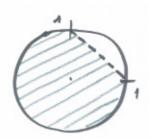
Examen partiel du 3 novembre 2015 Durée : Corrigé

Exercice 1.(6.5 Points) Désignons par A_{α} le sous-ensemble de \mathbb{R}^2 constitué des points (x,y) qui satisfont le système d'inéquations suivant : $\begin{cases} y^2 + x^2 \leq \alpha^2, \\ x + y < 1, \end{cases}$ où $\alpha \in \mathbb{R}$ désigne un paramètre fixé.

a) Les représentations graphiques demandées sont :



- b) Oui, l'ensemble $A_{\frac{1}{2}}$ est borné, car il est contennu dans la boule de centre l'origine et rayon 1, de plus, il est fermé parce qu'il coincide avec la boule euclidienne fermée de rayon $\frac{1}{2}$, et centre l'origine. En effet, si $x^2 + y^2 \le \frac{1}{4}$, tant $x^2 \le \frac{1}{4}$, et $y^2 \le \frac{1}{4}$. Ainsi $x \le |x| \le \frac{1}{2}$, ainsi $x + y \le 1$, Or si x + y = 1, en désignant par L la droite d'équation X + Y = 1, nous avons $d((0,0), L) = \frac{\sqrt{2}}{2}$, et $d((0,0), (x,y)) \ge \frac{\sqrt{2}}{2}$ de sorte que $x^2 + y^2 \ge \frac{1}{2} > \frac{1}{4}$. Au total, A_{α} est la boule fermée, qui est un fermé, et tout fermé borné du plan est compact.
- c) Soit $|\alpha| \ge \frac{1}{\sqrt{2}}$, puisque A_{α} est toujours borné, il faut montrer que ce n'est pas une partie fermée de \mathbb{R}^2 .

Pour ce faire repérons un point de son adhérence qui ne soit pas dans A_{α} . Le point sur la diagonale : $(\frac{1}{2}, \frac{1}{2})$ ne peut être dans A_{α} , et est limite de la suite $(\frac{1}{2} - \frac{1}{n}, \frac{1}{2} - \frac{1}{n})$. Il suffira de prouver que cette suite est une suite de points de A_{α} pour prouver que c'est un point de l'adhérence qui n'est pas dans A_{α} et conclure que A_{α} n'est pas fermé, donc n'est pas compact.

Les points $(x_n, y_n) = (\frac{1}{2} - \frac{1}{n}, \frac{1}{2} - \frac{1}{n})$ vérifient l'équation $x_n + y_n = 1 - 2\frac{1}{n} < 1$. Montrons que pour n > 1, ils vérifient $x_n^2 + y_n^2 \le \alpha^2$ dès que $|\alpha| \ge \frac{\sqrt{2}}{2}$, c'est-à-dire $\alpha^2 \ge \frac{1}{2}$.

En effet, $\left(\frac{1}{2} - \frac{1}{n}\right)^2 + \left(\frac{1}{2} - \frac{1}{n}\right)^2 = \frac{1}{2} - \frac{2}{n} + \frac{2}{n^2} \le \frac{1}{2}$ car si n > 1, $\frac{2}{n^2} - \frac{2}{n} < 0$. Ainsi la suite de points $(x_n, y_n) \in A_\alpha$ converge vers le point $(\frac{1}{2}, \frac{1}{2}) \notin A_\alpha$, qui n'est donc pas compact.

Exercice 2.(4 Points)

- a) La fonction $g(x,y) = \frac{\sin(y^6)}{x^2 + y^4}$ si $(x,y) \neq (0,0)$ et g(0,0) = 0. est continue sur tout le plan. Montrons la continuité au point (0,0) comme demandé. Nous savons que $|\sin u| \le |u|$ sur tout \mathbb{R} , dès-lors, $|\sin y^6| \le y^6$, et pour $(x,y) \neq (0,0)$, $|g(x,y)| \leq \frac{y^6}{x^2+y^4} \leq y^2 \frac{y^4}{x^4+y^4} \leq y^2$, qui a 0 comme limite quand $(x,y) \to (0,0)$. Puisque g(0,0)=0, la fonction est continue à l'origine.
- **b)** La fonction $h(x,y) = \frac{x^2y^2 + x^{10}}{(x^2 + y^2)^2}$ si $(x,y) \neq (0,0)$ et h(0,0) = 0 n'est pas continue au point (0,0), car sur la suite $(\frac{1}{n},\frac{1}{n})$ (qui à (0,0) comme limite) nous avons $h(\frac{1}{n},\frac{1}{n})=\frac{1}{4}+\frac{1}{4n^6}\to\frac{1}{4}\neq h(0,0)$ lorsque $n\to+\infty$.

Exercice 3. (5 Points) On considère l'équation différentielle homogène $H: x^2y'' - 4xy' + 6y = 0$.

a) Cherchons une solution évidente sous la forme d'un polynôme. Le degré 2 semble suffisant, $y(x) = ax^2 + bx + bx$ c, y'(x) = 2ax + b, y''(x) = 2a, ainsi on doit avoir $0 = 2ax^2 - 8ax^2 - 4bx + 6ax^2 + 6bx + 6c = 0ax^2 + 2bx + 6c$, le polynôme $y_0(x) = x^2$ est une solution. (On le vérifie bien!) Cherchons une deuxième solution, indépendante de la première, par une simple variation de la constante et une quadrature. Pour que $y(x) = k(x)y_0(x)$ soit solution, $(y' = k'y_0 + ky'_0, y'' = k''y_0 + 2k'y'_0 + ky''_0)$ il faut que

 $x^4k''(x) + (4x^3k' - 4x^3k') + k(x^2y_0'' - 4xy_0' + 6y_0) = 0$, or $x^2y_0'' - 4xy_0' + 6y_0 = 0$, d'où en mettant Z = k', il suffira de trouver Z, tel que $x^4Z' = 0$, Z' = 0, Z = 1, k(x) = x, $y(x) = k(x)y_0(x) = x^3$. Ainsi, sur chaque intervalle sans singularités, x^3 est aussi une solution, le couple (x^2, x^3) est une base de l'espace des solutions de l'équation H.

La solution sur l'intervalle I_{-} est

$$S_{-} = \{ \gamma : I_{-} \to \mathbb{R} / \exists C_{1}, C_{2} \in \mathbb{R}, \gamma(x) = C_{1}x^{2} + C_{2}x^{3} \}.$$

La solution sur l'intervalle I_+ est

$$S_{+} = \{ \gamma : I_{-} \to \mathbb{R} / \exists C_{1}, C_{2} \in \mathbb{R}, \gamma(x) = C_{1}x^{2} + C_{2}x^{3} \}.$$

b) Les fonctions $y: \mathbb{R} \to \mathbb{R}$ de classe C^2 qui sont solutions de l'équation (H) sont, par restriction, solutions dans chacun des intervalles I_- et I_+ . Ainsi il existe des constantes réelles $C_{+,1}, C_{+,2}, C_{-,1}$ et $C_{-,2}$ telles que $y(x) = C_{+,1}x^2 + C_{+,2}x^3$ si x > 0, et $y(x) = C_{-,1}x^2 + C_{-,2}x^3$ si x < 0. La fonction à valeur 0 à l'origine (par continuité), ainsi que sa première dérivée est 0 à l'origine.

Par contre cette fonction n'est deux fois dérivable qu'à condition d'avoir $C_{+,1} = C_{-,1}$. Et dans ce cas, la fonction est de classe C^2 .

Ainsi S^2 est un sous-espace de $C^2(\mathbb{R})$ de dimension 3 de base $(x^2, y_-, y_+,)$, où $y_-(x) = x^3$ si $x \le 0$, et 0 si $x \ge 0$, puis $y_+(x) = x^3$ si $x \ge 0$, et 0 si $x \le 0$.

Exercice 4.(4.5 Points)

a) Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^p$ une application continue. Soit donné $A \subset \mathbb{R}^p$, montrons que $f^{-1}(A^\circ) \subset [f^{-1}(A)]^\circ$. Pour prouver cette inclusion, considérons $x \in f^{-1}(A^\circ)$, nous avons donc que $f(x) \in A^\circ$, de ce fait on peut prendre un rayon (de protection) $\rho > 0$ tel que la boule $B_{\rho}(f(x))$ soit contenue dans A. En prenant ce $\rho(=\epsilon)$ dans la définiton de continuité, on en déduit que l'on peut considérer $\eta > 0$ tel que si x' vérifie $d(x, x') < \eta$, l'on ait $d(f(x), f(x')) < \rho$. En clair, si x' est dans la boule de rayon η autour de x, la valeur f(x') est dans la boule $B_{\rho}(f(x))$ et donc dans A, ce qui prouve que x' est un point de $f^{-1}(A)$ et de ce fait x est un point intérieur de $f^{-1}(A)$ achévant la preuve de $f^{-1}(A^\circ) \subset [f^{-1}(A)]^\circ$.

Une autre posibilité de démonstration est de constanter que

$$A^{\circ} \subset A, \Longrightarrow f^{-1}(A^{\circ}) \subset f^{-1}(A),$$

et que la continuité de f entraine que $f^{-1}(A^{\circ})$ est une partie ouverte de \mathbb{R}^n .

Or l'interieur d'un ensemble est la plus grande partie ouverte qui y soit contenue.

Ainsi $[f^{-1}(A)]^{\circ}$ est le plus grand ensemble ouvert qui soit contenu dans $f^{-1}(A)$. Or $f^{-1}(A^{\circ})$ est un ensemble ouvert contenu dans $f^{-1}(A)$, il est donc plus petit que $[f^{-1}(A)]^{\circ}$. Ceci prouve que

$$f^{-1}(A^{\circ}) \subset [f^{-1}(A)]^{\circ}.$$

- b) L'espace vectoriel des matrices 2×2 à coefficients réels, $\mathcal{M}_2(\mathbb{R})$ est un espace vectoriel réel de dimension 4 dans lequel on peut considérer une norme quelconque, puisqu'elles sont toutes équivalentes. Le sous-ensemble $\mathrm{SL}_2(\mathbb{R}) = \{A \in \mathcal{M}_2(\mathbb{R}) \mid \det A = 1\}$ est fermé, parce que la fonction déterminant est continue, polynomiale même, et $\mathrm{SL}_2(\mathbb{R})$ est la pré-image du fermé $\{1\}$
 - Parcontre, il ne peut être compact, parce que les compacts d'un espace vectoiel normé de dimension finie sont les fermés bornés, et $SL_2(\mathbb{R})$ n'est pas borné. En effet, la suite des matrices diagonales, dont les élements de la diagonale sont $(n, \frac{1}{n})$ est une suite d'élements de $SL_2(\mathbb{R})$ dont la norme va vers l'infini (quelque soit cette norme). Par exemple la norme de Frobenius est $\sqrt{n^2 + 1/n^2}$ qui va vers $+\infty$.