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Statistical Leverage scores
Randomized linear algebra [3]: Let
A ∈ Rm×n = UDV T , with U ∈ Rm×k, V ∈ Rn×k
and D ∈ Rk×k diagonal positive definite, given
by the SVD. The statistical leverage score of the
i-th row is given by

‖Ui,·‖2 = (A(ATA)†AT )ii

These can be used for sampling rows of A to
approximate minx ‖Ax− b‖, when m� n.

Kernel ridge regression [1]: Given a kernel
matrix K ∈ Rn×n, observations y ∈ Rn and
λ > 0, the kernel ridge regression estimate is

ŷ = K (K + nλI)
−1
y = Ĥy.

Ĥii is a leverage score which can be used to sub-
sample the observations to reduce the training
cost with minor degradation of the error.

Main question
• k : Rd × Rd 7→ R: pd kernel, continuous,
bounded, integrable.
• p: a bounded integrable density over Rd.
• H is the RKHS of k (dense in L2(p)), with scalar
product 〈·, ·〉H.

Leverage score [5, 2]: The covariance operator
Σ : H → H is then defined such that for all
f, g ∈ H, 〈Σf, g〉H =

∫
Rd f(x)g(x)p(x)dx.

The leverage score at z ∈ Rd is given by〈
k(z, ·), (Σ + λI)−1k(z, ·)

〉
H

which is the large sample limit of statistical
leverage score for kernel ridge regression.
Appears in the analysis of subsampling for
learning, random features, quadrature . . .

How do leverage scores relate to p andH?

Main result
First insight: Assume that k is the Laplace kernel: k : (x, y) 7→ e

−‖x−y‖
l for l > 0. Then there is a

constant q0(l) > 0 such that for any z ∈ Rd, with p(z) > 0 and p continuous at z,〈
k(z, ·), (Σ + λI)−1k(z, ·)

〉
H ∼

λ→0
q0(l) λ−

d
d+1 p(z)

−1
d+1

Main assumption: k is translation invariant: for any x, y ∈ Rd, k(x, y) = q(x− y) where q ∈ L1(Rd) is
the inverse Fourier transform of q̂ ∈ L1(Rd) which is real valued and strictly positive.

Theorem 1 Assume that for any ω ∈ Rd, q̂(ω) = 1
(R(ω)+Q(ω))γ , where R and Q are multivariate polynomials,

R ≥ 1, Q is 2s homogeneous and strictly positive on the unit sphere and 2sγ > d.

Then for any z ∈ Rd, with p(z) > 0 and p continuous at z,〈
k(z, ·), (Σ + λI)−1k(z, ·)

〉
H ∼

λ→0
q0(Q, γ) λ

−d
2sγ p(z)

d
2sγ−1

where q0(Q, γ) = 1
(2π)d

∫
Rd

1
1+Q(ω)γ dω.

Divergence rate matches known estimates for degrees of freedom [5, 2]. The leverage score tends to
take high values in low density regions. Laplace kernel: R = 1, Q(·) ∼ ‖ · ‖2 and γ = (d+ 1)/2.

Other examples: Matèrn kernels, Sobolev spaces of functions with squared integrable partial deriva-
tives up to order s > d/2, various norms.

Proof using regularized Christoffel function
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Definition 1 The regularized Christoffel function,
is given for any λ > 0, z ∈ Rd by

Cλ(z) = inf
f∈H

∫
Rd
f(x)2p(x)dx+ λ‖f‖2H

subject to f(z) = 1 . (1)

Lemma 1 Cλ(z) =
〈
k(z, ·), (Σ + λI)−1k(z, ·)

〉−1
H ,

for any z ∈ Rd. Furthermore, replacing integration by
finite sample average in (1) leads to kernel ridge
regression statistical leverage score.

Formulation (1) and connection with p are related
to orthogonal polynomials [6, 4].

A simpler problem:

D(λ) := min
f∈H

∫
Rd
f(x)2dx+ λ‖f‖2H

subject to f(0) = 1. (2)

Lemma 2 For any λ > 0, D(λ) = (2π)d∫
Rd

q̂(ω)
λ+q̂(ω)

dω
, and

this value is attained by the function

fλ : x 7→ D(λ)
1

(2π)d

∫
Rd

q̂(ω)eiω
>x

q̂(ω) + λ
dω.

Theorem 2 Suppose that there exists ε : R+ → R+

such that, as λ→ 0, ε(λ)→ 0, and∫
‖x‖≥ε(λ)

f2λ(x)dx = o(λD(λ)). (3)

Then, for any z ∈ Rd such that p(z) > 0 and p is
continuous at z, we have

Cλ(z) ∼
λ→0, λ>0

p(z)D

(
λ

p(z)

)
.

Proof sketch: Test fλ in (1), assumption (3)
leads to Cλ(z) ≤ p(z)D

(
λ
p(z)

)
+ o

(
D
(

λ
p(z)

))
.

Restricting (1) to a ball of radius ε(λ) assumption
(3) leads to Cλ(z) ≥ p(z)D

(
λ
p(z)

)
+ o

(
D
(

λ
p(z)

))
.

Proof of Theorem 1: Check (3) and compute
D(λ) for the special choice of q̂.

Numerical simulations
Univariate density with Matèrn kernel: bandwidth l and regularity parameter ν which corresponds to
s = 1 and γ = ν + d

2 . Left: Comparison with the density. Right: Validation of the convergence rate.
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Future Research
Finite sample plugin estimates and tuning of λ.
Estimation of leverage scores, support, density.
Broader classes of RKHS. Beyond Rd.
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