A GEOMETRICAL DESCRIPTION OF THE $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$ QUANTUM CLONING REGION

Ion Nechita ${ }^{1}$ • Clément Pellegrini ${ }^{2}$ • Denis Rochette ${ }^{2}$

Is there a perfect $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$ quantum cloning map?

A perfect $1 \rightarrow 2$ quantum cloning map is a quantum channel $T: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d} \otimes \mathcal{M}_{d}$, compatible with the identity, i.e. for all pure states ρ

$$
T_{i}(\rho)=\rho, \quad \forall i \in\{1,2\}
$$

The no-cloning theorem states that such a quantum channel cannot exist. Perfect quantum cloning being possible only for families of perfectly distinguishable quantum states, that is mutually orthogonal quantum states.

The asymmetric $1 \rightarrow 2$ quantum cloning problem consists in determining the set of $s \in[0,1]^{2}$ such that there exists a $1 \rightarrow 2$ quantum cloning map T with marginals equal on all pure states ρ to

$$
T_{i}(\rho)=s_{i} \cdot \rho+\left(1-s_{i}\right) \frac{I_{d}}{d^{\prime}} \quad \forall i \in\{1,2\} .
$$

The admissible region contains the trivial convex set \square, a quantum advantage set \square that decreases with the dimension d, as well as a negative part \square.

s_{1}

Permutation operators

The Choi matrix C_{Φ} of a linear map $\Phi: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d^{\prime}}$ is defined by

$$
C_{\Phi}=\left(\mathrm{id}_{d} \otimes \Phi\right)\left(\sum_{i j=1}^{d}|i\rangle\langle j| \otimes|i\rangle\langle j|\right)
$$

One can recover the linear map Φ from the Choi matrix C_{Φ} by the formula $\Phi(X)=\operatorname{Tr}_{d}\left[C_{\Phi}\left(X^{\top} \otimes I_{d^{\prime}}\right)\right]$.

A linear map $\Phi: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d^{\prime}}$ is a quantum channel if and only if
(1) $C_{\Phi} \geq 0$
(2) $\operatorname{Tr}_{d^{\prime}}\left[C_{\Phi}\right]=I_{d}$.

The symmetrization of a $1 \rightarrow 2$ quantum cloning map T is a quantum cloning map defined by

$$
\tilde{T}(\rho)=\int_{\mathcal{U}_{d}}(U \otimes U) T\left(U^{*} \rho U\right)\left(U^{*} \otimes U^{*}\right) \mathrm{d} U
$$

where the integral is taken with respect to the normalized Haar measure on the unitary group \mathcal{U}_{d}. The admissible region is covered by the symmetrized quantum cloning maps. The Choi matrix of a symmetrized $1 \rightarrow 2$ quantum cloning map \widetilde{T} is a complex linear combination of partially transposed permutation operators, i.e.

$$
C_{\tilde{T}}=\sum_{\pi \in \mathfrak{S}_{3}} \alpha_{\pi} \cdot V \Gamma(\pi)
$$

where V is the natural representation of the symmetric group \mathfrak{S}_{3} acting on $\left(\mathbb{C}^{d}\right)^{\otimes 3}$, and the partial transposition acts on the first copy of \mathcal{M}_{d}.

Restricted quantum cloning maps

We consider the restricted case when the Choi matrix $C_{\tilde{T}}$ is a linear combination of only 4 partially transposed permutation operators of \mathfrak{S}_{3}, i.e.

$$
C_{\tilde{T}}=\alpha_{1} \cdot \underline{x}+\alpha_{2} \cdot x+\alpha_{3} \cdot x+\alpha_{4} \cdot x
$$

We want to know when conditions (1) and (2) are satisfied. The 4 partially transposed permutation operators can be block diagonalized in the basis of the $2 d$ vectors

$$
\left.\underline{\mathrm{I}_{i}}=\sum_{j=1}^{d}|j\rangle \otimes|j\rangle \otimes|i\rangle \quad \text { and } \quad-\right)_{i}=\sum_{j=1}^{d}|j\rangle \otimes|i\rangle \otimes|j\rangle .
$$

The block diagonal decomposition of the Choi matrix $C_{\tilde{T}}$ becomes

$$
C_{\tilde{T}}=\left(\begin{array}{ll}
d \alpha_{1}+\alpha_{4} & \alpha_{1}+d \alpha_{4} \\
\alpha_{2}+d \alpha_{3} & d \alpha_{2}+\alpha_{3}
\end{array}\right)^{\oplus d} \bigoplus 0^{\oplus\left(d^{3}-2 d\right)}
$$

The admissible region for the restricted $1 \rightarrow 2$ asymmetric quantum cloning is the ellipse given by $\left\{\left(s_{1}, s_{2}\right) \in\left[\frac{-1}{d^{2}-1}, 1\right]^{2}: \frac{\left(1-s_{1}\right)\left(1-s_{2}\right)}{d^{2}} \geq\left(\frac{s_{1}+s_{2}-1}{2}\right)^{2}\right\}$.

General quantum cloning maps

In the general case, the Choi matrix $C_{\tilde{T}}$ is a linear combination of the 6 partially transposed permutation operators of \mathfrak{S}_{3}, i.e.
$C_{\tilde{T}}=\alpha_{1} \cdot \underline{\longrightarrow}+\alpha_{2} \cdot \vec{x}+\alpha_{3} \cdot X+\alpha_{4} \cdot{ }^{x}\left(+\alpha_{5} \cdot \bar{Z}+\alpha_{6} \cdot \sqrt{x}\right.$
The admissible region of the $1 \rightarrow 2$ asymmetric quantum cloning is the union of a family of ellipses given by

$$
\frac{\left(s_{1}-s_{2}\right)^{2}}{a^{2}}+\frac{\left(\left(s_{1}+s_{2}\right)-c\right)^{2}}{b^{2}} \leq \lambda^{2}
$$

with $a=\frac{1}{\sqrt{d^{2}-1}}, b=\frac{1}{d^{2}-1}, c=\frac{\lambda d-2}{d^{2}-1}$ and $\lambda \in[0, d]$.

1. Laboratoire de Physique Théorique, Université de Toulouse, UPS, France. 2. Institut de mathématiques, Université de Toulouse, UPS, France. This research was supported by the ANR project ESQuisses (ANR-20-CE47-0014-01).

LDT
Ei nstuut

