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Decompositions of high-frequency Helmholtz solutions and application
to the finite element method

David Lafontaine

(joint work with Jeffrey Galkowski, Euan A. Spence, Jared Wunsch)

Motivation and informal statement of our results. We are interested in
the Helmholtz equation in the exterior of an obstacle O, with Dirichlet boundary
condition and Sommerfeld radiation condition at infinity (corresponding to the
fact that we are looking for an outgoing wave)

⎧
⎪⎨

⎪⎩

∆u+ k2u = f in Rd\O,

u = 0 on ∂O,

∂ru− iku = o(r−(d−1)/2) as r → ∞.

A popular choice to solve numerically such an equation is the hp-finite element
method (hp-FEM), where one decreases the meshsize h and increases the poly-
nomial degree p of the approximation, both depending on the frequency k of the
solution, to obtain accuracy. A natural question in this framework is the following:
what is a condition on h, p, and k for these methods to converge? As the solution
oscillates at scale k−1, we should need at least a number of degrees of freedom
#DOF ! kd. Is it enough ?

Melenk and Sauter [MS10, MS11] gave a positive answer to this question when
the obstacle is analytic (see also [MPS13] and [EM12] for the interior impedance
problem). They have shown that, under the conditions

hk

p
≤ C1, p ≥ C2 log k,

the solution to the discrete problem exists, is unique, and is quasi-optimal (that
is, it is the best possible approximation of the solution by a piecewise polynomial,
up to a multiplicative constant). In particular, under these conditions, one can
construct h and p so that the number of degrees of freedom of the problem verifies

#DOF ≃
( p
h

)d
" kd.

In other words, hp-FEM applied to this setting does not suffer from the pollution
effect that plagues the h-FEM (where p is left constant), for which one needs
strictly more degrees of freedom than kd to maintain accuracy [BS00].
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The proof of Melenk and Sauter [MS10, MS11] is based on a decomposition of
the Helmholtz solutions

(⋆) u = uH2 + uA,

where uH2 verifies better estimates in the frequency k than u, and uA verifies the
same estimates in k as u but is analytic. The idea is that uH2 contains the high
frequencies (! k) of the solution, and uA the low frequencies (" k). Their proof of
the decomposition (⋆) is based on explicit computations that cannot be generalised
in a straightforward way to more general problems, such as the Helmholtz equation
with variables coefficients, despite the large interest for such a problem.

In the works [LSW22, GLSW21, GLSW22], we tackled the question of under-
standing the frequency-decomposition (⋆) in the most general possible situation.
We obtained the following results.

(1) In [LSW22], we obtained the decomposition (⋆) for the variable C∞ coef-
ficients equation in Rd.

(2) Then, in [GLSW21], we have shown such a decomposition in the very
general black-box scattering framework of Sjöstrand-Zworski.

(3) Finally, in [GLSW22], we extended this result to the problem truncated
with a Perfectly Matched Layer (PML).

In particular, one can apply our results to show that hp-FEM applied to the
equation

(a) without obstacle and with variable C∞ coefficients,
(b) posed in the exterior of an analytic obstacle and with variable C∞ coeffi-

cients which are analytic near the obstacle,

does not suffer from the pollution effect, both for the outgoing problem and PML.

Some ideas behind the proofs of the results [LSW22, GLSW21, GLSW22].
The decomposition in Rd for the C∞ variable-coefficients equation [LSW22] is
obtained by projecting the solution u, spatially truncated in the ball B(0, R) where
we seek to obtain the decomposition, on its high (! k) and low (" k) Fourier
modes. In other words, we define

uH2 := ΠHigh(ϕu), uA := ΠLow(ϕu),

where ϕ ∈ C∞
c is equal to one in B(0, R), ΠLow is defined as a Fourier multiplier

truncating in Fourier variables ≤ µk for some µ ≫ 1, and ΠHigh := I − ΠLow.
Thanks to its Fourier localisation, it is immediate to see that uA is analytic, and
even entire, using Parseval identity. On the other hand, the bound on uH2 is
obtained using semiclassical ellipticity: for µ large enough, uH2 lives in phase-
space where the equation is invertible modulo negligible terms.

Attempting to generalize this method [LSW22] to setups including boundaries,
we run into technical issues involving the extension of solutions to the whole space
when trying to use frequency projections defined from Fourier multipliers. In-
stead, we have another idea: rather use frequency projections defined through the
functional calculus. In other words, we define

ΠHigh = (1− ψ)(P ), ΠLow := ψ(P ),
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where P is the operator associated with our Helmholtz equation Pu + k2u = f
and ψ ∈ C∞

c (R), and uH2 and uA will be defined as previously. This idea has
two immediate advantages: these projections commute with the equation, and we
can now try to work with an operator P as general as possible. Taking advantage
of the later, we will work in the very general black-box scattering framework of
Sjöstrand and Zworski [SZ91], where in addition to some suitable compatibility
conditions, P is only assumed to be a self-adjoint operator coinciding with the
Laplacian outside “the black-box” B(0, R0), where it is left unspecified. Following
this idea, we were able to show a very general, albeit abstract decomposition result,
reading in an informal way:

Theorem 1 (Main abstract decomposition from [GLSW21], informal version). Let
P be a black-box scattering operator of Sjöstrand-Zworski. We make the following
assumptions.

(H1) The solution operator associated with the Helmholtz equation is polynomi-
ally bounded in the frequency k.

(H2) One has an estimate quantifying the regularity of P “inside the black-box”
B(0, R0).

Then, any solution u of the Helmholtz equation (P+k2)u = k2f can be decomposed
as

u = uH2 + uA.

Where

• uH2 verifies a black-box version of the estimate

∥u∥L2 + k−m∥u∥Ḣm " ∥f∥L2.

• uA verifies the same estimates in k as u but is regular. This regularity is
dictated by the regularity of the underlying problem as measured by (H2).

The bound on uH2 relies once again on ellipticity : near the black-box, we are
able to show an abstract ellipticity result from functional-calculus abstract ma-
nipulations; whereas away from the black-box, the functional calculus coincides
with the semiclassical pseudo-differential calculus up to negligible terms as ob-
served by Sjöstrand [Sj97], and we are able to use genuine semiclassical ellipticity
as in [GLSW21]. On the other hand, the regularity bounds on uA follow from the
morphism property of the functional calculus together with the estimate (H2).

As the assumption (H1) (arising similarly in [LSW22]) always holds outside a
set of frequencies of arbitrarily small measure [LSW21], the key to apply such
a result to concrete Helmholtz problems is to find a suitable estimate of type
(H2). For example, outside an analytic Dirichlet obstacle for the equation with
C∞ variable-coefficients which are analytic near the obstacle, we are able to use as
(H2) an heat-flow estimate (more precisely, we combine a folklore estimate tracing
back to [Fri69] with the more recent [EMZ17]) to obtain a decomposition in this
set-up, allowing us to show the sharp convergence result for hp-FEM.

Whereas we first obtained these results for the outgoing Helmholtz solutions,
the corresponding PML problems have the substantial additional difficulty that
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the scaled Laplacian is a non self-adjoint operator. In [GLSW22], building on the
outgoing case and the recent progress [GLS21] on PML accuracy, we were able
to obtain strictly analogous results in such a setup, using frequency cut-offs de-
fined via the non-scaled calculus as in [GLSW21] together with the (semiclassical)
ellipticity of PML in the scaling region.
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