric matrix $S \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if one of the following equivalent condition holds:

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.

Eigenvalues : If $S \in \mathbb{R}^{n \times n}$ is symmetric then it is diagonalizable with real eigenvalues

Positivity : A symmetric matrix $S \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if one of the following equivalent condition holds:

- For any $w \in \mathbb{R}^{n}, w^{T} S w \geq 0$.
- All the eigenvalues of S are non negative.

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.

Eigenvalues : If $S \in \mathbb{R}^{n \times n}$ is symmetric then it is diagonalizable with real eigenvalues

Positivity : A symmetric matrix $S \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if one of the following equivalent condition holds:

- For any $w \in \mathbb{R}^{n}, w^{T} S w \geq 0$.
- All the eigenvalues of S are non negative.

Fil rouge : is the gram matrix of the linear kernel $K_{n}=X X^{T}$ psd ?

Recap on positive semidefinite matrices

Symmetric matrix : $S \in \mathbb{R}^{n \times n}$ is symmetric if $S^{T}=S$.

Eigenvalues : If $S \in \mathbb{R}^{n \times n}$ is symmetric then it is diagonalizable with real eigenvalues

Positivity : A symmetric matrix $S \in \mathbb{R}^{n \times n}$ is positive semidefinite (psd) if one of the following equivalent condition holds:

- For any $w \in \mathbb{R}^{n}, w^{T} S w \geq 0$.
- All the eigenvalues of S are non negative.

Fil rouge : is the gram matrix of the linear kernel $K_{n}=X X^{T}$ psd ?

$$
w^{T} X X^{T} w=\left(X^{T} w\right)^{T} X^{T} w=\left\langle X^{T} w, X^{T} w\right\rangle=\left\|X^{T} w\right\|^{2} \geq 0
$$

Positive definite kernel

k is called positive definite if the gram matrix is positive semi-definite

- for any n
- for any dataset $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$.

Positive definite kernel

k is called positive definite if the gram matrix is positive semi-definite

- for any n
- for any dataset $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$.

Why ? Because we want k to behave similarly as a scalar product.

Positive definite kernel

k is called positive definite if the gram matrix is positive semi-definite

- for any n
- for any dataset $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$.

Why ? Because we want k to behave similarly as a scalar product.

Fil rouge : is the linear kernel positive definite?

Examples

Linear kernel : $k:(x, z) \mapsto x^{T} z$ is positive definite.

Examples

Linear kernel : $k:(x, z) \mapsto x^{T} z$ is positive definite.

Feature map : Let \mathcal{X} is any set and $\Phi: \mathcal{X} \mapsto \mathbb{R}^{p}$, then

$$
k:(x, z) \mapsto\langle\Phi(x), \Phi(z)\rangle=\Phi(x)^{T} \Phi(z)
$$

is positive definite.

Examples

Linear kernel : $k:(x, z) \mapsto x^{T} z$ is positive definite.

Feature map : Let \mathcal{X} is any set and $\Phi: \mathcal{X} \mapsto \mathbb{R}^{p}$, then

$$
k:(x, z) \mapsto\langle\Phi(x), \Phi(z)\rangle=\Phi(x)^{T} \Phi(z)
$$

is positive definite.

All positive definite kernels are of this form.

Feature space

Theorem (Aronszajn, 1950) : k is positive definite on \mathcal{X} if and only if there exists a Hilbert space \mathcal{H} and a mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H}
$$

such that for all $x, z \in \mathcal{X}$,

$$
k(x, z)=\langle\Phi(x), \Phi(z)\rangle_{\mathcal{H}} .
$$

Feature space

Theorem (Aronszajn, 1950) : k is positive definite on \mathcal{X} if and only if there exists a Hilbert space \mathcal{H} and a mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H}
$$

such that for all $x, z \in \mathcal{X}$,

$$
k(x, z)=\langle\Phi(x), \Phi(z)\rangle_{\mathcal{H}} .
$$

Warning : \mathcal{H} could have infinite dimension. Φ is only manipulated implicitely through k.

Kernel trick

Start with : a "linear" algorithm formulated only in terms or pairwise inner products $\langle\cdot, \cdot\rangle$. Kernelized version : replace $\langle\cdot, \cdot\rangle$ by a positive definite kernel $k(\cdot, \cdot)$.

Kernel trick

Start with : a "linear" algorithm formulated only in terms or pairwise inner products $\langle\cdot, \cdot\rangle$. Kernelized version : replace $\langle\cdot, \cdot\rangle$ by a positive definite kernel $k(\cdot, \cdot)$.

Example: An algorithm based only onth Gram matrix $X X^{T} \in \mathbb{R}^{n \times n}$ can be obtained by remplacing it by $K_{n} \in \mathbb{R}^{n \times n}$.

Kernel trick

Start with : a "linear" algorithm formulated only in terms or pairwise inner products $\langle\cdot, \cdot\rangle$. Kernelized version : replace $\langle\cdot, \cdot\rangle$ by a positive definite kernel $k(\cdot, \cdot)$.

Example: An algorithm based only onth Gram matrix $X X^{T} \in \mathbb{R}^{n \times n}$ can be obtained by remplacing it by $K_{n} \in \mathbb{R}^{n \times n}$.

Feature space interpretion : This amounts to manipulate a different training set $\mathcal{D}_{n}=\left\{\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right\}$, which is possibly infinite dimensional.

Kernel trick

Start with : a "linear" algorithm formulated only in terms or pairwise inner products $\langle\cdot, \cdot\rangle$. Kernelized version : replace $\langle\cdot, \cdot\rangle$ by a positive definite kernel $k(\cdot, \cdot)$.

Example: An algorithm based only onth Gram matrix $X X^{T} \in \mathbb{R}^{n \times n}$ can be obtained by remplacing it by $K_{n} \in \mathbb{R}^{n \times n}$.

Feature space interpretion : This amounts to manipulate a different training set $\mathcal{D}_{n}=\left\{\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right\}$, which is possibly infinite dimensional.

Remark: No need to compute Φ explicitely if the original algorithm only use values of scalar products.

Examples of positive definite kernels

- Gaussian kernel : $(x, z) \mapsto e^{\frac{-\|x-z\|^{2}}{\sigma^{2}}}, \sigma>0$.
- Polynomial kernel : $(x, z) \mapsto\left(c+x^{t} z\right)^{d}, d \in \mathbb{N}, c \geq 0$.
- Laplacian kernel : $(x, z) \mapsto e^{\frac{-\|x-z\|}{\sigma}}, \sigma>0$.

Examples of positive definite kernels

- Gaussian kernel : $(x, z) \mapsto e^{\frac{-\|x-z\|^{2}}{\sigma^{2}}}, \sigma>0$.
- Polynomial kernel : $(x, z) \mapsto\left(c+x^{t} z\right)^{d}, d \in \mathbb{N}, c \geq 0$.
- Laplacian kernel : $(x, z) \mapsto e^{\frac{-\|x-z\|}{\sigma}}, \sigma>0$.
- Many functions of the form $k(x, z)=\rho(x-z)$.

Examples of positive definite kernels

- Gaussian kernel : $(x, z) \mapsto e^{\frac{-\|x-z\|^{2}}{\sigma^{2}}}, \sigma>0$.
- Polynomial kernel : $(x, z) \mapsto\left(c+x^{t} z\right)^{d}, d \in \mathbb{N}, c \geq 0$.
- Laplacian kernel : $(x, z) \mapsto e^{\frac{-\|x-z\|}{\sigma}}, \sigma>0$.
- Many functions of the form $k(x, z)=\rho(x-z)$.

Further examples include

- Kernels for strings
- Kernels for graphs
- Kernels on graphs
- ...

Outline

1. Kernels
2. Positive definite kernels
3. Direct application of kernel trick: PCA
4. Kernel methods for supervised prediction : regression
5. Kernel methods for supervised prediction : classification
6. Kernel methods for anomaly detection
7. Conclusion

Principal component analysis

Principal component analysis

How is it done?

Principal component analysis

How is it done? Simultaneous diagonalization of covariance $X^{\top} X$ and Gram $X X^{\top}$ matrices.

Kernel PCA

PCA : $X \in \mathbb{R}^{n \times p}$, design matrix. $X X^{T} \in \mathbb{R}^{n \times n}$ the gram matrix. First step :

Kernel PCA

PCA : $X \in \mathbb{R}^{n \times p}$, design matrix. $X X^{T} \in \mathbb{R}^{n \times n}$ the gram matrix. First step : centering the design.

Kernel PCA

PCA : $X \in \mathbb{R}^{n \times p}$, design matrix. $X X^{\top} \in \mathbb{R}^{n \times n}$ the gram matrix. First step : centering the design.

Mean Vector :

$$
m=X^{\top} 1 / n
$$

where $\mathbf{1}$ is the vector of all 1 in dimension n.

Kernel PCA

PCA : $X \in \mathbb{R}^{n \times p}$, design matrix. $X X^{\top} \in \mathbb{R}^{n \times n}$ the gram matrix. First step : centering the design.

Mean Vector :

$$
m=X^{T} 1 / n
$$

where $\mathbf{1}$ is the vector of all 1 in dimension n.

Centered design :

$$
\tilde{X}=X-1 m^{T}=X-11^{T} / n X=X-U X
$$

where $U \in \mathbb{R}^{n \times n}$ has constant entries $1 / n$.

Kernel PCA

PCA : $X \in \mathbb{R}^{n \times p}$, design matrix. $X X^{\top} \in \mathbb{R}^{n \times n}$ the gram matrix.
First step : centering the design.

Mean Vector :

$$
m=X^{\top} 1 / n
$$

where $\mathbf{1}$ is the vector of all 1 in dimension n.

Centered design :

$$
\tilde{X}=X-1 m^{T}=X-11^{T} / n X=X-U X
$$

where $U \in \mathbb{R}^{n \times n}$ has constant entries $1 / n$.

Centered gram matrix :

$$
\tilde{X} \tilde{X}^{T}=(X-U X)(X-U X)^{T}=X X^{T}-U X X^{T}-X X^{T} U+U X X^{T} U
$$

Kernel PCA

PCA : $X \in \mathbb{R}^{n \times p}$, design matrix. $X X^{\top} \in \mathbb{R}^{n \times n}$ the gram matrix.
First step : centering the design.

Mean Vector :

$$
m=X^{\top} 1 / n
$$

where $\mathbf{1}$ is the vector of all 1 in dimension n.

Centered design :

$$
\tilde{X}=X-1 m^{T}=X-11^{T} / n X=X-U X
$$

where $U \in \mathbb{R}^{n \times n}$ has constant entries $1 / n$.

Centered gram matrix :

$$
\tilde{X} \tilde{X}^{\top}=(X-U X)(X-U X)^{\top}=X X^{\top}-U X X^{\top}-X X^{\top} U+U X X^{\top} U
$$

Kernel trick : Centering in feature space using kernel k and Gram matrix K_{n}

$$
\tilde{K}_{n}=K_{n}-U K_{n}-K_{n} U+U K_{n} U
$$

Kernel PCA

PCA : $X^{\top} X$ centered gram matrix.

Kernel PCA

PCA : $X^{\top} X$ centered gram matrix.

Eigendecomposition :

- $v_{1} \in \mathbb{R}^{n}$ eigenvector associated to $\lambda_{1} \geq 0$, the largest eigenvalue of $X X^{T}$ with $\left\|v_{1}\right\|=1$.
- $v_{2} \in \mathbb{R}^{n}$ eigenvector associated to $\lambda_{2} \geq 0$, the second largest eigenvalue of $X X^{T}$ with $\left\|v_{2}\right\|=1$.

Kernel PCA

PCA : $X^{\top} X$ centered gram matrix.

Eigendecomposition :

- $v_{1} \in \mathbb{R}^{n}$ eigenvector associated to $\lambda_{1} \geq 0$, the largest eigenvalue of $X X^{T}$ with $\left\|v_{1}\right\|=1$.
- $v_{2} \in \mathbb{R}^{n}$ eigenvector associated to $\lambda_{2} \geq 0$, the second largest eigenvalue of $X X^{T}$ with $\left\|v_{2}\right\|=1$.

Observations in principal plan : Coordinates of the projection given by $\sqrt{\lambda_{1}} v_{1}$ and $\sqrt{\lambda_{2}} v_{2}$ vectors in \mathbb{R}^{n}.

Kernel PCA : given K_{n},

- Center : $K_{n} \leftarrow K_{n}-U K_{n}-K_{n} U+U K_{n} U$.
- Eigendecomposition of $K_{n}: \lambda_{1}, \lambda_{2} \in \mathbb{R}, v_{1}, v_{2} \in \mathbb{R}^{n}$.
- Principal plan representation: $\sqrt{\lambda_{1}} v_{1}$ and $\sqrt{\lambda_{2}} v_{2}$

Kernel PCA : example (practical session)

Nonlinear PCA

Kernel PCA

Kernel PCA : example (practical session)

How to get a graphical representation of a dataset of strings ?

Kernel PCA : example (practical session)

How to get a graphical representation of a dataset of strings ?

X
['fndsuninsdunisdissidfundiudsuiffddussusniuifndnfsu', 'idnsudfndidusuiuusidifisfnsdunsiuuuifudnsssfunsidu', 'nddnnfdfnndfudfnfffsnfnfsnsdisnfuisuifsidfundinssn', ' $f f s n d n u n n d s d n u s i d f u n i s d f i u f i n n u n d f d s u n n u n s u d s s f f f s$ ', 'unudidiifsnndsndsinnuuisnnsnsdsusfuiufdnusdidfdunf', 'suufffiiddiundiiuuudfddsdnsdnnnunddnffnindiuindisd', ' fuisdussudduissufnsnnunsdnufudusfsusiufusiinsnuiid', 'dssisffdnniifidniuffdfdiiisuffduffisfinuusidfundiu', 'isdsuufsuusufnisdsdfsdunnuiididnddiuinsnndduiffuun', 'ifuidfndinufunssunuifunsidffnifdffdsdnsuiffsffffnn', 'uudfsuduufniinnsuiufnsdfdsufnfunsiddsuufifffnfsfnn', 'dundffundfifiiuiuifnuuunuifnisfsuundsffiffsdfufdff', ' fuufdnsinnuddfsnusdfnssfsiiuidfnninfunsidnsfnufusu', 'susufsfinffnddudddsifunidiffnnndddniiunffsidfunnin',

Kernel PCA : example (practical session)

How to get a graphical representation of a dataset of strings ?

X
['fndsuninsdunisdissidfundiudsuiffddussusniuifndnfsu', 'idnsudfndidusuiuusidifisfnsdunsiuuuifudnsssfunsidu', 'nddnnfdfnndfudfnfffsnfnfsnsdisnfuisuifsidfundinssn', ' $f f s n d n u n n d s d n u s i d f u n i s d f i u f i n n u n d f d s u n n u n s u d s s f f f f^{\prime}$, 'unudidiifsnndsndsinnuuisnnsnsdsusfuiufdnusdidfdunf', 'suufffiiddiundiiuuudfddsdnsdnnnunddnffnindiuindisd', ' fuisdussudduissufnsnnunsdnufudusfsusiufusiinsnuiid', 'dssisffdnniifidniuffdfdiiisuffduffisfinuusidfundiu', 'isdsuufsuusufnisdsdfsdunnuiididnddiuinsnndduiffuun', 'ifuidfndinufunssunuifunsidffnifdffdsdnsuiffsffffnn', 'uudfsuduufniinnsuiufnsdfdsufnfunsiddsuufifffnfsfnn', 'dundffundfifiiuiuifnuuunuifnisfsuundsffiffsdfufdff', ' fuufdnsinnuddfsnusdfnssfsiiuidfnninfunsidnsfnufusu', 'susufsfinffnddudddsifunidiffnnndddniiunffsidfunnin',

0 class : random strings of length 30 with letters s,i,d,f,u,n.
1 class : same but contain sidfun or funsid.

Kernel PCA : example (practical session)

How to get a graphical representation of a dataset of strings ?

X
['fndsuninsdunisdissidfundiudsuiffddussusniuifndnfsu', 'idnsudfndidusuiuusidifisfnsdunsiuuuifudnsssfunsidu', 'nddnnfdfnndfudfnfffsnfnfsnsdisnfuisuifsidfundinssn', ' $f f s n d n u n n d s d n u s i d f u n i s d f i u f i n n u n d f d s u n n u n s u d s s f f f f^{\prime}$, 'unudidiifsnndsndsinnuuisnnsnsdsusfuiufdnusdidfdunf', 'suufffiiddiundiiuuudfddsdnsdnnnunddnffnindiuindisd', ' fuisdussudduissufnsnnunsdnufudusfsusiufusiinsnuiid', 'dssisffdnniifidniuffdfdiiisuffduffisfinuusidfundiu', 'isdsuufsuusufnisdsdfsdunnuiididnddiuinsnndduiffuun', 'ifuidfndinufunssunuifunsidffnifdffdsdnsuiffsffffnn', 'uudfsuduufniinnsuiufnsdfdsufnfunsiddsuufifffnfsfnn', 'dundffundfifiiuiuifnuuunuifnisfsuundsffiffsdfufdff', 'fuufdnsinnuddfsnusdfnssfsiiuidfnninfunsidnsfnufusu', 'susufsfinffnddudddsifunidiffnnndddniiunffsidfunnin',

0 class : random strings of length 30 with letters s,i,d,f,u,n.
1 class : same but contain sidfun or funsid.
k number of common substrings of a given size.

Outline

1. Kernels
2. Positive definite kernels
3. Direct application of kernel trick: PCA
4. Kernel methods for supervised prediction : regression
5. Kernel methods for supervised prediction : classification
6. Kernel methods for anomaly detection
7. Conclusion

Kernel trick : alternative view

Construct a nonlinear algorithm by replacing $\langle\cdot, \cdot\rangle$ by a positive definite kernel $k(\cdot, \cdot)$.

Example: An algorithm based only onth Gram matrix $X X^{T} \in \mathbb{R}^{n \times n}$ can be obtained by remplacing it by $K_{n} \in \mathbb{R}^{n \times n}$.

Feature space interpretion : different training set $\mathcal{D}_{n}=\left\{\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right\}$, possibly infinite dimensional. No need to comput Φ explicitely, just $k(\cdot, \cdot)$.

Kernel trick : alternative view

Construct a nonlinear algorithm by replacing $\langle\cdot, \cdot\rangle$ by a positive definite kernel $k(\cdot, \cdot)$.

Example: An algorithm based only onth Gram matrix $X X^{T} \in \mathbb{R}^{n \times n}$ can be obtained by remplacing it by $K_{n} \in \mathbb{R}^{n \times n}$.

Feature space interpretion : different training set $\mathcal{D}_{n}=\left\{\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right\}$, possibly infinite dimensional. No need to comput Φ explicitely, just $k(\cdot, \cdot)$.

Alternative view : Replace a linear function $f_{w}: x \mapsto\langle w, x\rangle$ with parameter w by a nonlinear function which depends on the dataset :

$$
f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)
$$

Illustration

Gaussian kernel : $k:(x, z) \mapsto e^{\frac{-\|x-z\|^{2}}{\sigma^{2}}}, \sigma=1$, Inputs dataset : $x_{1}=-1, x_{2}=0, x_{3}=1$.

$$
f_{\alpha}: x \mapsto \sum_{i=1}^{3} \alpha_{i} k\left(x_{i}, x\right)
$$

Nonlinear kernel functions

Linear algebra

Inputs dataset: $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$.
Kernel function : $k:(x, z) \mapsto k(x, z)$, symmetric, positive definite Parameterized functions : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right), \alpha \in$

Linear algebra

Inputs dataset: $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$.
Kernel function : $k:(x, z) \mapsto k(x, z)$, symmetric, positive definite Parameterized functions : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right), \alpha \in \mathbb{R}^{n}$.

Linear algebra

Inputs dataset: $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$.
Kernel function : $k:(x, z) \mapsto k(x, z)$, symmetric, positive definite Parameterized functions : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right), \alpha \in \mathbb{R}^{n}$.

Gram matrix : representation by pairwise comparison (symmetric ?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Linear algebra

Inputs dataset : $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$.
Kernel function : $k:(x, z) \mapsto k(x, z)$, symmetric, positive definite Parameterized functions : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right), \alpha \in \mathbb{R}^{n}$.

Gram matrix : representation by pairwise comparison (symmetric?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

For $\alpha \in \mathbb{R}^{n}$,

$$
K_{n} \alpha=\left(\begin{array}{c}
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{1}\right) \\
\vdots \\
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{n}\right)
\end{array}\right)=
$$

Linear algebra

Inputs dataset : $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$.
Kernel function : $k:(x, z) \mapsto k(x, z)$, symmetric, positive definite Parameterized functions : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right), \alpha \in \mathbb{R}^{n}$.

Gram matrix : representation by pairwise comparison (symmetric?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

For $\alpha \in \mathbb{R}^{n}$,

$$
K_{n} \alpha=\left(\begin{array}{c}
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{1}\right) \\
\vdots \\
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{\alpha}\left(x_{1}\right) \\
\vdots \\
f_{\alpha}\left(x_{n}\right)
\end{array}\right)
$$

Linear algebra

Inputs dataset : $\mathcal{D}_{n}=\left(x_{1}, \ldots, x_{n}\right)$.
Kernel function : $k:(x, z) \mapsto k(x, z)$, symmetric, positive definite Parameterized functions : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right), \alpha \in \mathbb{R}^{n}$.

Gram matrix : representation by pairwise comparison (symmetric?)

$$
K_{n}=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}=\left(\begin{array}{cccc}
k\left(x_{1}, x_{1}\right) & k\left(x_{1}, x_{2}\right) & \ldots & k\left(x_{1}, x_{n}\right) \\
k\left(x_{2}, x_{1}\right) & k\left(x_{2}, x_{2}\right) & \ldots & k\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
k\left(x_{n}, x_{1}\right) & k\left(x_{n}, x_{2}\right) & \ldots & k\left(x_{n}, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

For $\alpha \in \mathbb{R}^{n}$,

$$
K_{n} \alpha=\left(\begin{array}{c}
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{1}\right) \\
\vdots \\
\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{\alpha}\left(x_{1}\right) \\
\vdots \\
f_{\alpha}\left(x_{n}\right)
\end{array}\right)
$$

Setting $\kappa_{n}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, such that $\kappa_{n}(x)=\left(k\left(x_{i}, x\right)\right)_{i=1}^{n}$, we have

$$
\left\langle\alpha, \kappa_{n}(x)\right\rangle=\alpha^{\top} \kappa(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)=f_{\alpha}(x)
$$

Illustration 2

Gaussian kernel : $k:(x, z) \mapsto e^{\frac{-\|x-z\|^{2}}{\sigma^{2}}}, \sigma=1$, Parameterized function : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)$.

Illustration 2

Gaussian kernel : $k:(x, z) \mapsto e^{\frac{-\|x-z\|^{2}}{\sigma^{2}}}, \sigma=1$, Parameterized function : $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)$.

What determines the complexity of the model ? Does it remind anything?

Empirical risk minimization

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to \mathbb{R}. f_{n} is the argmin.

Empirical risk minimization

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to \mathbb{R}. f_{n} is the argmin.

Examples:

Empirical risk minimization

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to $\mathbb{R} . f_{n}$ is the argmin.

Examples :

- Linear regression. $y_{i} \in \mathbb{R}, \mathcal{F}$ are linear functions $f_{w}: x \mapsto\langle w, x\rangle, \ell$ is the square loss.

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}
$$

- Logistic regression. $y_{i} \in\{-1,1\}, \mathcal{F}$ are linear functions, ℓ bernouilli log likelihood combined with logit function : $\ell(s, y)=\log (1+\exp (s y))$.

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(y_{i}\left\langle w, x_{i}\right\rangle\right)\right)
$$

- SVM, same with hinge loss.

Empirical risk minimization : "kernel trick"

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space.
$\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to \mathbb{R}. f_{n} is the argmin.

Idea : Take any linear method, and replace linear functions, of the form

$$
f_{w}: x \mapsto\langle w, x\rangle=\sum_{i=1}^{p} w[i] x[i]
$$

by a nonlinear one

$$
f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)=\left\langle\kappa_{n}(x), \alpha\right\rangle .
$$

Kernel linear regression

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. Square loss.

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}
$$

where $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)$.

Kernel linear regression

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. Square loss.

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}
$$

where $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)$.

$$
\min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2}=\frac{1}{n}\left\|K_{n} \alpha-y\right\|^{2} .
$$

Solution : If K_{n} is invertible,

Kernel linear regression

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. Square loss.

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}
$$

where $f_{\alpha}: x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)$.

$$
\min _{\alpha \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)-y_{i}\right)^{2}=\frac{1}{n}\left\|K_{n} \alpha-y\right\|^{2} .
$$

Solution : If K_{n} is invertible, then $\alpha=K_{n}^{-1} y$ and the empirical risk is null.

Vanilla linear regression \simeq interpolation

Laplacian kernel : $k:(x, z) \mapsto e^{-\gamma\|x-z\|}$.

Kernel interpolation: varying bandwidth

What is going to happen ? How to avoid it?

Vanilla linear regression \simeq interpolation

Laplacian kernel : $k:(x, z) \mapsto e^{-\gamma\|x-z\|}$.

Kernel interpolation: varying bandwidth

What is going to happen ? How to avoid it?
What determines the complexity of the model ? Does it remind anything?

Kernel interpolation in 2D

Gaussian kernel : $k:(x, z) \mapsto e^{-\|x-z\|^{2} / \sigma^{2}}$.

Which other method can interpolate? What is the advantage of this one?

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?

Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?
Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2}
$$

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?
Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \\
= & \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2}
\end{aligned}
$$

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?
Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \\
= & \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha+z\right\|^{2}
\end{aligned}
$$

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?

Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \\
= & \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha+z\right\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha\right\|^{2}+2 \alpha^{T} X z+\|z\|^{2}
\end{aligned}
$$

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?

Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \\
= & \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha+z\right\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha\right\|^{2}+2 \alpha^{T} X z+\|z\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda\left\|X^{T} \alpha\right\|^{2}+\|z\|^{2}
\end{aligned}
$$

Ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.

$$
\min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f_{\alpha}\left(x_{i}\right)-y_{i}\right)^{2}+?
$$

Replace $\left\langle w, x_{i}\right\rangle$ by $\sum_{i=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)$, but replace $\|w\|^{2}$ by what?

Exercise : For any $w \in \mathbb{R}^{p}$, there is $\alpha \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{p}$, with $w=X^{T} \alpha+z$ and $X z=0$.

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2} \\
= & \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha+z\right\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X\left(X^{T} \alpha+z\right)-y\right\|^{2}+\lambda\left\|X^{T} \alpha\right\|^{2}+2 \alpha^{T} X z+\|z\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}, X z=0}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda\left\|X^{T} \alpha\right\|^{2}+\|z\|^{2} \\
= & \min _{\alpha \in \mathbb{R}^{n}}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda\left\|X^{T} \alpha\right\|^{2}=\min _{\alpha \in \mathbb{R}^{n}}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda \alpha^{T} X X^{T} \alpha
\end{aligned}
$$

Kernel ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.
Replace w by $X^{T} \alpha$
$\min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2}$
$\min _{\alpha \in \mathbb{R}^{n}}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda \alpha^{T} X X^{T} \alpha \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}}\left\|K_{n} \alpha-y\right\|^{2}+\lambda \alpha^{T} K_{n} \alpha$

Kernel ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.
Replace w by $X^{T} \alpha$

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
& \min _{\alpha \in \mathbb{R}^{n}}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda \alpha^{T} X X^{T} \alpha \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}}\left\|K_{n} \alpha-y\right\|^{2}+\lambda \alpha^{T} K_{n} \alpha
\end{aligned}
$$

Solution: $K_{n}\left(K_{n} \alpha-y\right)+\lambda K_{n} \alpha=K_{n}\left(K_{n}+\lambda I\right) \alpha-K_{n} y=0$.

Kernel ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.
Replace w by $X^{\top}{ }_{\alpha}$

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
& \min _{\alpha \in \mathbb{R}^{n}}\left\|X X^{T} \alpha-y\right\|^{2}+\lambda \alpha^{T} X X^{T} \alpha \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}}\left\|K_{n} \alpha-y\right\|^{2}+\lambda \alpha^{T} K_{n} \alpha
\end{aligned}
$$

Solution : $K_{n}\left(K_{n} \alpha-y\right)+\lambda K_{n} \alpha=K_{n}\left(K_{n}+\lambda I\right) \alpha-K_{n} y=0$.

$$
\alpha=\left(K_{n}+\lambda I\right)^{-1} y
$$

Interpretation?

Kernel ridge regression

$X \in \mathbb{R}^{n \times p}$, design matrix, $y \in \mathbb{R}^{n}$ observations.
Replace w by $X^{\top} \alpha$

$$
\begin{aligned}
& \min _{w \in \mathbb{R}^{p}}\|X w-y\|^{2}+\lambda\|w\|^{2} \\
& \min _{\alpha \in \mathbb{R}^{n}}\left\|X X^{\top} \alpha-y\right\|^{2}+\lambda \alpha^{T} X X^{T} \alpha \quad \rightarrow \quad \min _{\alpha \in \mathbb{R}^{n}}\left\|K_{n} \alpha-y\right\|^{2}+\lambda \alpha^{\top} K_{n} \alpha
\end{aligned}
$$

Solution: $K_{n}\left(K_{n} \alpha-y\right)+\lambda K_{n} \alpha=K_{n}\left(K_{n}+\lambda I\right) \alpha-K_{n} y=0$.

$$
\alpha=\left(K_{n}+\lambda I\right)^{-1} y
$$

Interpretation?
Prediction : $w=X^{\top} \alpha$

$$
\begin{aligned}
& x \mapsto\langle x, w\rangle=\left\langle x, X^{\top} \alpha\right\rangle=\langle X x, \alpha\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle x, x_{i}\right\rangle \\
& x \mapsto \sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)=\alpha^{\top} \kappa_{n}(x)=y^{\top}\left(K_{n}+\lambda I\right)^{-1} \kappa_{n}(x) .
\end{aligned}
$$

Remark on regularization using $\alpha^{\top} K_{n} \alpha$

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to \mathbb{R}. f_{n} is the argmin.

Remark on regularization using $\alpha^{\top} K_{n} \alpha$

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to \mathbb{R}. f_{n} is the argmin.

Statistical learning assumption : S is an i.i.d sample from $P_{X, Y}$. Expected risk :

$$
R(f):=\mathbb{E}_{X Y}[\ell(f(X), Y)]
$$

Remark on regularization using $\alpha^{T} K_{n} \alpha$

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to $\mathbb{R} . f_{n}$ is the argmin.

Statistical learning assumption : S is an i.i.d sample from $P_{X, Y}$. Expected risk :

$$
R(f):=\mathbb{E}_{X Y}[\ell(f(X), Y)]
$$

Generalization bound : Under assumptions, with high probability, if $\mathcal{F}=\left\{f_{\alpha}, \alpha^{\top} K_{n} \alpha \leq R\right\}$

$$
\min _{f \in \mathcal{F}} R(f) \leq \min _{f \in \mathcal{F}} R_{n}(f)+\operatorname{cst} \times \frac{R}{\sqrt{n}}
$$

Remark on regularization using $\alpha^{T} K_{n} \alpha$

$\mathcal{X} \subset \mathbb{R}^{p}$ input space, $\mathcal{Y} \subset \mathbb{R}$ output space. $\ell: \mathbb{R} \times \mathcal{Y} \mapsto \mathbb{R}^{+}$a loss function.

Empirical risk minimization over RKHS : $S=\left(x_{i}, y_{i}\right)_{i=1}^{n}$, iid copies of X and Y.

$$
\min _{f \in \mathcal{F}} R_{n}(f):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

where \mathcal{F} is a class of functions from \mathcal{X} to $\mathbb{R} . f_{n}$ is the argmin.

Statistical learning assumption : S is an i.i.d sample from $P_{X, Y}$. Expected risk :

$$
R(f):=\mathbb{E}_{X Y}[\ell(f(X), Y)]
$$

Generalization bound : Under assumptions, with high probability, if $\mathcal{F}=\left\{f_{\alpha}, \alpha^{\top} K_{n} \alpha \leq R\right\}$

$$
\min _{f \in \mathcal{F}} R(f) \leq \min _{f \in \mathcal{F}} R_{n}(f)+\operatorname{cst} \times \frac{R}{\sqrt{n}}
$$

Take-away : penalyzing $\lambda \alpha^{\top} K_{n} \alpha$ allows to effectively control estimation error.

Kernel ridge regression : a non parametric method

What do you expect as the sample size grows?

Kernel ridge regression : a non parametric method

What do you expect as the sample size grows?
Which other methods have this property?

Outline

1. Kernels
2. Positive definite kernels
3. Direct application of kernel trick: PCA
4. Kernel methods for supervised prediction : regression
5. Kernel methods for supervised prediction : classification
6. Kernel methods for anomaly detection
7. Conclusion

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$
Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{\top} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$.

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$ Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)
$$

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$
Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)
$$

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$ Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{T} x_{i}+b\right), 0\right)
$$

(Exercise : we can consider $w=X^{T} \alpha, \alpha \in \mathbb{R}^{n}$).

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$ Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)
$$

(Exercise : we can consider $w=X^{T} \alpha, \alpha \in \mathbb{R}^{n}$).
We may take $w=X^{\top} \alpha$ for some $\alpha \in \mathbb{R}^{n}$,

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$
Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)
$$

(Exercise : we can consider $w=X^{T} \alpha, \alpha \in \mathbb{R}^{n}$).
We may take $w=X^{\top} \alpha$ for some $\alpha \in \mathbb{R}^{n}$, Then $\|w\|^{2}=w^{\top} w=\alpha^{\top} X X^{\top} \alpha$ and $w^{\top} x_{i}=\alpha^{\top} X x_{i}=\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle$.

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$
Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{\top} x_{i}+b\right), 0\right)
$$

(Exercise : we can consider $w=X^{T} \alpha, \alpha \in \mathbb{R}^{n}$).
We may take $w=X^{\top} \alpha$ for some $\alpha \in \mathbb{R}^{n}$, Then $\|w\|^{2}=w^{\top} w=\alpha^{\top} X X^{\top} \alpha$ and $w^{\top} x_{i}=\alpha^{\top} X x_{i}=\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle$.

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{T} X X^{\top} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{k=1}^{n} \alpha_{k}\left\langle x_{k}, x_{i}\right\rangle+b\right), 0\right)
$$

Support Vector Machines (SVM)

Linear SVM : $\mathcal{D}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{p},\left(y_{i}\right)_{i=1}^{n}$ in $-1,1$
Find $w \in \mathbb{R}^{p}, b \in \mathbb{R}^{p}$ such that $\operatorname{sign}\left(w^{T} x_{i}+b\right) \simeq y_{i}, i=1 \ldots n$. Fix $C>0$

$$
\min _{w \in \mathbb{R}^{P}, b \in \mathbb{R}}\|w\|^{2}+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(w^{T} x_{i}+b\right), 0\right)
$$

(Exercise : we can consider $w=X^{T} \alpha, \alpha \in \mathbb{R}^{n}$).

We may take $w=X^{T} \alpha$ for some $\alpha \in \mathbb{R}^{n}$, Then $\|w\|^{2}=w^{\top} w=\alpha^{\top} X X^{\top} \alpha$ and $w^{\top} x_{i}=\alpha^{\top} X x_{i}=\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle$.

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{T} X X^{T} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{k=1}^{n} \alpha_{k}\left\langle x_{k}, x_{i}\right\rangle+b\right), 0\right)
$$

Warning : Prediction at x

$$
\operatorname{sign}\left(w^{T} x+b\right)=\operatorname{sign}\left(\alpha^{T} X x+b\right)=\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x\right\rangle+b\right)
$$

Support Vector Machines (SVM)

$C>0$

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{\top} X X^{\top} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle+b\right), 0\right)
$$

Support Vector Machines (SVM)

$C>0$

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{\top} X X^{\top} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle+b\right), 0\right)
$$

Replace $X X^{\top}$ by K_{n} and $\langle\cdot, \cdot\rangle$ by $k(\cdot, \cdot)$.

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{\top} K_{n} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)+b\right), 0\right)
$$

Support Vector Machines (SVM)

$C>0$

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{\top} X X^{\top} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle+b\right), 0\right)
$$

Replace $X X^{\top}$ by K_{n} and $\langle\cdot, \cdot\rangle$ by $k(\cdot, \cdot)$.

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{\top} K_{n} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)+b\right), 0\right)
$$

Prediction : at x

$$
\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x\right)+b\right)=\operatorname{sign}\left(\alpha^{T} \kappa_{n}(x)+b\right)
$$

with $\kappa_{n}(x)=\left(k\left(x_{i}, x\right)\right)_{i=1}^{n}$.

Support Vector Machines (SVM)

$C>0$

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{T} X X^{\top} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle+b\right), 0\right)
$$

Replace $X X^{\top}$ by K_{n} and $\langle\cdot, \cdot\rangle$ by $k(\cdot, \cdot)$.

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{T} K_{n} \alpha+C \sum_{i=1}^{n} \max \left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)+b\right), 0\right)
$$

Prediction : at x

$$
\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x\right)+b\right)=\operatorname{sign}\left(\alpha^{T} \kappa_{n}(x)+b\right)
$$

with $\kappa_{n}(x)=\left(k\left(x_{i}, x\right)\right)_{i=1}^{n}$.
Warning : C is a tuning parameter controling regularization / data-fitting tradeoff in order to avoid overfitting.

Support vector machine (SVM)

Intuition : nonlinear decision in \mathcal{X} from linear separation in higher space implicitely through the kernel trick.

Kernel Logistic regression

$$
\min _{\alpha \in \mathbb{R}^{n}, b \in \mathbb{R}} \alpha^{T} K_{n} \alpha+C \sum_{i=1}^{n} \log \left(1+\exp \left(y_{i} \sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)+b\right)\right)
$$

What is the advantage?

Outline

1. Kernels
2. Positive definite kernels
3. Direct application of kernel trick: PCA
4. Kernel methods for supervised prediction : regression
5. Kernel methods for supervised prediction : classification
6. Kernel methods for anomaly detection
7. Conclusion

Density based

Gaussian kernel with bandwidth σ

$$
k(x, y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{\|y-x\|^{2}}{\sigma^{2}}}
$$

Kernel density estimator :

$$
p_{\sigma}: x \mapsto \frac{1}{n} \sum_{i=1}^{n} k\left(x, x_{i}\right)
$$

A variant of one class SVM

Main idea, find a ball of minimal radius which encloses all the points :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}, i=1 \ldots, n .
\end{aligned}
$$

Too restrictive, add slack, $\nu>0$

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

Kernel trick : $\phi: x \mapsto X \in \mathbb{R}^{P}$ sends x to a high (infinite) dimensional feature space. Implicitely : $x_{i} \rightarrow \phi\left(x_{i}\right), i=1, \ldots, n$.
Positive definite kernel (ex : Gaussian) implicitely encodes ϕ.

A variant of one class SVM

Kernel trick :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n .
\end{aligned}
$$

A variant of one class SVM

Kernel trick :

$$
\begin{gathered}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. }
\end{gathered}\left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n .
$$

A variant of one class SVM

Kernel trick :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

$$
\left\|x_{i}-c\right\|^{2}=x_{i}^{\top} x_{i}-2 c^{\top} x_{i}+c^{\top} c=x_{i}^{\top} x_{i}-2 \alpha^{\top} X x+\alpha^{\top} X X^{\top} \alpha
$$

We may take $c=X^{\top} \alpha$ with $\alpha \in \mathbb{R}^{n}$ and use the kernel trick :

A variant of one class SVM

Kernel trick :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

$$
\left\|x_{i}-c\right\|^{2}=x_{i}^{\top} x_{i}-2 c^{\top} x_{i}+c^{T} c=x_{i}^{\top} x_{i}-2 \alpha^{\top} X x+\alpha^{\top} X X^{\top} \alpha
$$

We may take $c=X^{\top} \alpha$ with $\alpha \in \mathbb{R}^{n}$ and use the kernel trick :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & k\left(x_{i}, x_{i}\right)-2 \sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)+\alpha^{T} K_{n} \alpha \leq r^{2}+\xi_{i}, i=1 \ldots, n .
\end{aligned}
$$

A variant of one class SVM

Kernel trick :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & \left\|x_{i}-c\right\|^{2} \leq r^{2}+\xi_{i}, i=1 \ldots, n
\end{aligned}
$$

$$
\left\|x_{i}-c\right\|^{2}=x_{i}^{\top} x_{i}-2 c^{\top} x_{i}+c^{T} c=x_{i}^{\top} x_{i}-2 \alpha^{\top} X x+\alpha^{\top} X X^{\top} \alpha
$$

We may take $c=X^{\top} \alpha$ with $\alpha \in \mathbb{R}^{n}$ and use the kernel trick :

$$
\begin{aligned}
\min _{r \in \mathbb{R}, c \in \mathbb{R}^{p}} & r^{2}+\frac{1}{n \nu} \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & k\left(x_{i}, x_{i}\right)-2 \sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x_{i}\right)+\alpha^{T} K_{n} \alpha \leq r^{2}+\xi_{i}, i=1 \ldots, n .
\end{aligned}
$$

Score : $s(x)=r^{2}-k(x, x)+2 \sum_{j=1}^{n} \alpha_{j} k\left(x_{j}, x\right)+\alpha^{\top} K_{n} \alpha$.

A variant of one class SVM

Gaussian kernel with varying bandwidth

Outline

1. Kernels
2. Positive definite kernels
3. Direct application of kernel trick: PCA
4. Kernel methods for supervised prediction : regression
5. Kernel methods for supervised prediction : classification
6. Kernel methods for anomaly detection
7. Conclusion

Conclusion

- A generic framework to build nonlinear models.
- "Decouple", learning algorithms and data representation.
- More parameters to tune.
- Only need pairwise similarity : can handle non numeric data.
- Perform well on many problems.

Conclusion

- A generic framework to build nonlinear models.
- "Decouple", learning algorithms and data representation.
- More parameters to tune.
- Only need pairwise similarity : can handle non numeric data.
- Perform well on many problems.

Take away: It all depends on the kernel which you choose.

Practical

