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Abstract
We analyse parallel overlapping Schwarz domain decomposition methods for the
Helmholtz equation, where the exchange of information between subdomains is
achieved using first-order absorbing (impedance) transmission conditions, together
with a partition of unity. We provide a novel analysis of this method at the PDE level
(without discretization). First, we formulate the method as a fixed point iteration, and
show (in dimensions 1, 2, 3) that it is well-defined in a tensor product of appropri-
ate local function spaces, each with L2 impedance boundary data. We then obtain a
bound on the norm of the fixed point operator in terms of the local norms of certain
impedance-to-impedance maps arising from local interactions between subdomains.
These bounds provide conditions underwhich (some power of) the fixed point operator
is a contraction. In 2-d, for rectangular domains and strip-wise domain decompositions
(with each subdomain only overlapping its immediate neighbours), we present two
techniques for verifying the assumptions on the impedance-to-impedance maps that
ensure power contractivity of the fixed point operator. The first is through semiclassical
analysis, which gives rigorous estimates valid as the frequency tends to infinity.At least
for a model case with two subdomains, these results verify the required assumptions
for sufficiently large overlap. For more realistic domain decompositions, we directly
compute the norms of the impedance-to-impedance maps by solving certain canon-
ical (local) eigenvalue problems. We give numerical experiments that illustrate the
theory. These also show that the iterative method remains convergent and/or provides
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a good preconditioner in cases not covered by the theory, including for general domain
decompositions, such as those obtained via automatic graph-partitioning software.

Mathematics Subject Classification 65N22 · 65N55 · 65F08 · 65F10 · 35J05

1 Introduction

1.1 The Helmholtz problem

Motivated by the large range of applications, there is currently great interest in design-
ing and analysing domain decomposition methods for discretisations of the Helmholtz
equation

�u + k2 u = − f , on �, (1.1)

on a d-dimensional bounded domain � (d = 2, 3), with k the (spatially constant,
but possibly large) angular frequency. While the algorithm considered here is easily
applicable to (1.1) with very general boundary condition, geometry and variable k,
our theory is restricted here to the homogeneous interior impedance problem with k
constant, and the boundary condition

∂u

∂n
− iku = g on ∂�, (1.2)

where ∂u/∂n is the normal derivative, outward from �.

1.2 Parallel domain decompositionmethod

To solve (1.1), (1.2), we use a parallel overlapping Schwarz method with impedance
transmission condition, based on a set of Lipschitz polyhedral subdomains {� j }Nj=1,
forming an overlapping cover of �. To derive this, note that if u solves (1.1), (1.2),
then, the restriction of u to � j :

u j := u|� j , for j ∈ {1, . . . , N }, (1.3)

satisfies

(� + k2)u j = − f in � j , (1.4)(
∂

∂n j
− ik

)
u j =

(
∂

∂n j
− ik

)
u on ∂� j\∂�, (1.5)

(
∂

∂n j
− ik

)
u j = g on ∂� j ∩ ∂�, (1.6)
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where ∂/∂n j denotes the outward normal derivative on ∂� j . To iteratively solve
(1.4)–(1.6), we introduce a partition of unity (POU), {χ j }Nj=1, with the properties

for each j : suppχ j ⊂ � j , 0 ≤ χ j (x) ≤ 1 when x ∈ � j ,

and
∑

j χ j (x) = 1 for all x ∈ �.

⎫⎬
⎭ (1.7)

Then, the parallel Schwarz method reads as follows: given an iterate un defined on �,
we solve each local problem on � j for u

n+1
j ,

(� + k2)un+1
j = − f in � j , (1.8)(

∂

∂n j
− ik

)
un+1
j =

(
∂

∂n j
− ik

)
un on ∂� j\∂�, (1.9)

(
∂

∂n j
− ik

)
un+1
j = g on ∂� j ∩ ∂�, (1.10)

and the new iterate is the weighted sum of the local solutions:

un+1 :=
∑

�

χ�u
n+1
� . (1.11)

Thiswell-knownmethod canbe thought of as a generalizationof the classical algorithm
of Després [4, 16] to the case of overlapping subdomains. The form of the algorithm
stated above can be found in [18, §2.3]. The novel contribution of this paper is the
convergence analysis of the method.

1.3 Themain results and structure of the paper

The main results of this paper are as follows.

1. A proof that the iterative method (1.8)–(1.11) is well-defined for general Lips-
chitz subdomains (Theorem 2.12) using well-posedness results for the Helmholtz
equation on Lipschitz domains and the harmonic-analysis results of [42].

2. The formulation of the fixed-point iteration (3.9) for the error vector en , where enj =
u j − unj , j = 1, . . . , N , and the expression of powers of the fixed-point operator
T in terms of “impedance-to-impedance maps” linking pairs of subdomains with
non-trivial intersection (Theorem 3.9).

3. For 2-d rectangular domains covered by overlapping strips, with each subdomain
only overlapping its immediate neighbours, sufficient conditions for T N to be a
contraction, where N is the number of subdomains (Theorem 4.13 and its corollar-
ies). These conditions are formulated in terms of norms of impedance-to-impedance
maps and compositions of such maps.

4. A summary and explanation of the results from the companion paper [44] that
bound impedance-to-impedance maps using rigorous high-frequency asymptotic
analysis (a.k.a., semiclassical analysis). In particular, these results indicate that
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Theorem 4.13 implies contractivity of T N for a model case with two subdomains
and provided that the overlap is sufficiently large (see Sect. 4.4.4).

5. Finite element experiments (Sect. 6) that both back up the theory and investigate
scenarios out of the theory’s current reach. Since the theory in Points 1-4 is at
the continuous level without discretization, Sect. 5 first gives a description of the
finite element algorithms used, along with justification that the results in Sect. 6
are reliable.
The experiments related to the theory illustrate how the good behaviour of the
relevant impedance-to-impedance maps induces good convergence of the iterative
method. Those beyond the theory show, for square domains and general domain
decompositions, that the fixed point operator still enjoys a power contractivity
property (Sect. 6).

Regarding 2 and 3: to our knowledge this is the first time that overlapping DD
methods forHelmholtz have been analysed in terms of impedance-to-impedancemaps.
This analysis therefore gives a route to analyse overlappingDDmethods forHelmholtz
using the PDE theory of the Helmholtz equation, which will then be the focus of
[44]. Interest in impedance-to-impedance (a.k.a., Robin-to-Robin)maps can bewidely
found in the non-overlapping literature - see the references in the literature review
below. These maps also arise in the formulation of fast direct methods (e.g. [34, 55])
and the recent work [3] analyses these maps in this setting (using complementary
techniques to those in [44]). Previous work of some of the authors (e.g., [36, 38])
also used PDE theory to analyse overlapping DD preconditioners; while this work
was able to cover very general geometries, it was limited to the case when �k > 0,
corresponding to media with some absorptive properties. In the present paper we
consider only the propagative case �k = 0.

Regarding 3: In 1-d we recover the classical result (a special case of [54]) that, with
N subdomains, the N th power of the fixed point operator is zero, and so the iterative
method converges in N iterations.

The structure of the paper is as follows. Section 2 contains the necessary well-
posedness and regularity theory for the Helmholtz equation needed to prove the results
described in Point 1 above. Section 3 formulates the fixed-point iteration as described
in Point 2. Section 4 focuses on 2-d strip decompositions as described in Point 3.
Section 5 describes the set-up for the finite-element computations used to illustrate
the results, with the results of these computations given in Sect. 6.

1.4 Literature review

In the last decade there has been an explosion of progress in the construction and
analysis of solvers for frequency-domain wave problems. Here we highlight those
parts of the literature most related to the present paper; more substantial recent reviews
can be found, for example in [33] and in the introductions to [38, 60].

The method (1.8)–(1.11) can be thought of as a straightforward extension of the
parallel non-overlapping method of Després [4, 16] to the case of overlapping sub-
domains. In [4, 16] the coupling between subdomains at each iteration is achieved
by feeding to each subdomain impedance data from its neighbours at the previous
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iteration. In the overlapping case considered here, the boundary impedance data for
the next iterate on a given subdomain is a weighted average of data coming from all
subdomains overlapping it [see (1.9) and (1.11)].

The results of [4, 16] proved convergence of the iterative algorithm via an energy
argument. Although a rate of convergence was not provided, when it first appeared
this work inspired huge interest in non-overlapping methods which continues today
and a recent review can be found in the introduction to [13]. Indeed the results of
[4, 16] have recently been extended to higher-order boundary conditions in [17].
Furthermore, there has been much interest in handling cross points in non-overlapping
domain decomposition methods, e.g., at the PDE level in [11] and at the discrete level
in [13, 51]. In [11, 13] the “multitrace” theory, originally introduced for boundary
integral equations, was used to prove the contractivity of a certain non-overlapping
domain decomposition method, even in the presence of cross points (where more than
two subdomains meet), albeit at the cost of inverting a global operator coupling the
subdomains.

An early paper on transmission conditions for the overlapping case [54] showed
that if the impedance transmission condition was replaced by a transparent condition
(constructed using the appropriate Dirichlet to Neumann (DtN) map), then for a one
dimensional sequence of N subdomains with a first and last subdomain, the iterative
method converges in N steps; see also [22] for complementary results on the optimal
choice of boundary condition. Since DtN maps are not practical to compute, a great
deal of interest then focussed on effective approximations of them. For example,
second order impedance operators were introduced in [32] and discussed in many
subsequent papers. Padé approximations of the DtN map were investigated in [7] and
non-local integral equation-based techniques were proposed in [14], although again
[7, 14] concern the non-overlapping case.

The above “Helmholtz-specific” algorithms can also be thought of as examples of
the more general class of Optimized Schwarz methods, a concept that is applicable
to a wide range of PDEs, in which transparent boundary conditions on subdomain
boundaries are approximated by Robin or higher order transmission conditions, opti-
mized for fastest convergence—see, for example, [27, 29, 31, 32] and the references
therein. For example, [47] studies the (dis)advantages of large overlap for a particu-
lar Schwarz method for the Helmholtz equation using two-sided Robin transmission
conditions and an additional (optimized) relaxation parameter. However this particular
method is somewhat different from the (essentially classical) general method analysed
in the present paper. A historical perspective on Schwarz methods in general is given
in [28].

The methods described above aim at maximising parallelism by solving inde-
pendent subproblems at each iteration. Since wave problems are fundamentally
propagative there is also great potential for alternating (or ‘multiplicative’) methods,
in which solutions of subproblems are passed from subdomain to subdomain in the
iterative process. While these are less inherently parallel they can potentially gain in
the number of iterations needed for convergence. Algorithms that can be classified as
inherently multiplicative include the sweeping preconditioner [21], the source transfer
domain decomposition [10, 20], the single-layer-potential method [59], the method of
polarized traces [63]. All these methods are very much related, and can also be under-
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stood in the context of optimized Schwarzmethods—see [33]. A relatedmultiplicative
method is the double sweep method, introduced in [53, 62] and partly analysed in [8,
53]. Mostly these algorithms do not allow cross-points, although extensions to regular
decompositions with cross points are proposed in [46, 60].

Related to the question of convergence of Schwarz methods for Helmholtz prob-
lems, we remark that in the recent paper [30], Fourier semi-analytical techniques
(different from, but complementary to, the methods used in this paper) are used to
study contractivity for strip-type domain decompositions for many different interior
transmission and outer boundary conditions.

1.5 Discussion of our results in the context of the literature

While the majority of the theory discussed above concerns non-overlapping DD for
Helmholtz, the present paper develops a new convergence analysis in the overlap-
ping case. As explained in Sect. 5, the corresponding solver is closely related to the
Optimized Restricted Additive Schwarz (ORAS) preconditioner, which provides the
foundational one-level component for several large-scale wave propagation solvers
e.g., [5, 6, 40, 61]. Thus the theory in the present paper underpins several existing
successful algorithms. Unlike previous work (e.g., [36]) that aimed at proving that the
field of values of the preconditioned operator did not include the origin - an extremely
strong requirement - our analysis here has the more modest aim of proving power
contractivity of the fixed point operator. This turns out to be not only provable for a
model problem in simple-enough geometry but also observable in more general situ-
ations, giving hope that the present theory can be generalised. Power contractivity of
the fixed point operator also ensures convergence rates for preconditioned GMRES.

The estimates ensuring power contractivity in Sect. 4, involving the norms of
impedance-to-impedance maps (which can be computed by solving canonical eigen-
value problems) are in some sense analogous to condition number estimates in the
positive definite case: both estimates provide upper bounds that can be controlled in
certain parameter ranges, but the actual value of the bound is rarely computed when
solving a particular problem (so the bounds are “descriptive” rather than “prescrip-
tive”).

1.6 The discrete analogue of the results of this paper

In [35] it was shown (see also Sect. 5.1) that a natural finite element counterpart of
the parallel iterative method considered in the current paper is the Restricted Additive
Schwarz method with impedance transmission condition (often called the Optimized
Restricted Additive Schwarz (ORAS) method).

Since this paper was written, three of the current authors developed a convergence
theory for ORAS, thus providing a discrete version of the theory given here. These
results are presented in [37].

The theory in [37] applies to discrete Helmholtz systems arising from conforming
nodal finite elements of any polynomial order and a general theory for discrete fixed
point iteration analogous to Sects. 2, 3 on general Lipschitz domains and partitions of
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unity is presented. For domain decompositions in strips in 2-d, we show that, when the
mesh size is small enough, ORAS inherits the convergence properties of the parallel
iterativemethod at the PDE levelwhich are proved here, independent of the polynomial
order of the elements. The proof relies on characterising the ORAS iteration in terms
of discrete ‘impedance-to-impedance maps’ on local discrete Helmholtz-harmonic
spaces, which we prove (via a novel weighted finite-element error analysis) converge
as h → 0 in the operator norm to their non-discrete counterparts (i.e., the operators
analysed here). This discrete theory thus justifies the use of the finite element method
to illustrate the properties of the iterative method at the PDE level, as we have done
in Sect. 6 of this paper.

2 Helmholtz well-posedness and regularity theory

2.1 Basic notation and assumptions

Standard norms. Let (·, ·)� denote the usual L2(�) inner product with induced norm
‖ · ‖� and denote the standard weighted H1 norm by

‖v‖21,k,� = ‖∇v‖2� + k2‖v‖2�. (2.1)

Let 〈·, ·〉∂� denote the L2(∂�) inner product, with induced norm ‖ · ‖∂�. For inner
products over measurable subsets �̃ ⊂ � and �̃ ⊂ �, we write (·, ·)�̃ and 〈·, ·〉�̃ .
Sesquilinear forms.We define the global and local sesquilinear forms by

a(u, v) := (∇u,∇v)� − k2(u, v)� − ik〈u, v〉∂� for u, v ∈ H1(�), (2.2)

and a�(u, v) := (∇u,∇v)��
− k2(u, v)��

− ik〈u, v〉∂��
for u, v ∈ H1(��).

(2.3)

Prolongation and restriction. We build a prolongation R̃�
� : H1(��) → H1(�) by

multiplication by the POU, i.e., for each v� ∈ H1(��),

R̃�
� v� =

{
χ�v� on ��,

0 elsewhere.
(2.4)

Recalling that u� denotes the restriction of u to �� [see (1.3)], we have the important
property

N∑
�=1

R̃�
� u|��

=
N∑

�=1

χ�u|��
= u, for all u ∈ H1(�). (2.5)

Themain purpose of this section is to justify step (1.9) in the domain decomposition
algorithm, by showing that for each n, the impedance trace of un is in L2(∂��), for
each �. This then ensures that, for each �, un+1

� is well-defined in the space U (��)
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defined below and hence un+1 ∈ U (�), so that un+1 in turn provides suitable L2

impedance traces on each ∂�� for the next iteration. The main result of this section
is Theorem 2.12. To prove it we need to analyse (1.8)–(1.11) in a space of higher
regularity than H1. In what follows we need the following further property of the
partition of unity {χ�}.
Assumption 2.1 In addition to satisfying (1.7), χ� ∈ C1,1(��).

Such a partition of unity exists by, e.g., [48, Theorem 3.21 and Corollary 3.22]. We
note for later that Assumption 2.1 implies that ∂χ�/∂n� = 0 on ∂�� \ ∂�, and thus,
for any v� ∈ H1(��),

∂

∂n�

(χ�v�) = ∂χ�

∂n�

v� + χ�

∂v�

∂n�

= 0 on ∂��\∂�. (2.6)

Notation 2.2 Where possible, we explicitly indicate the dependence of our estimates
on the wavenumber k. In this context, we always assume k ≥ k0 where k0 > 0 is
chosen a priori and we use the notation A � B to mean A ≤ CB with a constant
C independent of k (but possibly depending on k0) and A ∼ B to mean A � B and
B � A.

2.2 The Helmholtz problem in spaces U(D) and U0(D)

In this subsection D denotes a general Lipschitz domain, with boundary ∂D.

Definition 2.3 Let

U (D) := {u ∈ H1(D) : �u ∈ L2(D), ∂u/∂n ∈ L2(∂D)
}
,

with norm

‖u‖2U (D) := k−2 ‖�u‖2L2(D)
+ ‖∇u‖2L2(D)

+ k2 ‖u‖2L2(D)

+‖∂u/∂n‖2L2(∂D)
+ k2 ‖u‖2L2(∂D)

. (2.7)

Since the trace operator maps H1(D) to H1/2(∂D) ⊂ L2(∂D), an equivalent defini-
tion of U (D) is

U (D) = {u ∈ H1(D) : �u + k2u ∈ L2(D), ∂u/∂n − iku ∈ L2(∂D)
}
.

Let

U0(D) := {u ∈ H1(D) : �u + k2u = 0 in D, ∂u/∂n − iku ∈ L2(∂D)
} ⊂ U (D);

in the rest of the paper we refer toU0(D) as the space ofHelmholtz-harmonic functions
on D.
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Lemma 2.4 (Well-posedness of the Interior Impedance Problem inU (D)) Suppose D
is Lipschitz and consider the problem

�u + k2u = − f in D and ∂u/∂n − iku = g on ∂D, (2.8)

with f ∈ L2(D) and g ∈ L2(∂D). Then there exists a unique solution u ∈ U (D) and
C j = C j (k), j = 1, 2, such that

‖u‖U (D) � C1(k) ‖ f ‖L2(D) + C2(k) ‖g‖L2(∂D) . (2.9)

Proof of Lemma 2.4 By the standard result about well-posedness of the interior
impedance problem for Lipschitz D (see, e.g., [57, §§6.1.3, 6.1.6]), a unique solu-
tion u exists and there exist C j = C j (k), j = 1, 2, such that

‖∇u‖L2(D) + k ‖u‖L2(D) ≤ C1(k) ‖ f ‖L2(D) + C2(k) ‖g‖L2(∂D) . (2.10)

Without loss of generality we can assume that C j (k) � 1, for j = 1, 2. Then, multi-
plying the PDE in (2.8) by u and using Green’s identity (see, e.g., [48, Lemma 4.3]),
we find that

〈∂u/∂n, u〉∂D − ‖∇u‖2L2(D)
+ k2 ‖u‖2L2(D)

= −
∫
D

f u.

Inserting the boundary condition from (2.8), taking the imaginary part, and using the
Cauchy–Schwarz inequality gives

k ‖u‖2L2(∂D)
� ‖ f ‖L2(D) ‖u‖L2(D) + ‖g‖L2(∂D) ‖u‖L2(∂D) . (2.11)

Now, multiplying (2.11) through by k and using the inequality 2ab ≤ εa2 + ε−1b2,
for any a, b, ε > 0 to estimate both terms on the right-hand side, we have

k2 ‖u‖2L2(∂D)
� ‖ f ‖2L2(D)

+ ‖g‖2L2(∂D)
+ k2 ‖u‖2L2(D)

.

Combining this with (2.10), we obtain

‖∇u‖L2(D) + k ‖u‖L2(D) + k ‖u‖L2(∂D) � (2C1(k) + 1) ‖ f ‖L2(D)

+(2C2(k) + 1) ‖g‖L2(∂D) , (2.12)

which is in the required form (2.9).
To complete the bound on ‖u‖U (D), we therefore only need to bound k−1‖�u‖L2(D)

and ‖∂u/∂n‖L2(∂D) by the right-hand side of (2.9); a bound on k
−1‖�u‖L2(D) follows

from the PDE in (2.8) together with (2.12). The required bound on ‖∂u/∂n‖L2(∂D)

follows from the boundary condition in (2.8) together with (2.12). ��
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Remark 2.5 (The k-dependence ofC1 andC2 in Lemma2.4) For anyLipschitz domain
D, C1(k) � 1 by [56, Lemma 4.10], and when D is a ball, C2(k) � 1 by [2, Lemma
5.5].

If D is either Lipschitz star-shaped or C∞, then (2.9) holds with C1(k) ∼ 1 and
C2(k) ∼ 1 by [52, Equation 3.12] and [2, Theorem 1.8 and Corollary 1.9] respectively.

If D is only assumed to be Lipschitz, then the sharpest existing result about the
k-dependence of C1 and C2 is that C1(k) ∼ k and C2(k) ∼ k1/2 [56, Theorem 1.6]. If
∂D is merely piecewise smooth, then C1(k) ∼ k3/4 and C2(k) ∼ k1/4 [56, Theorem
1.6].

We now use results from the harmonic-analysis literature about the Laplacian on
Lipschitz domains to give an alternative characterisation of the space U (D). Let

H3/2(D;�) :=
{
v ∈ H3/2(D) : �v ∈ L2(D)

}
,

with norm

‖u‖2H3/2(D;�)
:= ‖u‖2H3/2(D)

+ ‖�u‖2L2(D)
. (2.13)

The following theorem is a consequence of [42, Corollary 5.7]; see [15, Lemma 2].

Theorem 2.6 If D is Lipschitz, then U (D) = H3/2(D;�).

Since the H3/2(D;�) norm is characterised only through norms on D (as opposed
to the norm on U (D), which is characterised through norms on both D and ∂D), the
following corollary holds.

Corollary 2.7 If v ∈ U (D) and D′ is a Lipschitz subdomain of D, then the restriction
of v to D′ is in U (D′).

By Theorem 2.6 and the definition of U (D) in §2.2, the norms ‖·‖H3/2(D;�) and
||| · |||U (D) defined by

|||u|||2U (D) := ‖�u‖2L2(D)
+ ‖∇u‖2L2(D)

+ ‖u‖2L2(D)
+ ‖∂u/∂n‖2L2(∂D)

+ ‖u‖2L2(∂D)

(2.14)

are equivalent. Moreover the equivalence constants are k−independent (since k does
not feature in the definition of either norm.).We therefore have the following corollary.

Corollary 2.8 (Neumann trace for functions in H3/2(�;�))

‖∂v/∂n‖L2(∂D) � ‖v‖H3/2(D;�) for all v ∈ H3/2(D;�), (2.15)

(i.e., the omitted constant is independent of k).

Because of the oscillatory character of u, one expects its H3/2 norm to be k1/2

times its H1 norm; i.e., from (2.9), that ‖u‖H3/2(�) � k1/2
(
C1(k) ‖ f ‖L2(D) +

C2(k) ‖g‖L2(∂D)

)
. The following result almost proves this.

123



Convergence of parallel overlapping domain decomposition…

Theorem 2.9 Let u be the solution of (2.8) with f ∈ L2(D) and g ∈ L2(∂D). Then,
for any β > 1/2, there exists C(β) > 0 such that

‖u‖H3/2(D) ≤ C(β)kβ
(
C1(k) ‖ f ‖L2(D) + C2(k) ‖g‖L2(∂D)

)
. (2.16)

Proof The combination of [1, Theorem 3.2, Theorem 3.5, and Remark 3.3] implies
that, if λ ∈ C with �λ ≥ λ0,

(� − λ2)v = F in D and ∂v/∂n = G on ∂D, (2.17)

with F ∈ L2(D) and G ∈ L2(∂D), then, for all 0 < r < 1/2 there exists Cr > 0
such that

‖v‖H3/2(D) ≤ Cr |λ|1−2r
(
|λ|1/2 ‖F‖L2(D) + ‖G‖L2(∂D)

)
. (2.18)

Let λ := ik + 1, then (2.17) is satisfied with v = u, G = iku + g, and F =
− f − (2ik + 1)u. Applying the bound (2.18) we obtain that

‖u‖H3/2(D) ≤ Crk
1−2r

(
k1/2

( ‖ f ‖L2(D) + (k + 1) ‖u‖L2(D)

)+ k ‖u‖L2(∂D) + ‖g‖L2(∂D)

)
.

The result (2.16) then follows from using (2.9), and the facts thatC j (k) � 1, j = 1, 2,
by [56, Lemma 4.10], [2, Lemma 5.5] (as discussed in Remark 2.5). ��

The following lemma studies the behaviour of the impedance trace of a function
u ∈ U (D) on an interface interior to D. This plays a key role in the analysis of the
iterative method (1.8)–(1.11).

Lemma 2.10 Suppose D, D′ are both Lipschitz domains and D′ ⊂ D.
(i) If u ∈ U (D), then

‖(∂/∂n − ik)u‖L2(∂D′) � k ‖u‖H3/2(D′;�) ≤ k ‖u‖H3/2(D;�) . (2.19)

(ii) If u ∈ U0(D), then,

‖(∂/∂n − ik)u‖L2(∂D′) � k2 C2(k) ‖(∂/∂n − ik)u‖L2(∂D) ; (2.20)

i.e., the impedance-to-impedance map (defined more precisely in §3.2) is bounded as
an operator from L2(∂D) to L2(∂D′).

Proof of Lemma 2.10 The first inequality in (2.19) follows from (2.15) and

‖u‖L2(∂D′) � ‖u‖H1(D′) ≤ ‖u‖H3/2(D′;�).

The second inequality in (2.19) follows from the definition (2.13) of ‖ · ‖H3/2(D) and
the inclusion D′ ⊂ D. By (2.19), to prove (2.20) we only need to prove that, for
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u ∈ U0(D),

‖u‖H3/2(D;�) � k C2(k) ‖(∂/∂n − ik)u‖L2(∂D) . (2.21)

However, since

‖u‖H3/2(D;�) � ‖u‖H3/2(D) + ‖�u‖L2(D) = ‖u‖H3/2(D) + k2‖u‖L2(D),

(2.21) follows by using (2.16) and (2.9). ��
We make two remarks:

(i) Lemma 2.10 makes no assumptions about the geometries of D′ and D, other than
that they are both Lipschitz and D′ ⊂ D.

(ii) The powers of k in (2.19) and (2.20) are almost-certainly not sharp; this is because
the right-hand side of the trace result (2.15) involves a norm on H3/2(D;�) that
does not weight derivatives with the appropriate powers of k [in contrast to, e.g.,
(2.7)]. As far as we are aware, the result analogous to (2.15) with an H3/2(D;�)

norm weighted with k and a potentially-k-dependent constant has not yet been
proved for general Lipschitz domains.

2.3 Well-posedness of the domain decomposition algorithm

We now discuss the behaviour of the algorithm (1.8)–(1.11) in the product spaces:

U :=
N∏

�=1

U (��) and U0 :=
N∏

�=1

U0(��). (2.22)

In this section we show the well-posedness of (1.8)–(1.11) in U. The convergence
analysis of (1.8)–(1.11) in the following section is set in U0. First we need the fol-
lowing lemma, which exploits the smoothness requirement on the partition of unity
(Assumption 2.1).

Lemma 2.11 Suppose Assumption 2.1 holds. (i) If v� ∈ U (��) then χ�v� ∈ U (��).
(ii) R̃�

� : U (��) → U (�).

Proof (i) By Assumption 2.1, χ� ∈ C1,α for α > 1/2. Therefore, by [39, Theorem
1.4.1.1], χ�v� ∈ H3/2(��). Since χ� ∈ C1,1, Rademacher’s theorem [48, Page 96]
implies that �χ� exists almost everywhere as an L∞ function on ��, and thus

�(χ�v�) = χ��v� + 2∇χ� · ∇v� + v��χ� ∈ L2(��);
therefore χ�v� ∈ H3/2(��;�). Hence, by Theorem 2.6, χ�v� ∈ U (��).

To prove (ii), observe that, by Assumption 2.1, (2.6) and the definition of U (��),
∂(χ�v�)/∂n� ∈ L2(∂��) and

∥∥∥∥∥
∂
(
R̃�

� v�

)
∂n

∥∥∥∥∥
L2(∂�)

=
∥∥∥∥∥
∂
(
χ�v�

)
∂n�

∥∥∥∥∥
L2(∂�∩∂��)

≤
∥∥∥∥∥
∂
(
χ�v�

)
∂n�

∥∥∥∥∥
L2(∂��)

< ∞. (2.23)
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Because ∂(R̃�
� v�)/∂n ∈ L2(∂�), to finish the proof that R̃�

� v� ∈ U (�), we need to
show that R̃�

� v� ∈ H1(�;�). To do this, recall that, by the definition of the weak
derivative and the divergence theorem, a piecewise H1 function is globally H1 if it is
continuous across the interface between the pieces. Therefore, since χ�v� = 0 on ∂��,
R̃�

� v� ∈ H1(�). Also, since ∂(χ�v�)/∂n also vanishes on ∂��\∂� (recall (2.6)), a
similar argument shows that the Laplacian of R̃�

� v� is in L2(�). ��
Theorem 2.12 (The algorithm in §1.2 is well-defined in both U (�) and U) Suppose
� and ��, � = 1, . . . , N are Lipschitz and let Assumption 2.1 hold.

(i) Suppose un ∈ U (�) and define un+1 by (1.8)–(1.11). Then un+1 ∈ U (�).
(ii) Suppose un ∈ U. Define un by (1.11) (with n + 1 replaced by n) and then un+1

by (1.8)–(1.10). Then un+1 ∈ U.

Proof We prove (i) only; the proof of (ii) is similar. Part (i) of Lemma 2.10 implies that
(∂/∂n j − ik)un ∈ L2(∂� j ). Therefore, by Lemma 2.4, un+1

j (defined by (1.8)–(1.10))

is in U (� j ). Then (1.11) and Lemma 2.11 imply that un+1 ∈ U (�). ��

3 Framework for the convergence analysis

In this section we develop the tools needed to analyse the algorithm (1.8)–(1.11) in
the space U0.

3.1 The error propagation operatorT

To begin, recalling (1.3), we introduce the error

en = (en1 , e
n
2 , . . . e

n
N )�, where en� := u� − un� = u|��

− un� , � = 1, . . . , N .

(3.1)

Then, using (1.11) and (2.5), the global error en := u − un can be written

en =
∑

�

χ�u|��
−
∑

�

χ�u
n
� =

∑
�

χ�e
n
� . (3.2)

Thus, subtracting (1.8)–(1.10) from (1.4)–(1.6), we obtain

(� + k2)en+1
j = 0 in � j , (3.3)(

∂

∂n j
− ik

)
en+1
j =

(
∂

∂n j
− ik

)
en =

∑
�

(
∂

∂n j
− ik

)
χ�e

n
� , on ∂� j\∂�,

(3.4)(
∂

∂n j
− ik

)
en+1
j = 0 on ∂� j ∩ ∂�. (3.5)
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Thismotivates the introduction of the operator-valuedmatrixT = (T j,�)
N
j,�=1, defined

as follows. For v� ∈ U (��), and any j ,

(� + k2)(T j,�v�) = 0 in � j , (3.6)(
∂

∂n j
− ik

)
(T j,�v�) =

(
∂

∂n j
− ik

)
(χ�v�) on ∂� j\∂�, (3.7)

(
∂

∂n j
− ik

)
(T j,�v�) = 0 on ∂� j ∩ ∂�. (3.8)

Therefore,

en+1
j =

∑
�

T j,�e
n
� , and so en+1 = T en . (3.9)

Remark 3.1 (i) ByAssumption 2.1, (∂/∂n�−ik)(χ�v�) vanishes on ∂��, and so T�,� ≡
0 for all �.

(ii) If � j ∩ �� = ∅, then T j,� = 0.
(ii) It is convenient here to introduce the notation

� j,� = ∂� j ∩ ��, (3.10)

so that (3.7) holds on � j,� and (3.8) holds on ∂� j\� j,�.

Since enj is Helmholtz-harmonic in � j for each j , we aim to analyse convergence
of (3.9) in the space U0 defined in (2.22). For the rest of this section we restrict to 2-d
and 3-d, using the following norm, previously introduced in [4, Equation 12]. (The
1-d case is discussed brielfy in §4.3, where the norm on the boundary data is trivially
the modulus on C.)

Definition 3.2 (Norm onU0(D)) For D a bounded Lipschitz domain and v ∈ U0(D),
let

‖v‖21,k,∂D :=
∥∥∥∥∂v

∂n

∥∥∥∥
2

L2(∂D)

+ k2 ‖v‖2L2(∂D)
, (3.11)

where ∂/∂n denotes the outward normal derivative on ∂D.

The next lemma guarantees that this is indeed a norm on U0(D), with the relation
(3.12) a well-known “isometry" result about impedance traces; see, e.g., [57, Lemma
6.37], [12, Equation 3].

Lemma 3.3 (Equivalent formula for ‖ · ‖1,k,∂D) For all v ∈ U0(D) and k > 0,

‖v‖21,k,∂D =
∥∥∥∥∂v

∂n
− ikv

∥∥∥∥
2

L2(∂D)

=
∥∥∥∥−∂v

∂n
− ikv

∥∥∥∥
2

L2(∂D)

, (3.12)
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and so ‖ · ‖1,k,∂D is a norm on U0(D). Furthermore, if D is either Lipschitz star-
shaped or C∞, then ‖ · ‖1,k,∂D is equivalent to ‖ · ‖U (D), with equivalence constants
independent of k.

Proof If v ∈ U0(D), then by Green’s first identity (see, e.g., [48, Lemma 4.3]),

0 = −
∫
D
(�v + k2v)v =

∫
D

(
|∇v|2 − k2|v|2

)
−
∫

∂D

∂v

∂n
v.

Taking the imaginary part, we have

�
(∫

∂D

∂v

∂n
v

)
= 0. (3.13)

Thus,

∫
∂D

∣∣∣∣±∂v

∂n
− ikv

∣∣∣∣
2

=
∫

∂D

(∣∣∣∣∂v

∂n

∣∣∣∣
2

+ k2|v|2
)

∓ 2k �
(∫

∂D

∂v

∂n
v

)
= ‖v‖21,k,∂D,

yielding (3.12).
To show (3.12) is a norm, suppose ‖v‖1,k,∂D = 0. Then, by (3.12), (∂/∂n−ik)v = 0

on ∂D. Since v ∈ U0(D), Lemma 2.4 ensures that v = 0. The other norm axioms
follow from the definition (3.11).

To obtain the norm equivalence, observe that, for v ∈ U0(D),

‖v‖1,k,∂D = ‖∂v/∂n − ikv‖L2(∂D) ≤ ‖∂v/∂n‖L2(∂D) + k‖v‖L2(∂D) ≤ ‖v‖U (D).

Moreover since ∂v/∂n and v both belong to L2(∂D), Lemma 2.4 implies that

‖v‖U (D) ≤ C2(k) ‖∂v/∂n − ikv‖L2(∂D) = C2(k)‖v‖1,k,∂D .

The stated k-independence follows from Remark 2.5. ��

Using (3.11), we define the norm on U0:

‖v‖21,k,∂ :=
N∑

�=1

‖v�‖21,k,∂��
for v ∈ U0. (3.14)

For simplicity, we now assume that each �� is star-shaped Lipschitz, so that the
norm equivalence in Lemma 3.3 holds with constants independent of k. Analogues of
the following results for general Lipschitz �� hold, but with different k-dependence.

Assumption 3.4 �� is star-shaped Lipschitz.
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Furthermore, to simplify the notation, we define the operator

imp� :=
(

∂

∂n�

− ik

)
.

The next theorem summarises some basic properties of the operator T j,� on the space
U0(��).

Theorem 3.5 (Properties of T ) If v� ∈ U0(��) then imp j (T j,�v�) vanishes on
∂� j\� j,�, and

imp j (T j,�v�) = χ� imp j (v�) + ∂χ�

∂n j
v� on � j,�. (3.15)

Also,

‖T j,�v�‖1,k,∂� j = ‖imp j (T j,�v�)‖L2(� j,�)

≤ ∥∥imp j (v�)
∥∥
L2(� j,�)

+ k−1/2‖∇χ�‖L∞(� j,�)‖v�‖1,k,∂��
, (3.16)

and T j,� : U0(��) → U0(� j ) is a bounded operator.

Proof By its definition (3.6)–(3.8), T j,�v� ∈ U0(� j ) and, on ∂� j ,

imp j (T j,�v�) = imp j (χ�v�) =
(

∂

∂n j
− ik

)
(χ�v�), (3.17)

which, recalling (3.10), vanishes on ∂� j\� j,�. Differentiating the product on the
right-hand side of (3.17) yields (3.15). Then, taking norms of both sides of (3.15) and
using Assumption 2.1 and the fact that 0 ≤ χ� ≤ 1, we obtain

‖imp j (T j,�v�)‖L2(� j,�)
≤ ‖imp j (v�)‖L2(� j,�)

+ ‖∇χ�‖L∞(� j,�)‖v�‖L2(� j,�)
.

(3.18)

Then, using the fact that � j,� ⊂ �� is an interface in��, using the multiplicative trace
theorem and then Lemma 3.3, we obtain

k1/2‖v�‖L2(� j,�)
� k1/2‖v�‖1/2L2(��)

‖v�‖1/2H1(��)

� k‖v�‖L2(��)
+ ‖v�‖H1(��)

� ‖v�‖1,k,��
� ‖v�‖1,k,∂��

.

(3.19)

Combining this with (3.18) yields (3.16). Finally, to obtain the boundedness of T j,� :
U0(��) → U0(� j ), we use Lemma 2.10 (ii), to obtain

‖imp j (v�)‖L2(� j,�)
� k2‖imp�(v�)‖L2(∂��)

= k2‖v�‖1,k,∂��
,

and we then combine this with (3.16). ��
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Remark 3.6 The same arguments show that T j,� : U (��) → U0(� j ) is bounded.

In the following section we are interested in proving power contractivity of the error
propagation operator T . This motivates us to study the composition T j,�T�, j ′ ; indeed,

(T 2) j, j ′ =
∑

�

T j,�T�, j ′, (3.20)

where the sum is over all � ∈ {1, 2, . . . , N }\{ j, j ′}, with � j,� �= ∅ �= ��, j ′ . A useful
expression for the action of (3.20) can be obtained by inserting v� = T�, j ′ z j ′ , with
z j ′ ∈ U (� j ′), into (3.15), to obtain

imp j (T j,�T�, j ′ z j ′) = χ� imp j (T�, j ′ z j ′) +
(

∂χ�

∂n j

) (
T�, j ′ z j ′

)
on � j,�. (3.21)

The first term on the right-hand side of (3.21) is of key interest in this paper. We note
that its value is obtained by (i) finding T�, j ′ z j ′ , i.e., the unique function in U0(��)

with impedance data on ��, j ′ given by imp�(χ j ′ z j ′) ; (ii) evaluating imp j (T�, j ′ z j ′) on
� j,� and (iii) then multiplying the result by χ�. Combining steps (i) and (ii) leads us
to the following key definition.

3.2 The impedance-to-impedancemap

Definition 3.7 (Impedance map) Let �, j, j ′ ∈ {1, . . . , N } be such that ��, j ′ �= ∅ and
� j,� �= ∅ (or, equivalently, �� ∩ � j ′ �= ∅ and �� ∩ � j �= ∅). Given g ∈ L2(��, j ′),
let v� be the unique element of U0(��) with impedance data

imp�(v�) =
{
g on ��, j ′
0 on ∂��\��, j ′

. (3.22)

Then the impedance-to-impedancemap I��. j ′→� j,� : L2(��, j ′) → L2(� j,�) is defined
by

I��. j ′→� j,�g := imp j (v�), on � j,� , (3.23)

i.e.,I��. j ′→� j,�g is the impedance data on� j,� = ∂� j∩�� of theHelmholtz-harmonic
function on �� with given impedance data (3.22).

Illustrations of the domain (in red) and co-domain (in blue) of the impedance-to-
impedance map, indicating the direction of the normal derivative, are given in Fig. 1.
The next lemma shows its L2−boundedness.

Lemma 3.8 I��. j ′→� j,� : L2(��, j ′) → L2(� j,�) is bounded.

Proof. By (3.23), Lemma 2.10 (ii), Assumption 3.4, and (3.22),

‖I��. j ′→� j,�g‖L2(� j,�)
= ∥∥imp j (v�)

∥∥
L2(� j,�)

� k2
∥∥imp�(v�)

∥∥
L2(∂��)

= k2‖g‖L2(��, j ′ ). ��
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(a) (b) (c)

Fig. 1 Illustrations of the domain (red) and co-domain (blue) of I��. j ′→� j,� in 2d (color figure online)

Although the proof of Lemma 3.8 gives a k-explicit bound on ‖I��. j ′→� j,�‖, we
obtain sharper k-explicit information in certain set-ups later. We now rewrite (3.21)
using this map.

Theorem 3.9 (ConnectionbetweenT 2 and impedance-to-impedancemap)Let�, j, j ′ ∈
{1, . . . , N } be such that ��, j ′ �= ∅ and � j,� �= ∅ (or, equivalently, �� ∩ � j ′ �= ∅ and
�� ∩ � j �= ∅). If z j ′ ∈ U (� j ′), then

imp j (T j,�T�, j ′ z j ′) = χ� I��. j ′→� j,�

(
imp�(T�, j ′ z j ′)

) +
(

∂χ�

∂n j

) (
T�, j ′ z j ′

)
on � j,�

(3.24)

and ‖T j,�T�, j ′ z j ′ ‖1,k,∂� j ≤
(
‖I��. j ′→� j,�‖ + k−1/2‖∇χ�‖L∞(� j,�)

)
‖T�, j ′ z j ′ ‖1,k,∂��

.

(3.25)

Proof Since T�, j ′ z j ′ ∈ U0(��) and imp�(T�, j ′ z j ′) vanishes on ∂��\��, j ′ , we have

χ� imp j (T�, j ′ z j ′) = χ� I��, j ′→� j,� (imp�(T�, j ′ z j ′)).

Substituting this in (3.21) gives (3.24). The estimate (3.25) is obtained by following
the proof of (3.16), with v� = T�, j ′ z j ′ . ��

We now see from (3.25) that (at least for sufficiently large k and/or sufficiently small
‖∇χ�‖L∞(� j,�)) the right-hand side of (3.24) is dominated by the first term. The norm
of the impedance-to-impedancemap lies at the heart of the convergence theory in Sect.
4.

4 Convergence of the iterativemethod for strip decompositions

In this section we obtain a convergence theory for the iterative method (1.8)–(1.11)
when the domain � is either an interval in 1-d or a rectangle in 2-d. In 1-d the
subdomains are intervals and in 2-d the subdomains are sub-rectangles.
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Fig. 2 Three overlapping subdomains in 1-d

Fig. 3 Three overlapping subdomains in 2-d

4.1 Notation common to both 1-d and 2-d

Notation 4.1 (Strip decompositions in 1- and 2-d) In 1-d the subdomains are denoted
by�� = (�−

� , �+
� ). In 2-d we assume the domain� is a rectangle of height H and the

subdomains �� also have height H and are bounded by vertical sides denoted �−
� ,

�+
� . In both 1-d and 2-d we assume each �� is only overlapped by ��−1 and ��+1

(with �−1 := ∅ and �N+1 := ∅). The width of �� is denoted L�. This notation is
illustrated in Figs. 2 and 3.

Remark 4.2 (i) The simpler notation in this section is linked to the general notation
(3.10) via

�−
� = ��,�−1 and �+

� = ��,�+1. (4.1)

(ii) Under this set-up, any partititon of unity {χ�} defined in (1.7) satisfies

χ�|�+
�−1

= 1 = χ�|�−
�+1

. (4.2)

To illustrate these definitions, given g ∈ L2(�−
� ), let u denote the Helmholtz-

harmonic function on�� with left-facing impedance data g on�−
� and zero impedance

data, elsewhere. Then I�−
� →�+

�−1
g is the right-facing impedance data of u on �+

�−1 and

I�−
� →�−

�+1
g is the left-facing impedance data of u on �−

�+1. Note that �
+
�−1 and �−

�+1
are both interior interfaces in �� (see Fig. 3).
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Recall from Remark 3.1 that T�,� = 0 and T j,� = 0 if � j ∩ �� = ∅. Therefore, T
takes the block tridiagonal form

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 T1,2
T2,1 0 T2,3

T3,2 0 T3,4
. . .

. . .
. . .

TN−1,N−2 0 TN−1,N
TN ,N−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

:= L + U , (4.3)

where L and U are the lower and upper triangular components of T . We record for
later that, by the Cayley–Hamilton theorem,

LN = 0 = U N . (4.4)

In what follows a crucial role is played by the products:

LU =

⎛
⎜⎜⎜⎜⎜⎝

0
T2,1T1,2

. . .

TN−1,N−2TN−2,N−1
TN ,N−1TN−1,N

⎞
⎟⎟⎟⎟⎟⎠

and

UL =

⎛
⎜⎜⎜⎜⎜⎝

T1,2T2,1
T2,3T3,2

. . .

TN−1,NTN ,N−1
0

⎞
⎟⎟⎟⎟⎟⎠

. (4.5)

We remark that in 2-d the structure (4.3) remains the same if the vertical interfaces
in �±

� are replaced by non-intersecting polygonal pieces; however, we do not pursue
this generalisation here. The diagonal entries in (4.5) can be estimated in terms of
impedance-to-impedance maps - see Theorem 3.9.

4.2 The results of Sect. 3 specialised to strip decompositions

Since strip decompositions have the property (4.2), Theorem 3.9 simplifies to the
following.

Corollary 4.3 Let � ∈ {1, . . . , N } and j, j ′ ∈ {� − 1, � + 1}. If z j ′ ∈ U (� j ′), then

imp j (T j,�T�, j ′ z j ′) = I��. j ′→� j,�

(
imp�(T�, j ′ z j ′)

)
on � j,�. (4.6)

and thus ‖T j,�T�, j ′ z j ′ ‖1,k,∂� j ≤ ‖I��. j ′→� j,�‖‖T�, j ′ z j ′ ‖1,k,∂��
. (4.7)
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Proof To obtain (4.6), without loss of generality, consider the case j = � − 1 = j ′.
Then, for any v� ∈ U0(��),

imp�−1(T�−1,� v�) = imp�−1(χ�v�) = χ�imp�−1(v�) = imp�−1(v�) on ��−1,�.

(4.8)

In (4.8), the first equality comes from the definition of T�−1,�, the second comes from
the fact that (byAssumption 2.1), (∂χ�/∂n�−1) = 0 on�+

� and the final equality comes
from the fact [see (4.1) and (4.2)] that χ� ≡ 1 on ��−1,� = ∂��−1 ∩ �� = �+

�−1.
Using this instead of (3.15) and propagating this simplification through the arguments
using to prove Theorems 3.5 and 3.9 gives the result. ��

4.3 One dimension

The following result is known from [54, Propositions 2.5 and 2.6] (restricted to 1-d),
but we state it here in our notation, because it helps motivate our approach in the 2-d
case.

Lemma 4.4 In 1-d,

I�−
� →�+

�−1
= I�+

� →�−
�+1

= 0, (4.9)

and

|I�+
� →�+

�−1
g| = |g| and |I�−

� →�−
�+1

g| = |g|, for all g ∈ C. (4.10)

Moreover

UL = 0 = LU . (4.11)

Proof These results are obtained from the explicit expression for the solution of
the Helmholtz interior impedance problem in 1-d. We consider only I�−

� →�+
�−1

and

I�−
� →�−

�+1
; the proofs for I�+

� →�−
�+1

and I�+
� →�+

�−1
are similar.

By Definition 3.7, the maps I�−
� →�+

�−1
and I�−

� →�−
�+1

can be written in terms of the
solution of the following boundary value problem

v′′
� + k2v� = 0 in ��, (4.12)

−v′
� − ikv� = g at x = �−

� , (4.13)

v′
� − ikv� = 0 at x = �+

� , (4.14)

for g ∈ C. The solution of (4.12)–(4.14) is

v�(x) = ig

2k
eik(x−�−

� ). (4.15)
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Since

(v′
� − ikv�)(x) = 0 and (−v′

� − ikv�)(x) = geik(x−�−
� ) for all x ∈ ��, (4.16)

it follows immediately that I�−
� →�+

�−1
g = 0 and I�−

� →�−
�+1

g = eik(�
−
�+1−�−

� )g. Then

(4.11) follows from using (4.9) in (4.5), together with (4.7). ��
Proposition 4.5

(i) T n = Ln + Un, for all n ≥ 1 and (ii) T N = 0.

Proof Part (i) is proved by induction, starting from (4.3) and using (4.11). Part (ii)
uses part (i) with n = N and (4.4). ��

4.4 Two dimensions

In the rest of this section our goal is to estimate T n , where T = L + U is given
by (4.3). In 1-d, T n takes the simple form given in Proposition 4.5, however this is
not the case in 2-d. Our bounds in 2-d on T n are therefore based on the following
elementary algebraic result.

4.4.1 An elementary algebraic result and its consequences

For integers n ≥ 1 and 0 ≤ j ≤ n − 1, let P(n, j) denote the set of monomials of
order n in the two variables x, y that take the form

p(x, y) = xs0 ys1xs2 . . . xs j ( j even) or xs0 ys1xs2 . . . ys j ( j odd) (4.17)

or p(x, y) = ys0xs1 ys2 . . . xs j ( j odd) or ys0xs1 ys2 . . . ys j ( j even), (4.18)

with 1 ≤ s� ≤ n for all � = 0, . . . j and s0 + s1 + · · · + s j = n. The terms in (4.17),
(4.18) aremonomials of order n with j transitions between the variables x and y. Since
we consider below operators p(L,U) where L and U do not, in general, commute, all
four of the expressions in (4.17), (4.18) are considered to be distinct. The proof of the
following proposition is given in the appendix.

Proposition 4.6 For all n ≥ 1,

(x + y)n =
n−1∑
j=0

∑
p∈P(n, j)

p(x, y). (4.19)

Moreover, for 0 ≤ j ≤ n − 1,

#P(n, j) := cardinality of P(n, j) = 2

(
n − 1

j

)
. (4.20)
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Theorem 4.7 (General formula for T n) For all n ≥ 1,

T n =
n−1∑
j=0

∑
p∈P(n, j)

p(L,U), (4.21)

and the j = 0 term in (4.21) vanishes when n ≥ N.

Proof The formula (4.21) follows directly from Proposition 4.6. To obtain the final
statement, note that P(n, 0) = {xn, yn}, so by (4.4), when n ≥ N , p(L,U) = 0, for
p ∈ P(n, 0).

��

Corollary 4.8 (Estimate for T n in terms of composite maps) Suppose n ≥ N. Then,

‖T nv‖1,k,∂ ≤ 2

⎛
⎝n−1∑

j=1

(
n − 1

j

)
max

p∈P(n, j)
‖p(L,U)‖1,k,∂

⎞
⎠ ‖v‖1,k,∂ , for any v ∈ U0.

(4.22)

4.4.2 The impedance-to-impedance map on a canonical domain

The properties (4.9), (4.10) of the impedance-to-impedance map in 1-d can be under-
stood via the fact that in 1-d the exact solution to the Helmholtz equation is given by
(4.15) and thus the action of the Dirichlet-to-Neumann map for the Helmholtz prob-
lem on a domain exterior to an interval is multiplication by ik. Multiplication by ik no
longer has this property in higher dimensions, but we see that, under certain conditions,
the relations (4.9) and (4.10) still hold ‘approximately’; in the sense that ‖I�−

� →�+
�−1

‖
and ‖I�+

� →�−
�+1

‖ can be small, with ‖I�+
� →�+

�−1
‖ ≈ 1 and ‖I�−

� →�−
�+1

‖ ≈ 1. We use

these properties to prove a 2-d analogue of Proposition 4.5 (ii), namely conditions
under which T N is a contraction. To obtain these properties, we first introduce a
canonical domain on which the 2-d impedance-to-impedance maps can be studied.

The impedance-to-impedance map in the geometry Fig. 3 can be expressed in terms
of a Helmholtz-harmonic solution on a ‘canonical’ domain �̂ = [0, L] × [0, 1], via
an affine transformation x → x/H .

Definition 4.9 (Canonical impedance-to-impedance map) For L > 0, let �̂ =
[0, L] × [0, 1] with boundary ∂�̂ and let �−, �+ denote, respectively, the left and
right vertical boundaries of �̂. For any δ ∈ (0, L), let

�δ := {(δ, y) : y ∈ [0, 1]},
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Fig. 4 The canonical domain �̂,
composed of �+ (left) and �−
(right). The dotted diagonal with
angle θmax labelled in blue is
used in Sect. 4.4.4 below (color
figure online)

i.e., �δ is an interior interface; see Fig. 4. Let u be the solution to

�u + k2u = 0 in �̂,

∂u

∂n
− iku = g on �−,

∂u

∂n
− iku = 0 on ∂�̂\�−.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.23)

Then define the canonical left-to-right and left-to-left impedance-to-impedance maps
by

I−+g := ∂xu − iku, I−−g := −∂xu − iku on �δ, (4.24)

and define the following norms of these maps

ρ(k, δ, L) = sup
g∈L2(�−)

‖I−+g‖L2(�δ)

‖g‖L2(�−)

, γ (k, δ, L) = sup
g∈L2(�−)

‖I−−g‖L2(�δ)

‖g‖L2(�−)

.

(4.25)

By Part (ii) of Lemma 2.10, ρ and γ are well-defined.

We record the following simple relationship between γ and ρ.

Lemma 4.10 For γ, ρ as defined in (4.25),

γ (k, δ, L) ≤
√
1 + ρ2(k, δ, L). (4.26)

Proof Let u ∈ U0(�̂) be the solution to (4.23). By Lemma 3.3

∫
∂�̂

∣∣∣∣∂u∂n − iku

∣∣∣∣
2

ds =
∫

∂�̂

(∣∣∣∣∂u∂n
∣∣∣∣
2

+ k2 |u|2
)
ds =

∫
∂�̂

∣∣∣∣−∂u

∂n
− iku

∣∣∣∣
2

ds.

(4.27)
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Using the boundary conditions in (4.23) together with (4.27), we obtain

∫
�−

|−∂xu − iku|2 ds =
∫

�−

∣∣∣∣∂u∂n − iku

∣∣∣∣
2

ds

=
∫

∂�̂

∣∣∣∣∂u∂n − iku

∣∣∣∣
2

ds =
∫

∂�̂

∣∣∣∣−∂u

∂n
− iku

∣∣∣∣
2

ds. (4.28)

Now let �− denote the subdomain of �̂ with height 1 and vertical sides �δ and �+
(see Fig. 4). Since u ∈ U0(�−), repeating the argument above gives

∫
�δ

|−∂xu − iku|2 ds =
∫

∂�−

∣∣∣∣∂u∂n − iku

∣∣∣∣
2

ds =
∫

∂�−

∣∣∣∣−∂u

∂n
− iku

∣∣∣∣
2

ds

=
∫

�δ

|∂xu − iku|2 ds +
∫

∂�−\�δ

∣∣∣∣−∂u

∂n
− iku

∣∣∣∣
2

ds. (4.29)

Since ∂�−\�δ ⊂ ∂�, we can use the definition (4.25) of ρ(k, δ, L) to estimate the
first term on the right-hand side of (4.29) and use (4.28) to estimate the second term
on the right-hand side of (4.29):

∫
�δ

|−∂xu − iku|2 ≤ ρ2(k, δ, L)

∫
�−

|−∂xu − iku|2 ds +
∫

�−
|−∂xu − iku|2 ds

=
(
1 + ρ2(k, δ, L)

) ∫
�−

|−∂xu − iku|2 ds.

The result follows from the definition of γ (k, δ, L) (4.25). ��

4.4.3 Main convergence results obtained by bounding the actions ofL andU via
single impedance-to-impedance maps

We now return to the physical domain, as depicted in Fig. 3.

Corollary 4.11 In 2-d, with �±
� as defined in Notation 4.1,

‖I�−
� →�+

�−1
‖ = ρ(kH , δ�/H , L�/H), (4.30)

‖I�+
� →�−

�+1
‖ = ρ(kH , δ�+1/H , L�/H), (4.31)

and

‖I�−
� →�−

�+1
‖ = γ (kH , (L� − δ�+1)/H , L�/H), (4.32)

‖I�+
� →�+

�−1
‖ = γ (kH , (L� − δ�)/H , L�/H). (4.33)

Proof We outline how to prove (4.30); the proofs of (4.31)–(4.33) are similar. Fol-
lowing the discussion in §4.1, the definition of I�−

� →�+
�−1

g involves a homogeneous
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Helmholtz problem on ��, which has length L� and height H . Using an affine trans-
formation with scaling factor 1/H , we transform this to a Helmholtz problem on
the (canonical) domain with length L�/H and height 1 with wavenumber kH . The
required impedance data comes from evaluating in the right-facing direction at the
interior interface situated at position δ�/H on the canonical domain, yielding (4.30).

��

Up to now we have developed the theory with general L� and δ� to emphasise
that these can vary with �. To reduce technicalities in the remainder of the theory, we
introduce the simplifying notation.

ρ = max
�

{
ρ(kH , δ�/H , L�/H), ρ(kH , δ�+1/H , L�/H)

}
, (4.34)

γ = max
�

{
γ (kH , (L� − δ�)/H , L�/H), γ (kH , (L� − δ�+1)/H , L�/H)

}
. (4.35)

We make this slight abuse of notation to avoid introducing additional symbols for the
maxima above.

Lemma 4.12 Let ρ and γ be defined as in (4.34), (4.35), and let ‖ · ‖1,k,∂ be as in
(3.14). Then,

‖LUv‖1,k,∂ ≤ ρ‖Uv‖1,k,∂ and ‖ULv‖1,k,∂ ≤ ρ‖Lv‖1,k,∂ for all v ∈ U, (4.36)

‖L2v‖1,k,∂ ≤ γ ‖Lv‖1,k,∂ and ‖U2v‖1,k,∂ ≤ γ ‖Uv‖1,k,∂ for all v ∈ U, (4.37)

‖Lv‖1,k,∂ ≤
√

γ 2 + ρ2‖v‖1,k,∂ and ‖Uv‖1,k,∂ ≤
√

γ 2 + ρ2‖v‖1,k,∂ for all v ∈ U0.

(4.38)

Proof To prove the first estimate in (4.36), we use (4.5), the bound (4.7) (recalling
that I��,�+1→��+1,�

= I�+
� →�−

�+1
), (4.31), and (4.34) to obtain

‖LUv‖21,k,∂ =
N−1∑
�=1

∥∥T�+1,�T�,�+1 v�+1
∥∥2
1,k,∂��+1

≤ max
�=1,...,N−1

‖I�+
� →�−

�+1
‖2

N−1∑
�=1

‖T�,�+1 v�+1‖21,k,∂��

≤ ρ2
N−1∑
�=1

‖T�,�+1 v�+1‖21,k,∂��
= ρ2‖Uv‖21,k,∂ .

The remaining estimates in (4.36), (4.37) are proved similarly. We now focus on the
first estimate in (4.38) (the proof of the second one is similar). Using the definition of
L, the definition (3.6)–(3.8) of T�+1,�, the definition (3.12) of the norm ‖ · ‖1,k,∂��+1 ,
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and the fact that χ� = 1 on �−
�+1 and χ� vanishes on �+

�+1, we obtain

‖Lv‖21,k,∂ =
N−1∑
�=1

‖T�+1,� v�‖21,k,∂��+1
=

N−1∑
�=1

‖(−∂x − ik)v�‖2L2(�−
�+1)

. (4.39)

Since v� ∈ U0(��), we can write v� = v+
� + v−

� with components v±
� ∈ U0(��)

satisfying

(
(∂x − ik)v+

�

) ∣∣
�+

�
= 0, and

(
(−∂x − ik)v−

�

) ∣∣
�−

�
= 0.

Then observe that ‖v�‖21,k,∂��
= ‖v+

� ‖21,k,∂��
+ ‖v−

� ‖21,k,∂��
, and, by Corollary 4.11,

‖(−∂x − ik)v�‖L2(�−
�+1)

≤ ‖(−∂x − ik)v−
� ‖L2(�−

�+1)
+ ‖(−∂x − ik)v+

� ‖L2(�−
�+1)

≤ ρ‖(∂x − ik)v−
� ‖L2(�+

� ) + γ ‖(−∂x − ik)v+
� ‖L2(�−

� )

= ρ‖v−
� ‖1,k,∂��

+ γ ‖v+
� ‖1,k,∂��

≤
√

γ 2 + ρ2‖v�‖1,k,∂��
.

(4.40)

Combining (4.39) and (4.40) yields

‖Lv‖21,k,∂ ≤
N−1∑
�=1

√
γ 2 + ρ2‖v�‖21,k,∂��

≤
√

γ 2 + ρ2‖v‖21,k,∂ .

��
The following two results are most useful when ρ is controllably small and γ is

bounded independently of the important parameters; this situation is motivated by the
fact that, in 1-d, ρ = 0 and γ = 1.

Theorem 4.13 (Estimate of T N ) If the number of subdomains N ≥ 2, then, for any
v ∈ U0,

‖T Nv‖1,k,∂ ≤ 2
√

γ 2 + ρ2
[
(γ + ρ)N−1 − γ N−1

]
‖v‖1,k,∂ , (4.41)

where ρ, γ are defined in (4.34) and (4.35).

Proof We use Theorem 4.7 with n = N , so the j = 0 term in (4.21) vanishes. We
now claim that, for each p ∈ P(N , j) with j ∈ {1, . . . , N − 1}, and for any v ∈ U0,

‖p(L,U)v‖1,k,∂ ≤
√

γ 2 + ρ2 ρ j γ N−1− j‖v‖1,k,∂ . (4.42)

We prove (4.42) in the case j = 1, where p(x, y) = xs0 ys1 with s0 + s1 = N ; the
case of higher j is obtained by induction. Then using Lemma 4.12 freely,

‖p(L,U)v‖1,k,∂ = ‖Ls0U s1v‖1,k,∂ ≤ γ s0−1‖LU s1v‖1,k,∂ ≤ ρ γ s0−1‖U s1v‖1,k,∂
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≤ ρ γ s0+s1−2‖Uv‖1,k,∂ ≤
√

γ 2 + ρ2 ρ γ N−2‖v‖1,k,∂ .

Hence, combining (4.42) and (4.22),

‖T Nv‖1,k,∂ ≤ 2
√

γ 2 + ρ2

⎡
⎣N−1∑

j=1

(
N − 1

j

)
ρ j γ N−1− j

⎤
⎦ ‖v‖1,k,∂ ,

and an application of the Binomial Theorem gives (4.41). ��
Corollary 4.14 (Estimate of T N , useful for ρ small) Assume ρ ≤ ρ0 ≤ γ and N ≥ 3.
For any v ∈ U0,

‖T Nv‖1,k,∂ ≤
([

2
√
2γ N−1(N − 1)

]
ρ + C(N , γ )ρ2

)
‖v‖1,k,∂ , (4.43)

where C(N , γ ) := √
2(N − 1)(N − 2)γ (γ + ρ0)

N−3. Thus, if ρ is small (relative to
γ and N), then T N is a contraction.

Proof of Corollary 4.14 By Theorem 4.13, Taylor’s theorem, and the fact that ρ ≤ γ,

‖T Nv‖1,k,∂ ≤ 2
√
2γ

(
(N − 1)γ N−2ρ + (N − 1)(N − 2)

2
(γ + ρ)N−3ρ2

)
‖v‖1,k,∂ ,

where we have used the fact that the function x �→ (γ +x)N−3 is increasing on [0, ρ0]
to bound the Taylor-theorem remainder. ��

Corollary 4.14provides an estimate for‖T N‖1,k,∂ that is first order inρ.An estimate
with a higher order in ρ can be obtained by considering higher powers of T .

Corollary 4.15 (Estimate of higher powers of T N ) For s ≥ 1, and v ∈ U0,

‖T sNv‖1,k,∂ ≤ 2
√

γ 2 + ρ2

⎡
⎣sN−1∑

j=s

(
sN − 1

j

)
γ sN−1− jρ j

⎤
⎦ ‖v‖1,k,∂ .

Proof The proof uses estimate (4.22) with n = sN . Consider any monomial p ∈
P(sN , j) with j ≤ s − 1. This is a monomial of order sN with j ≤ s − 1 transitions
from x to y or from y to x . Thus it must contain at least one string of length ≥ N
without jumps. (For example, any p ∈ P(2N , 1) must contain one string of length
≥ N without a jump.) Hence, using (4.4),

p(L,U) = 0 for all p ∈ P(sN , j) when j ≤ s − 1.

and thus the result follows in a similar way to that in the proof of Theorem 4.13. ��
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4.4.4 Estimating the canonical map I−+ using semiclassical analysis

Theorem 4.13 and Corollaries 4.14 and 4.15 show that convergence of the iterative
method improves as ρ gets smaller. We now describe results from [44] that give sharp
bounds on the large-k limit of ρ (with other parameters, such as δ, fixed).

In the canonical domain (Fig. 4) for the strip decomposition, the impedance
boundary conditions on the top and bottom sides are due to the (outer) impedance
boundary condition (1.2), and the impedance boundary conditions on the left and
right sides are due to the (inner) impedance boundary conditions imposed by the
domain-decomposition algorithm.

For simplicity, [44] considers the case when the (outer) boundary condition (1.2)
is replaced by a condition that the solution is “outgoing” (in a sense made precise by
the notion of the wavefront set); i.e., that no outgoing rays hitting ∂�̂ are reflected.
Studying this situation therefore focuses on the effect of the impedance boundary
conditions coming from the domain decomposition, and ignores the effect of any
high-frequency reflections from absorbing boundary conditions on ∂�̂ (see [23] for
a precise description of these reflection effects). The outgoing condition replacing
(1.2) is, in some sense, the ideal absorbing boundary condition at high frequency on
∂�̂. Since perfect matched layers approximate the outgoing condition exponentially
well at high frequency [24], we expect that the results of [44] will also hold when
the outgoing condition is replaced by perfectly matched layers (and this is work in
progress).

The paper [44] considers the following two model problems.
Model Problem 1: the canonical problem specified in Definition 4.9 with outgoing

conditions on the top andbottom, impedance data posedon the left, and zero impedance
data on the right (i.e., that discussed above), and

Model Problem 2: the canonical problem with outgoing conditions on the top,
bottom, and right sides, and impedance data posed on the left.

Model Problem 2 is the canonical problem for the strip-decomposition algorithm
appliedwith two subdomainswhen the global problem is (1.1)with outgoing boundary
conditions. The reason for considering this further simplification is that in Model
Problem 1 a ray moving from left to right can still be reflected an infinite number of
times, and the reflection coefficient on �− depends on the data; thus an upper bound
for general impedance data in this situation is more challenging to prove.

Upper and lower bounds on ‖I−+‖ for Model Problem 2. Let �̂ be the canonical
domain of Fig. 4, so that �− := {0} × [0, 1]. Let �δ := {δ} × [0, 1] and we define
�out := ∂�̂\�− (the subscript “out” indicates that this part of the boundary has the
“outgoing” condition on it). Given g ∈ L2(�−), let u be the solution to

⎧⎪⎨
⎪⎩

(� + k2)u = 0 in {x1 > 0}
(−∂x − ik)u = g on �−,

uis outgoing near�out,

(4.44)
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where the outgoing condition near �out is defined in terms of the wavefront set, as will
be explained in [44]. In analogy with (4.24), I−+ : L2(�−) → L2(�δ) is defined by

I−+g := ∂xu − iku on �δ. (4.45)

Theorem 4.16 (Upper and lower bounds on ‖I−+‖ for Model Problem 2 from [44])
Let

θmax := arctan(δ−1). (4.46)

Then, for any ε > 0, there exists k0(ε) > 0 such that, for all k ≥ k0,

‖I−+‖L2(�−)→L2(�δ)
≤ 1 − cos θmax

1 + cos θmax
+ ε. (4.47)

Furthermore, for any 0 < ε′ < θmax,

lim
k→∞ ‖I−+‖L2(�−)→L2(�δ)

≥ 1 − cos(θmax − ε′)
1 + cos(θmax − ε′)

. (4.48)

Observe that there exist C1,C2 > 0 such that

Cδ−2 ≤ C1(θmax)
2 ≤ 1 − cos(θmax)

1 + cos(θmax)
≤ C2(θmax)

2 ≤ Cδ−2 (4.49)

and thus Theorem 4.16 shows that limk→∞ ‖I−+‖L2(�−)→L2(�δ)
is bounded above

and below by multiples of (θmax)
2, and hence multiples of δ−2, where we recall that

δ is the distance of �δ from �−.

The idea behind Theorem 4.16. The tools of semiclassical/microlocal analysis
decompose solutions of PDEs in both frequency and space variables. These tools
show that, at high-frequency, Helmholtz solutions propagate along the rays of geo-
metric optics, in the sense that the wavefronts are perpendicular to the ray direction.
The ideas behind Theorem 4.16 can therefore be understood by first looking at the
impedance-to-impedance map for plane-wave solutions of the Helmholtz equation
(since these are simple Helmholtz solutions travelling along rays), ignoring the fact
that these do not satisfy the outgoing condition on all of�out, and thus are not solutions
of Model Problem 2.

Let u be a plane-wave in R2 with direction (cos θ, sin θ) (i.e., propagating at angle
θ to the horizontal), i.e.,

u(x, y) = exp
(
ik(x cos θ + y sin θ)

)
.

Then

(−∂x − ik)u|�− = ik(− cos θ − 1) exp
(
iky sin θ

)
,
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(∂x − ik)u|�δ = ik(cos θ − 1) exp
(
ik(δ cos θ + y sin θ)

)
,

so that, for this class of u,

‖(∂x − ik)u‖L2(�δ)

‖(−∂x − ik)u‖L2(�−)

= 1 − cos θ

1 + cos θ
. (4.50)

We now use (4.50) as a heuristic for the behaviour of the impedance-to-impedance
map on solutions of Model Problem 2 travelling on rays at angle θ to the horizontal.
Since the solution of Model Problem 2 is outgoing on �out, anything reaching �δ must
arrive on a ray emanating from �− and hitting �δ , and the maximum angle such rays
can have with the horizontal satisfies tan θmax = δ−1; see Fig. 4. The right-hand side
of (4.50) is largest when θ = θmax, with this expression then (modulo the presence of
ε and ε′) the right-hand sides of (4.47) and (4.48).

The arguments in [44] use these ideas in a rigorous way; for example, to prove
the lower bound (4.48), we take a sequence of data (g(k))k>0 where the Helmholtz
solutions it creates are concentrated at high frequency in a beam coming fromone point
of �− and traveling in one direction (cos θ, sin θ), and we take θ to be arbitrarily close
to θmax. The notion of concentration at high frequency is understood in a rigorous way
using so-called semiclassical defect measures; see [45, §9.1] for an informal overview
of these, and [64, Chapter 5], [9, 24, 25, 50].

Finally, we highlight that these ray arguments and angle considerations are similar
to those in [26, §5] used to optimise boundary conditions in domain decomposition
for the wave equation.

4.4.5 Estimating higher order products ofL andU

The estimates in Theorem 4.13 and Corollaries 4.14 and 4.15 use Lemma 4.12 repeat-
edly to bound ‖T n‖1,k,∂ in terms of powers of ρ and γ . For example, to bound the
term LsU for an integer s > 0, the argument in Theorem 4.13 uses (4.36)–(4.38) to
obtain

‖LsU‖1,k,∂ ≤ γ ‖Ls−1U‖1,k,∂ ≤ γ 2‖Ls−2U‖1,k,∂ ≤ · · · ≤
√

γ 2 + ρ2 γ s−1 ρ.

(4.51)

Thus if ρ is controllably small, Corollary 4.14 implies power contractivity for T .
The use of Corollary 4.14 is illustrated in Experiment 6.1 below, which shows that
the convergence rate of the domain decomposition method improves as ρ decreases.
However, we expect that estimates like that in Corollary 4.14 are not in general sharp.
In particular, looking at the case k = 80 in Fig. 6 and Table 3 of §6 we see a case when
ρ ≈ 0.15, but the method converges effectively for N = 4, 8, 16, even though (4.43)
grows linearly in N . Thus, we expect that sharper results may be possible by bounding
composite maps such as LsU directly, rather than estimating each of their factors, as
in (4.51). In fact, in [44], ray arguments are used to give insight into the behaviour of
these composite maps in the k → ∞ limit, and these arguments do indeed indicate
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that the compositions of the maps behave better than the products of the norms of the
individual components.

To illustrate the use of composite maps, we consider the dominant ( j = 1) term in
(4.22):

2(N − 1) max
p∈P(N ,1)

‖p(L,U)‖1,k,∂ . (4.52)

One of the terms appearing inside the maximum corresponds to p(L,U) = LN−1U .
This operator is blockwise very sparse; for N ≥ 2 all its nonzero blocks lie on the
(N − 2)th diagonal below the main diagonal (see (4.5) for the case N = 2). The
(N , 2)th element of LN−1U is

TN ,N−1TN−1,N−2 · · · T3,2T2,1T1,2 =
⎛
⎝N−1∏

j=1

T j+1, j

⎞
⎠ T1,2, (4.53)

where the operator product is understood as concatenated on the left as the counting
index j increases.

Rewriting (4.6) using the notation (4.1), we see that, for any s,

impN (TN ,N−1TN−1,N−2zN−2) = I�−
N−1→�−

N
impN−1(TN−1,N−2zN−2).

A straightforward induction argument then shows that

impN

⎛
⎝
⎛
⎝N−1∏

j=1

T j+1, j

⎞
⎠ T1,2z2

⎞
⎠ =

⎛
⎝
⎛
⎝N−1∏

j=2

I�−
j →�−

j+1

⎞
⎠ I�+

1 →�−
2

⎞
⎠ imp1(T1,2z2).

(4.54)

In Experiment 6.3 we use (4.54) to compute the norm of the composite operator
LN−1U directly.

5 Finite-element approximations

In this section we describe how we use finite-element computations to illustrate our
theoretical results. Due to space considerations, we restrict here to a description of
algorithms and brief remarks on finite-element convergence; more details are in [37].

For any domain �, let T h be a family of shape-regular meshes on � with mesh
diameter h → 0.We assume eachmesh resolves the boundaries of all subdomains. Let
V h be an H1-conforming nodal finite-element space of polynomial degree p defined
with respect to T h . For any subset (domain or surface) � that is resolved by T h , we
define Vh(�) = {wh |� : wh ∈ V h}. We let N (�) denote the set of nodes of the space
V h that lie in �.
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5.1 The iterative method

Here we describe the computation of finite-element approximations of the iterates un

defined in (1.8)–(1.11). With a as in (2.2), and for any F ∈ H1(�)′, we consider
finding u ∈ H1(�) satisfying

a(u, v) = F(v) for all v ∈ H1(�); (5.1)

this includes the weak form of (1.1), (1.2) as a special case. To discretize (5.1), we
define Ah : V h �→ (V h)′ and Fh ∈ V ′

h by (Ahuh)(vh) := a(uh, vh) and Fh(vh) :=
F(vh) for uh, vh ∈ V h . The finite-element solution uh ∈ V h of (5.1) satisfies

Ahuh = Fh . (5.2)

To formulate the discrete version of (1.8)–(1.11) on each subdomain ��, we intro-
duce the local space V h

� := V h(��), and define the local operatorsAh,� : V h
� → (V h

� )′
by (Ah,�uh,�)(vh,�) := a�(uh,�, vh,�), with a� as defined in (2.3). We also introduce
prolongations R�

h,�, R̃�
h,� : V h

� → V h defined for all vh,� ∈ V h
� by

(R�
h,�vh,�)(x j ) =

{
vh,�(x j ) x j ∈ N (��),

0 otherwise,
and R̃�

h,�vh,� = R�
h,�(χ�vh,�).

(5.3)

Note that the extension R�
h,�vh,� ∈ V h is defined nodewise: it coincides with vh,� at

nodes in�� and vanishes at nodes in�\��. ThusR�
h,�vh,� ∈ H1(�) is a finite-element

approximation of the operator of extension by zero, even though the (true) extension
by zero does not, in general, map H1(��) to H1(�). We define the restriction operator
Rh,� : V ′

h → V ′
h,� by duality, i.e., for all Fh ∈ V ′

h ,

(Rh,�Fh)(vh,�) := Fh(R�
h,�vh,�), vh,� ∈ V h

� .

It is shown in [35] that a natural discrete analogue of (1.8)–(1.11) is

un+1
h, j := unh |� j + A−1

h, jRh, j (Fh − Ahu
n
h) for j = 1, . . . , N , n = 1, 2, . . . ,

(5.4)

where unh =
∑

�

R̃�
h,�u

n
h,� for n = 0, 1, . . . . (5.5)

The algorithm (5.4), (5.5) is derived in [35] as a finite-element approximation of
(1.8)–(1.11). In fact (5.4), (5.5) is equivalent to the well-known Restricted Additive
Schwarz method with impedance transmission condition (also known as WRAS-H
[43] and ORAS [18, Definition 2.4] and [58]).

123



S. Gong et al.

Moreover, since uh is the exact solution of (5.1), we have, trivially,

uh |� j = uh |� j + A−1
h, jRh, j (Fh − Ahuh). (5.6)

The error is then enh := (enh,1, e
n
h,2, · · · , enh,N )�, where enh,� = uh |��

− unh,�. Subtract-
ing (5.4) from (5.6), we obtain the error equation

en+1
h, j := enh |� j − A−1

h, jRh, jAhe
n
h for j = 1, . . . , N , where enh :=

∑
�

R̃�
h,�e

n
h,�.

(5.7)

The two expressions in (5.7) can be combined and written in the operator matrix form:

en+1
h = T henh, (5.8)

providing a finite element analogue of (3.9). The matrix form of T h is discussed in
[35, §5].

In §6 we plot error histories for this method. To do this, we need to choose a suitable
norm in which to measure the error. Since enh,� ≈ en� ∈ U0(��) (defined in Definition
2.3), it is natural to try to analyse enh,� in a finite-element analogue of U0(��). In fact,
one can show that, for each n,

enh,� ∈ V h
�,0 := {vh,� ∈ V h

� : a�(vh,�, wh,�) = 0 for any wh,� ∈ V h
� ∩ H1

0 (��)},

which indicates that the error is ‘discrete Helmholtz harmonic’. Therefore we define
the norm:

‖vh,�‖V h
�,0

:= sup
wh,�∈V h

� ,wh,�|∂��
�=0

∣∣a�(vh,�, wh,�)
∣∣

‖wh,�‖L2(∂��)

.

This is a norm for h sufficiently small because the sesquilinear form a� satisfies a
discrete inf-sup condition on V h(��) × V h(��) (with h-independent constant) [49,
Theorem 4.2]. The norm of the error vector enh is then given by

‖enh‖Vh
0

=
(∑

�

‖enh,�‖2V h
�,0

)1/2

, where V
h
0 :=

∏
�

V h
�,0. (5.9)

5.2 The impedance-to-impedancemaps

We now describe the computation of the canonical impedance-to-impedance maps
Is,t , defined on the canonical domain �̂ in Fig. 4, for any s, t ∈ {−,+}. We emphasise
that this computation is used only to verify the theory of this paper, and is not needed
in the implementation of the domain decomposition solver.
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To construct finite-element approximations of these maps, we first derive a varia-
tional problem satisfied by them. To do this, we introduce the space V (�̂), defined

as the completion of C∞(�̂) in the norm ‖ · ‖V (�̂) :=
(
‖v‖2

L2(�̂)
+ ‖v‖2

L2(∂�̂)

)1/2
.

Then we define the sesquilinear form

α(u, v) := −(�u + k2u, v)�̂

+ 〈∂u/∂n − iku, v〉∂�̂ for all u ∈ U (�̂), v ∈ V (�̂). (5.10)

This form arises when considering problem (1.1), (1.2) in strong (classical) form.
When v∈ H1(�̂), (5.10) simplifies, via Green’s first identity [48, Lemma 4.3], to

α(u, v) = a(u, v) for all u ∈ U (�̂), v ∈ H1(�̂), (5.11)

where a denotes the sesquilinear form (2.2) defined on �̂. With t ∈ {+,−} and
vt ∈ H1(�t ), let R�

t vt ∈ V (�̂) denote the function that coincides with vt on �t

and is zero elsewhere on �̂. Another application of Green’s first identity yields the
following result.

Proposition 5.1 (Variational formulation of impedance-to-impedancemap) For s, t ∈
{−,+}, let g ∈ L2(�s), and let us ∈ U0(�̂) be the Helmholtz-harmonic function with
impedance data g on �s and zero elsewhere. Then

〈Is,t g, vt 〉�δ = at (us, vt ) − α(us,R�
t vt ), for all vt ∈ H1(�t ), (5.12)

where

at (v,w) =
∫

�t

(∇v · ∇w − k2vw) − ik
∫

∂�t

vw.

Motivated by (5.11) and (5.12), we define a finite-element approximation Ih,s,t :
L2(�s) → V h(�δ) to the map Is,t as follows. Analogously to (5.3), for any vh ∈
V h(�δ), we define its node-wise zero extension to all of V h(�̂) by

R�
�δ,hvh(x) =

{
vh(x) for all x ∈ N (�δ),

0 for all x ∈ N (�̂\�δ).

Note thatR�
�δ,h

vh ∈ V h ⊂ H1(�̂) but is supported only on the union of all elements

of the mesh T h that touch �δ . Using this, we define Ih,s,t by the variational problem

〈Ih,s,t g, vh〉�δ = at (uh,s,R�
�δ,hvh) − a(uh,s,R�

�δ,hvh) for all vh ∈ Vh(�δ),

(5.13)

where uh,s ∈ V h(�̂) is the standard finite-element approximation of the function us
(from Proposition 5.1), obtained by solving the homogeneous Helmholtz problem on
�̂ with impedance data g on �s and zero elsewhere.
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Note that several approximations have been made here. First, in going from (5.12)
to (5.13), the test function vt ∈ H1(�t ) has been replaced by vh ∈ V h(�δ) on the
left-hand side andR�

�δ,h
vh on the right-hand side.Moreover the formula (5.11), which

requires u ∈ U (�̂), has been formally applied here with u replaced by us,h ∈ V h �⊂
U (�̂). Despite these ‘non-conforming’ approximations, it can be shown (with details
in [37]) that, with ‖ · ‖ denoting the operator norm from L2(�s) → L2(�δ), the
following convergence result holds.

Corollary 5.2 (Convergence of discrete maps as h → 0)

‖Is,t − Ih,s,t‖ → 0 as h → 0.

Thus, the computations of ‖Ih,s,t‖, given in Sect. 6, are reliable approximations of
‖Is,t .‖.

A key point in the computation is the realisation that, for any g ∈ L2(�s),
Ih,s,t g = Ih,s,t gh , with gh denoting the L2-orthogonal projection of g onto V h(�s).
(This is because the finite-element solution of the Helmholtz problem only ‘sees’ the
impedance data through its L2 moments against the finite-element basis functions.)
The operator Ih,s,t thus acts only on finite-dimensional spaces, and its norm can be
computed by solving an appropriate matrix eigenvalue problem. In Sect. 6 this is done
using the code SLEPc, within the finite-element package FreeFEM++.

6 Numerical experiments

In this section, we verify the theoretical results in Theorems 4.13 and 4.16 and Corol-
laries 4.8, 4.14, 4.15 using the finite-element approximations described in Sect. 5.
We also perform some extra experiments that provide insight into the performance of
the iterative method in situations not covered by the theory. All experiments are on
rectangles, the domain is discretized using a uniform triangular mesh with diameter
h, and we use the Lagrange conforming element of degree 2. We use mesh diameter
h ∼ k−5/4, which is sufficient to ensure a bounded relative error as k increases [19,
Corollary 5.2]. The experiments are implemented using the package FreeFEM++
[41].

6.1 Numerical illustration of our theory

In this subsection we consider the 2-d strip domain as in Notation 4.1. The global
domain� has height H = 1 and length L�. For the domain decomposition, we divide
� into N equal non-overlapping rectangular domains and then extend each subdomain
by adding to it neighbouring elements of distance ≤ r L�/N away, where r > 0 is a
parameter. Thus the interior subdomains have length L = (1 + 2r)L�/N , while the
end subdomains have length (1 + r)L�/N . The global overlap size is δ = 2r L�/N .
In the first two experiments we examine how the convergence rate depends on the
parameters ρ, γ , defined in (4.34), (4.35) and (4.25).
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Table 1 Numerical computation of ρ(k, L/3, L) and γ (k, 2L/3, L) for increasing L , h = 80−5/4

k\L 1 2 4 8 16

ρ(k, 1
3 L, L) 10 0.169 0.0863 0.0385 0.0153 0.00952

20 0.190 0.0997 0.0382 0.0175 0.00909

40 0.234 0.116 0.0434 0.0205 0.00884

80 0.284 0.148 0.0557 0.0231 0.0115

k\L 1 2 4 8 16

γ (k, 2
3 L, L) 10 0.958 0.834 0.641 0.382 0.135

20 0.999 0.982 0.896 0.786 0.603

40 0.999 0.999 0.990 0.943 0.883

80 1.000 1.000 0.999 0.995 0.970

Experiment 6.1 (Computation of ρ and γ and convergence of the iterative method
as ρ decreases) Corollaries 4.14 and 4.15 suggest that the convergence rate should
improve as ρ decreases, and Theorem 4.16 suggests that the large-k limit of ρ should
decrease as δ increases.

Table 1 gives values of ρ and γ as functions of k, δ and L as defined in (4.25). These
are computed using the method outlined in §5.2. Here r is chosen so that δ = L/3. The
top part of Table 1 shows that ρ decreases as L increases, as suggested by Theorem
4.16.

For fixed k, the observed decay rate of ρ is slightly faster thanO(δ−1). The bottom
part of this table shows the corresponding values of γ . Here γ ≤ 1, somewhat smaller
than the upper bound predicted by Lemma 4.10. There is a very modest growth of the
values of ρ and γ as k increases, for each fixed L; given the lower bound in Theorem
4.16, we expect that the values of ρ in Table 1 are in the preasymptotic regime for
k → ∞.

Figure 5 shows the corresponding convergence of the iterative method for N = 3
subdomains and δ = L/3 on a sequence of domains of increasing global length L¨ =
4, 8, 16 (blue, black and red lines respectively); here the length of each subdomain,
L, is also doubling for each experiment.

To obtain the relative error in the iterative method, we solve the problem (5.2) with
right-hand side F = 0, so that the finite-element solution is uh = 0 and the relative
error is simply

‖enh‖Vh
0

‖e1h‖Vh
0

=
‖unh‖Vh

0

‖u1h‖Vh
0

, (6.1)

where ‖ · ‖
V
h
0
is defined in (5.9). The nodal values of the starting guess u0h ∈ V h were

chosen to be uniformly distributed in the unit disc in the complex plane. The relative
error (6.1) was computed with respect to the first iterate u1h ∈ V

h
0 , because the initial

guess u0h is not in this space.
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Fig. 5 Relative error histories of the iterative method with 3 strip-type subdomains (color figure online)

Figure 5 shows that the convergence rate improves as L and hence L� increases.
This is consistent with Corollary 4.14, which shows that with N fixed and γ bounded,
the iterative method is power contractive for small enough ρ. The convergence rate is
apparently unaffected by increasing k, a bit better than expected from the k-dependence
of ρ in Table 1.

The next experiment investigates the effect of letting the number of subdomains
N grow. In this case, Corollary 4.14 guarantees contractivity of T N only for small
enough N . However we see that in fact the iterative method continues to work well
as N grows. The explanation for this is that, as discussed in §4.4.5, the composite
impedance-to-impedance maps are better behaved than the individual ones; this is
illustrated in Experiment 6.3 below.

Experiment 6.2 (Dependence on N ) We repeat the experiments in Fig. 5 but instead
of N = 3 (i.e, 3 subdomains) we use N = 4, 8, 16. For each N, we choose L¨ so
that the sizes of the subdomains and overlaps do not depend on N, and thus ρ and γ

remain fixed as N grows. The subdomain length is L = 2 and the overlap is δ = L/3.
In Fig. 6 we plot the relative error histories for k = 20,40,80.

The relative error histories show a sudden reduction of the error after each batch
of N steps, and, after each such reduction, the convergence rate appears to be higher
than before. This can be partially explained by Corollary 4.15; indeed, as the number
of iterations n passes through sN for s = 2, 3, . . ., the order of the estimate for the
norm of T n increases from O(ρs−1) to O(ρs). However this explanation can not be
completely rigorous because the coefficient of the powers of ρ in Corollary 4.15 also
grows with N. To understand the behaviour of the iterative method better we need to
consider composite maps, which is the purpose of Experiment 6.3.

Before that, Table 2 gives the average number of iterations needed to reach a relative
error of 10−6 for each of the scenarios depicted in Fig. 6, computed over 50 random
starting guesses. This table clearly indicates that the number of iterations needed to
obtain a fixed error tolerance is roughly O(N ) as N grows. We also observe modest
improvement in the iteration numbers as k increases; similar results were seen in [38,
Table 3].

Experiment 6.3 (Robustness to N explained via composite maps) As discussed in
Sect. 4.4.5, the dominant term in (4.22) with n = N is the j = 1 term (4.52) The goal
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Fig. 6 Relative error histories of the iterative method with many strip-type subdomains (color figure online)

Table 2 Average number of
iterations to reach a relative
error of 10−6 in Fig. 6

k\N 4 8 16

20 6.00 12.34 25.12

40 5.58 10.16 16.96

80 4.44 8.00 15.88

Table 3 Norm of the composite
impedance-to-impedance map
(6.2), δ = L/3

k 10 20 40 80

ζ2 = 2ρ 1.74e−1 1.95e−1 2.32e−1 2.98e−1

ζ4 4.06e−2 9.28e−2 1.20e−1 1.33e−1

ζ8 3.32e−2 8.52e−2 1.28e−1 1.14e−1

ζ16 8.86e−3 1.08e−1 1.12e−1 1.35e−1

of this experiment is to show that the behaviour of (4.52) is better than that predicted
by estimating its norm by the product of the norms of its components (as in (4.51)).
Following (4.54), for N = 4, 8, 16, L = 2 and δ = L/3, we compute

ζN := 2(N − 1)

∥∥∥∥∥∥
⎛
⎝N−1∏

j=2

I�−
j →�−

j+1

⎞
⎠ I�+

1 →�−
2

∥∥∥∥∥∥
L2(�+

1 )→L2(�−
N )

, (6.2)

and use this as a proxy for (4.52), with this replacement justified by (4.54), and the
fact thatLN−1U is a representative element of {p(L,U) : p ∈ P(N , 1)}. The results
in Table 3 show that ζN remains small and bounded as N increases. Although we
have here computed only one term in (4.52), this gives some explanation why the
convergence rate of the iterative method remains stable as N increases, as observed
in Fig. 6 and Table 2.

For the most efficient parallel implementations, the overlap δ should be as small as
possible. In ourfinal experiment for the strip domainwe therefore study the dependence
of the convergence of the iterative method on the overlap parameter.

Experiment 6.4 (Dependence on overlap) In this experiment we fix k = 40 and repeat
Experiment 6.2, with N = 4, 8, 16, comparing the previous overlap choice δ = L/3
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Fig. 7 Relative error histories of the iterative methods with different overlaps (color figure online)

Table 4 Norm of the composite
impedance-to-impedance map
(6.2), δ = L/6

k 10 20 40 80

ζ2 = 2ρ 3.38e−1 3.60e−1 4.60e−1 5.64e−1

ζ4 4.46e−2 6.72e−2 1.06e−1 1.08e−1

ζ8 2.82e−2 8.88e−2 1.02e−1 1.06e−1

ζ16 4.48e−3 9.92e−2 4.66e−2 7.86e−2

Table 5 Norm of the composite
impedance-to-impedance map
(6.2), δ = 2h

k 10 20 40 80

ζ2 = 2ρ 7.68e−1 1.12e0 1.40e0 1.60e0

ζ4 8.32e−2 6.34e−2 9.54e−2 1.07e−1

ζ8 4.44e−2 7.00e−2 8.48e−2 7.30e−2

ζ16 4.98e−3 6.92e−2 2.94e−2 8.34e−2

with δ = L/6 and 2h. Here, the length of the global domain L� = N (L−δ) is chosen
so that L = 2, i.e., the subdomains have length 2. In Fig. 7 we plot the relative error
histories. These histories indicate that for small N there is quite a big difference in
performance between δ = 2h and the other two choices of δ. However, as N increases
the difference between the three choices of overlap becomes less pronounced. With
N = 16 we again see clearly the ‘staircase’ form of the error decay, as in Experiment
6.2.

To give some heuristic explanation for Fig. 7, Tables 4 and 5 provide the analogous
results to Table 3 for the new choices of overlap. As N and k increase, the different
choices of overlap all give similar values of ζN , thus explaining the competitiveness
of the small overlap method in this case.

As discussed in Sect. 5.2, the parameters ρ, γ are computed above by the finite-
element method, and Corollary 5.2 ensures that these approximations converge to the
true values of ρ, γ as h → 0. In practice, we compute ρ, γ with h ∼ k−5/4, which is
sufficient for ensuring a bounded error for the Helmholtz problem as k increases by
[19, Corollary 5.2]. The following experiment shows that this choice of h also leads
to accurate computation of the impedance-to-impedance maps.

Experiment 6.5 (Accuracy of the impedance-to-impedance map computation) We
compute ρ on the canonical domain �̂ depicted in Fig. 4, with L = 1 and δ = 1/3 for
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Table 6 Numerical computation
of ρ(k, 1/3, 1) k\h k−5/4 1

2 k
−5/4 1

3 k
−5/4 1

4 k
−5/4

10 0.171 0.171 0.171 0.171

20 0.188 0.189 0.190 0.191

40 0.235 0.234 0.236 0.236

Table 7 Checkerboard: iteration
counts for the iterative method
(GMRES), δ = H/4

k\N × N 2 × 2 4 × 4 8 × 8

40 5 (5) 14 (13) 45 (28)

80 5 (5) 13 (12) 29 (25)

120 5 (5) 12 (11) 41 (24)

160 4 (4) 11 (10) 29 (23)

increasing k. In Table 6, we list computed values for ρ(k, 1/3, 1) (i.e., the norm of the
left-to-right impedance-to-impedance map—see (4.25)), using mesh sizes h, chosen
as decreasing multiples of k−5/4. A ‘brute force’ computation of the impedance-to-
impedance map by numerical differentiation of the finite-element solution gave almost
identical results to those given in Table 6; we therefore conclude that the computation
of ρ is sufficiently accurate when h = k−5/4.

6.2 Domain decompositions that are not of strip type

Experiment 6.6 (Unit square with uniform checkerboard decomposition) We parti-
tion � := (0, 1)2 into N 2 non-overlapping equal subsquares each with side length
H = 1/N, and then extend to an overlapping cover by adding to each subdomain
neighbouring elements that have distance≤ δ from its boundary (so the actual overlap
is 2δ). Tables 7, 8 and 9 give the iteration counts for the method (1.8)–(1.11) required
to achieve a reduction of 10−6 in the Euclidean norm of the relative residual (with
zero right-hand side and starting from a random initial guess), with overlap parame-
ter δ = H/4, H/10, and h, respectively. We also give (in brackets in each table) the
number of iterations needed by the corresponding GMRES-accelerated iteration (that
is GMRES using the ‘ORAS’ preconditioner implicit in (5.4), (5.5)— see also [35]) to
obtain a relative residual of 10−6.

The number of iterations of the iterative method grows somewhere between O(N )

andO(N 2), where N 2 is the number of subdomains. In contrast, the number ofGMRES
iterations seems to grow somewhat more slowly - close toO(N ). It appears that while
the iterative method is not effective as a solver when the subdomains do not contain
enough wavelengths, the GMRES method continues to function acceptably and is
robust or even improving as k increases. (Related theory and observations are given
around [38, Table 3].) In contrast to the strip domain case, we also observe that
reducing the overlap does significantly affect the performance of both the iterative
method and GMRES.
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Table 8 Checkerboard: iteration
counts for the iterative method
(GMRES), δ = H/10

k\N × N 2 × 2 4 × 4 8 × 8

40 7 (6) 32 (21) 200+ (35)

80 6 (6) 19 (21) 200+ (37)

120 6 (6) 18 (20) 200+ (35)

160 5 (5) 18 (20) 76 (30)

Table 9 Checkerboard: iteration
counts for the iterative method
(GMRES), δ = h

k\N × N 2 × 2 4 × 4 8 × 8

40 16 (12) 27 (21) 101 (39)

80 21 (14) 30 (22) 200+ (42)

120 25 (16) 34 (23) 200+ (43)

160 30 (17) 36 (24) 200+ (42)

Fig. 8 METIS non-overlapping domain decompositions (color figure online)

Experiment 6.7 (Uniform square with domain decomposition via METIS) We con-
sider the same set-up as in Experiment 6.6, but instead of using the checkerboard
domain decomposition, we use METIS to generate a non-overlapping domain
decomposition—see Fig. 8 for plots for N = 4,16,64 subdomains—and then we
extend to an overlapping cover in the same way as before. Tables 10, 11 and 12 give
iteration counts for the iterative method (and GMRES in brackets) for each choice of
δ. The iteration counts behave similarlly to those given in Experiment 6.6. Again, we
notice the almost-robustmess of the GMRES method as k increases for all choices of
δ, and particularly for generous overlap.

6.3 Possible approach to the theory for the checkerboard case

To finish the paper we include some remarks on how the fundamental general theory
developed here could be extended to get convergence estimates for more general
decompositions. Here we only (and rather tentatively) discuss the case of a 2 × 2
checkerboard decomposition depicted in Fig. 9. More general decompositions could
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Table 10 Number of iterations
of the iterative method and
GMRES counts (in brackets),
METIS domain decomposition
for the unit square, δ = H/4

k\N 4 16 64

40 8 (7) 20 (17) 73 (39)

80 7 (7) 19 (17) 57 (37)

120 6 (6) 17 (16) 41 (33)

160 6 (6) 16 (15) 40 (33)

Table 11 Number of iterations
of the iterative method, METIS
domain decomposition for the
unit square, δ = H/10

k\N 4 16 64

40 9 (9) 27 (21) 109 (45)

80 9 (9) 24 (21) 159 (47)

120 8 (8) 24 (20) 104 (43)

160 8 (7) 23 (20) 104 (41)

Table 12 Number of iterations
of the iterative method, METIS
domain decomposition for the
unit square, δ = h

k\N 4 16 64

40 20 (14) 33 (25) 86 (48)

80 27 (17) 33 (26) 86 (53)

120 28 (18) 36 (27) 82 (51)

160 33 (20) 200+ (30) 200+ (53)

Fig. 9 A simple checkerboard
decomposition (color figure
online)

be approached by extending this reasoning, although, we also admit such reasoning
will become increasingly complex for more general domain decompositions.

Consider the unit square divided into four quarters, yielding non-overlapping sub-
domains labelled 1, 2, 3, 4 in Fig. 9. These are extended to overlapping subdomains
��, � = 1, 2, 3, 4. We depict only �1 (in red) and �2 (in blue) in the figure.
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All the results of this paper up to the end of Sect. 3 apply to this geometry. With
four subdomains, it is natural to look at the fourth power of the propagation operator
T . It can easily be shown by induction that

(T 4) j,� =
∑

m∈R( j,�,4)

T j,m1Tm1,m2Tm2,m3Tm3,�, (6.3)

whereR( j, �, 4) denotes the collection of all paths from domain j to domain � passing
through three other domains en route. Then m = (m1,m2,m3,m4,m5) represents a
typical path

j = m1 → m2 → m3 → m4 → m5 = � (6.4)

from � j to ��, with m1 �= m2, m2 �= m3, m3 �= m4, and m4 �= m5.
The first thing to note is that many of the component products in (6.3) have already

been investigated earlier in this paper. For example, consider the product T1,2T2,1; by
Theorem3.9we see that, as k gets larger then the normof this product is well-estimated
by the norm of the impedance-to-impedance map I�2,1→�1.2 . This map operates only
in the x−direction and was analysed in Sect. 4.4.2. In fact it corresponds to the left-to-
right map defined by (a) finding the Helmholtz-harmonic function on �2 with data on
∂�2 ∩�1 and (b) evaluating the right-facing impedance data of the solution on ∂�1 ∩
�2. This map was analysed in Sect. 4 and shown to have norm of orderO(ρ). Similar
remarks apply to T2,1T1,2, T1,4T4,1, etc. However the ‘diagonal switches’ T1,3T3,1,
T3,1T1,3, T1,4T4,1 and T4,1T1,4 are genuinely two-dimensional and the properties of
the corresponding impedance maps would need to be studied numerically.

More generally we could conjecture that if the sequence in (6.4) visits the same
subdomain twice then the norm of the corresponding term in (6.3) is small in size. This
conjecture would have to be examined numerically, but would then give estimates for
all off-diagonal terms in (6.3).

Finally, one would have to analyse the cycles which appear in the diagonal terms
in (6.3) e.g. the term corresponding to 1 → 2 → 3 → 4 → 1.

This further analysis is outside the scope of the present paper. However, while it is
clear fromexperiments that higher powers ofT are still contractive in the checkerboard
(and more general) cases, the convergence profile (at least in certain norms [35]) does
not exhibit the same jumps when one passes from n = sN to n = (s + 1)N as are
present in the strip domain case (see Figs. 5, 6).
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Appendix

Proof of Proposition 4.6 We prove (4.19) by induction. Clearly it holds for n = 1.
Assuming it holds for any n ≥ 1, then

(x + y)n+1 = (x + y)

⎛
⎝n−1∑

j=1

∑
p∈P(n, j)

p(x, y) + xn + yn

⎞
⎠

=
n−1∑
j=1

⎛
⎝ ∑

p∈P(n, j,x)

+
∑

p∈P(n, j,y)

⎞
⎠ xp(x, y) + xyn (6.5)

+
n−1∑
j=1

⎛
⎝ ∑

p∈P(n, j,x)

+
∑

p∈P(n, j,y)

⎞
⎠ yp(x, y) + yxn (6.6)

+ xn+1 + yn+1, (6.7)

where P(n, j, x),P(n, j, y) denote, respectively, the monomials of the form (4.17),
(4.18). In this notation,

P(n + 1, j, x) = (xP(n, j, x)) ∪ (xP(n, j − 1, y)) for 1 ≤ j ≤ n − 1, (6.8)

P(n + 1, n, x) = xP(n, n − 1, y). (6.9)

Hence the term (6.5) equals

n−1∑
j=2

⎛
⎝ ∑

p∈P(n, j,x)

+
∑

p∈P(n, j−1,y)

⎞
⎠ xp(x, y) +

∑
p∈P(n,1,x)

xp(x, y) + xyn +
∑

p∈P(n,n−1,y)

xp(x, y)

=
n−1∑
j=2

⎛
⎝ ∑

p∈P(n, j,x)

+
∑

p∈P(n, j−1,y)

⎞
⎠ xp(x, y) +

⎛
⎝ ∑

p∈P(n+1,1,x)

+
∑

p∈P(n+1,n,x)

⎞
⎠ p(x, y)

=
n∑
j=1

∑
p∈P(n+1, j,x)

p(x, y), (6.10)

where in the second step we used both (6.8) with j = 1 and (6.9). A similar argument
shows the term (6.6) can also be written in the form (6.10), but with the sum over
P(n + 1, j, x) replaced by the sum over P(n + 1, j, y). Putting these results together
with (6.5)–(6.7) shows that (4.19) holds for n + 1.

The proof of (4.20) also uses induction on n. Note that #P(1, 0) = 2, so the result
holds for n = 1. If it holds for n then it holds for n + 1 by observing (analogously to
(6.8)), that

#P(n + 1, j) = #P(n, j) + #P(n, j − 1),

123

http://creativecommons.org/licenses/by/4.0/


S. Gong et al.

and then using elementary properties of the binomial coefficient. ��
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