

Statistical Leverage scores

Randomized linear algebra [3]: Let $A \in \mathbb{R}^{m \times n} = UDV^T$, with $U \in \mathbb{R}^{m \times k}$, $V \in \mathbb{R}^{n \times k}$ and $D \in \mathbb{R}^{k \times k}$ diagonal positive definite, given by the SVD. The statistical leverage score of the *i*-th row is given by

 $||U_{i,\cdot}||^2 = (A(A^T A)^{\dagger} A^T)_{ii}$

These can be used for sampling rows of *A* to approximate $\min_x ||Ax - b||$, when $m \gg n$.

Kernel ridge regression [1]: Given a kernel matrix $K \in \mathbb{R}^{n \times n}$, observations $y \in \mathbb{R}^n$ and $\lambda > 0$, the kernel ridge regression estimate is

 $\hat{y} = K \left(K + n\lambda I \right)^{-1} y = \hat{H}y.$

 \hat{H}_{ii} is a leverage score which can be used to subsample the observations to reduce the training cost with minor degradation of the error.

Main result

First insight: Assume that k is the Laplace kernel: $k: (x, y) \mapsto e^{\frac{-\|x-y\|}{l}}$ for l > 0. Then there is a constant $q_0(l) > 0$ such that for any $z \in \mathbb{R}^d$, with p(z) > 0 and p continuous at z,

$$\langle k(z,\cdot), (\Sigma+\lambda I)^{-1}k(z,\cdot) \rangle_{\mathcal{H}} \sim q_0(l) \lambda^{-\frac{d}{d+1}} p(z)^{-\frac{1}{d+1}}$$

Main assumption: k is translation invariant: for any $x, y \in \mathbb{R}^d$, k(x, y) = q(x - y) where $q \in L^1(\mathbb{R}^d)$ is the inverse Fourier transform of $\hat{q} \in L^1(\mathbb{R}^d)$ which is real valued and strictly positive.

Theorem 1 Assume that for any $\omega \in \mathbb{R}^d$, $\hat{q}(\omega) = \frac{1}{(R(\omega)+Q(\omega))^{\gamma}}$, where R and Q are multivariate polynomials, $R \geq 1$, Q is 2s homogeneous and strictly positive on the unit sphere and $2s\gamma > d$. Then for any $z \in \mathbb{R}^d$, with p(z) > 0 and p continuous at z,

$$\left\langle k(z,\cdot), (\Sigma+\lambda I)^{-1}k(z,\cdot) \right\rangle_{\mathcal{H}} \qquad \underset{\lambda \to 0}{\sim}$$
where $q_0(Q,\gamma) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{1}{1+Q(\omega)^{\gamma}} d\omega.$

Divergence rate matches known estimates for degrees of freedom [5, 2]. The leverage score tends to take high values in low density regions. Laplace kernel: R = 1, $Q(\cdot) \sim \|\cdot\|^2$ and $\gamma = (d+1)/2$.

Other examples: Matèrn kernels, Sobolev spaces of functions with squared integrable partial derivatives up to order s > d/2, various norms.

References

- [1] Alaoui, Mahoney, NIPS 2015.
- [2] Bach, JMLR 2017.
- [3] Mahoney, Foundations and Trends in ML 2011.

Relating Leverage Scores and Density using Regularized Christoffel Functions ¹IRIT-AOC ²INRIA-ENS ³Google Brain, ⁴Mines ParisTech-PSL

Edouard Pauwels¹, Francis Bach^{2,4}, Jean-Philippe Vert^{3,4}

Main question

• $k : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$: pd kernel, continuous, bounded, integrable.

• *p*: a bounded integrable density over \mathbb{R}^d . • \mathcal{H} is the RKHS of k (dense in $L^2(p)$), with scalar product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$.

Leverage score [5, 2]: The covariance operator $\Sigma : \mathcal{H} \to \mathcal{H}$ is then defined such that for all $f,g \in \mathcal{H}, \langle \Sigma f,g \rangle_{\mathcal{H}} = \int_{\mathbb{R}^d} f(x)g(x)p(x)dx.$ The leverage score at $z \in \mathbb{R}^d$ is given by

 $\langle k(z,\cdot), (\Sigma+\lambda I)^{-1}k(z,\cdot) \rangle_{\mathcal{H}}$

which is the large sample limit of statistical leverage score for kernel ridge regression. Appears in the analysis of subsampling for learning, random features, quadrature ...

How do leverage scores relate to p and H?

$$q_0(Q,\gamma) \quad \lambda^{\frac{-d}{2s\gamma}} \quad p(z)^{\frac{d}{2s\gamma}-1}$$

[4] Máté, Nevai, Totik, Annals of Maths, 1991.

[5] Rudi, Camoriano, Rosasco, NIPS 2015.

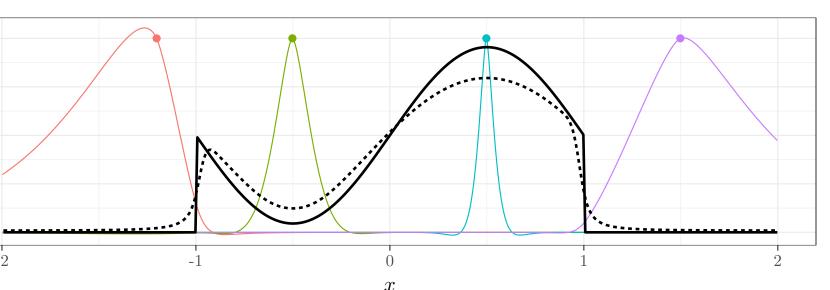
[6] Szegö, AMS, 1974.

F	Pro)(
У	1.00 -	
	0.75 -	
	0.50 -	
	0.25 -	
	0.00 -	
		-2

Formulation (1) and connection with *p* are related to orthogonal polynomials [6, 4].

Future Research Finite sample plugin estimates and tuning of λ . Estimation of leverage scores, support, density. Broader classes of RKHS. Beyond \mathbb{R}^d .

of using regularized Christoffel function



— 2

-- 3

— 4

Function

- Density ••• Christoffel

 $f_{\lambda} \colon x \mapsto D(\lambda) \frac{1}{(2\pi)^d} \int_{\mathbb{D}^d} \frac{\hat{q}(\omega) e^{i\omega^+ x}}{\hat{q}(\omega) + \lambda} d\omega.$ $\int_{\|x\| \ge \varepsilon(\lambda)} f_{\lambda}^2(x) dx = o(\lambda D(\lambda)).$ (3) $C_{\lambda}(z) \sim p(z)D\left(\frac{\lambda}{p(z)}\right).$

Lemma 2 For any $\lambda > 0$, $D(\lambda) = \frac{(2\pi)^d}{\int_{\mathbb{R}^d} \frac{\hat{q}(\omega)}{\lambda + \hat{q}(\omega)} d\omega}$, and this value is attained by the function **Theorem 2** Suppose that there exists $\varepsilon \colon \mathbb{R}_+ \to \mathbb{R}_+$ such that, as $\lambda \to 0$, $\varepsilon(\lambda) \to 0$, and Then, for any $z \in \mathbb{R}^d$ such that p(z) > 0 and p is continuous at z, we have **Proof sketch:** Test f_{λ} in (1), assumption (3) leads to $C_{\lambda}(z) \leq p(z)D\left(\frac{\lambda}{p(z)}\right) + o\left(D\left(\frac{\lambda}{p(z)}\right)\right).$ Restricting (1) to a ball of radius $\varepsilon(\lambda)$ assumption (3) leads to $C_{\lambda}(z) \ge p(z)D\left(\frac{\lambda}{p(z)}\right) + o\left(D\left(\frac{\lambda}{p(z)}\right)\right).$ **Proof of Theorem 1:** Check (3) and compute $D(\lambda)$ for the special choice of \hat{q} .

Definition 1 *The* regularized Christoffel function, is given for any $\lambda > 0$, $z \in \mathbb{R}^d$ by

$$C_{\lambda}(z) = \inf_{f \in \mathcal{H}} \int_{\mathbb{R}^d} f(x)^2 p(x) dx + \lambda \|f\|_{\mathcal{H}}^2$$
subject to $f(z) = 1$. (1)

Lemma 1 $C_{\lambda}(z) = \langle k(z, \cdot), (\Sigma + \lambda I)^{-1} k(z, \cdot) \rangle_{\mathcal{H}}^{-1},$ for any $z \in \mathbb{R}^d$. Furthermore, replacing integration by finite sample average in (1) leads to kernel ridge regression statistical leverage score.

A simpler problem:

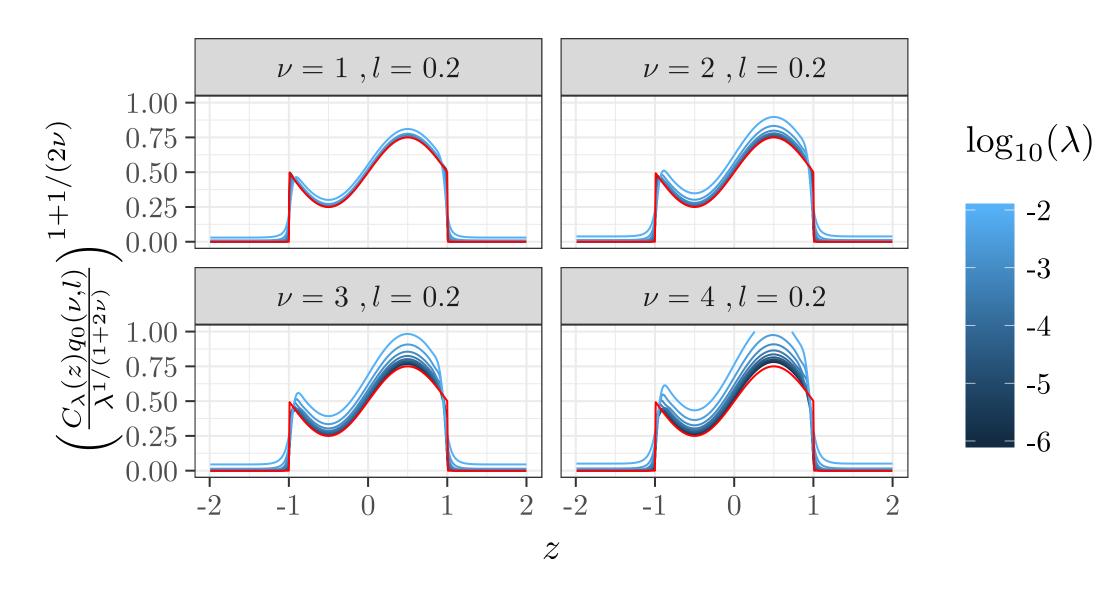
$$D(\lambda) := \min_{f \in \mathcal{H}} \int_{\mathbb{R}^d} f(x)^2 dx + \lambda \|f\|_{\mathcal{H}}^2$$

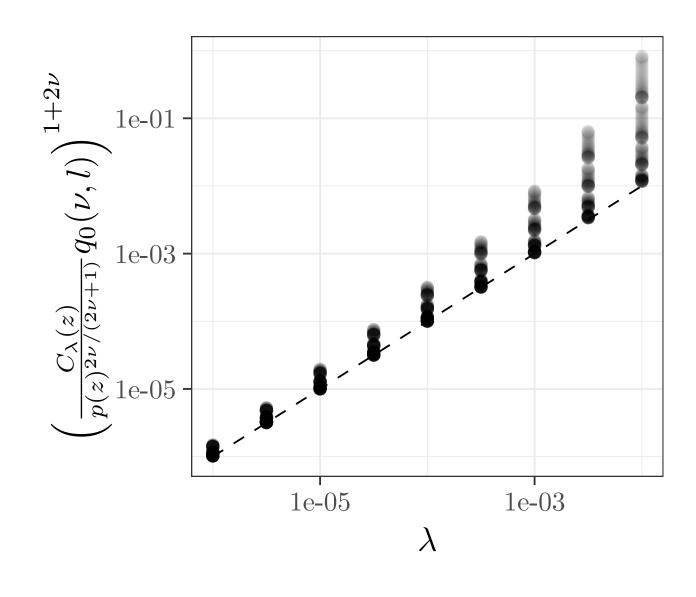
subject to $f(\mathbf{0}) = 1$.

Numerical simulations

Univariate density with Matèrn kernel: bandwidth l and regularity parameter ν which corresponds to s = 1 and $\gamma = \nu + \frac{d}{2}$. Left: Comparison with the density. Right: Validation of the convergence rate.

(2)





Support acknowledgement

ERC-COG SEQUOIA 724063 European Research *Council*. CIMI Labex.