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2.3. Application à la classification en petites dimensions suivant le

sous-espace des points fixes 12
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1. ESPACES EUCLIDIENS

1.1. Produit scalaire. Un produit scalaire sur un R-espace vectoriel E est une
application E × E → R bilinéaire, symétrique, définie positive.

Notations : 〈·, ·〉, (·, ·), etc.
Remarque : un produit scalaire 〈·, ·〉 vérifie la propriété

〈x, E〉 = 0 =⇒ x = 0.

Ceci est une conséquence de la propriété “définie positive”. On dit que le produit
scalaire est non dégénéré. Dans ce cas, si E est de dimension finie (ce qui sera la
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2 F. DELOUP

grande majorité des cas dans ce cours), l’application

E → HomR(E,R), x 7→ 〈−, x〉
est un isomorphisme. En particulier, tout homomorphisme E → R est réalisé (de
façon unique) comme une évaluation par un produit scalaire sur un vecteur donné
de E.

Un espace euclidien est un R-espace vectoriel muni d’un produit scalaire. Voici
quelques exemples que l’étudiant devrait détailler à titre d’exercice.

Exemple 1. E = Rn est muni du produit scalaire canonique

〈x, y〉 =
n∑

j=1

xjyj .

Exemple 2. E = Rn peut être muni d’autres produits scalaires (voir plus loin).

Exemple 3. Soit E l’espace vectoriel sur R constitué des suites réelles convergentes
vers 0. On peut munir E du produit scalaire

〈x, y〉 =
∞∑

j=1

xj yj

j2
.

Exemple 4. Soit E l’espace vectoriel des fonctions réelles continues de [0, 1] dans
[0, 1]. La formule

〈f, g〉 =
∫ t=1

t=0

f(t)g(t)dt

définit un produit scalaire sur E.

Proposition 1 (L’inégalité de Cauchy-Schwarz). Soit E un espace euclidien. Pour
tout x, y ∈ E,

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉
avec égalité si et seulement si x et y sont liés.

Démonstration 1. Soit x, y ∈ E. L’astuce classique consiste à écrire que

〈x + t · y, x + t · y〉 ≥ 0, pour tout t ∈ R.

En développant on trouve

〈x + t · y, x + t · y〉 = 〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉.
On regarde cette dernière expression comme un trinôme du second degré en t qui
doit rester positif ou nul. En particulier, son discriminant (réduit)

∆ = 〈x, y〉2 − 〈x, x〉 〈y, y〉
doit être négatif ou nul, d’où le résultat. ¥

Une norme sur un espace vectoriel E est une application E → R+ homogène,
définie et satisfaisant à l’inégalité triangulaire.

Proposition 2 (Norme euclidienne). Si 〈, 〉 est un produit scalaire sur E, alors
l’application

||x|| =
√
〈x, x〉

est une norme sur E.

C’est la norme euclidienne dérivée du produit scalaire sur E.
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Démonstration 2. Seule l’inégalité triangulaire mérite d’être précisée. On calcule

〈x + y, x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉 ≤ 〈x, x〉+ 2〈x, x〉 〈y, y〉+ 〈y, y〉
où l’inégalité utilisée est l’inégalité de Cauchy-Schwarz. Réécrivant en terme de
norme, on trouve

||x + y||2 ≤ ||x||2 + 2||x|| ||y||+ ||y||2 = (||x||+ ||y||)2.
L’inégalité triangulaire en résulte. ¥

Notons l’identité qui apparâıt dans la démonstration précédente :

(1) ||u + v||2 = ||u||2 + 2 〈u, v〉+ ||v||2.
On appliquant cette identité à (u, v) puis à (u,−v), on en déduit aisément la

Proposition 3 (Identité du Parallélogramme). Pour u, v ∈ E euclidien,

(2) ||u + v||2 + ||u− v||2 = 2 (||u||2 + ||v||2).

~v

~u

~u + ~v

~u − ~v

Fig. 1. L’identité du parallélogramme

De l’identité (1), on voit que l’on peut déduire de la norme euclidienne le produit
scalaire :

(3) 〈u, v〉 =
1
2

(
||u + v||2 − ||u||2 − ||v||2

)
.

ou encore par la formule

(4) 〈u, v〉 =
1
4

(
||u + v||2 − ||u− v||2

)
.

Il n’est pas vrai en général que l’on puisse associer de cette manière un produit
scalaire à n’importe quelle norme. Par exemple, la norme sur R2 définie par

||(x1, x2)|| = max(|x1|, |x2|)
ne vérifie pas l’identité du parallélogramme. Il en résulte que cette norme ne provient
pas d’un produit scalaire sur R2.

Proposition 4. Soit (E, || · ||) un espace vectoriel normé. La norme || · || est eucli-
dienne (c’est-à-dire est dérivée d’un produit scalaire) si et seulement si elle vérifie
l’identité du parallélogramme.

Démonstration 3. La condition est nécessaire : c’est la prop. 3 ci-dessus. Mon-
trons qu’elle est suffisante : supposons donc que || · || vérifie l’identité du pa-
rallélogramme. Nous devons construire un produit scalaire sur E telle que la norme
||·|| soit la norme dérivée de ce produit scalaire. Mais nous savons déjà quel doit être
ce produit scalaire, il est donné par la formule (3) ou bien (de façon équivalente)
par (4). Vérifions donc qu’une telle formule définit bien un produit scalaire. Il est
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clair que 〈u, v〉 est symétrique en u, v. Montrons que le produit est défini positif.
Nous avons

〈u, u〉 = 0 ⇐⇒ ||u||2 = 0 ⇐⇒ u = 0.

Montrons enfin la bilinéarité. Vu la symétrie, il suffit de montrer l’identité

〈x + x′, y〉 − 〈x, y〉 − 〈x′, y〉 = 0.

Pour cela, on applique l’identité du parallélogramme à

1.2. Orthogonalité. Deux vecteurs u, v ∈ E sont orthogonaux si 〈u, v〉 = 0. No-
tation : u⊥v.

Théorème 1 (Théorème de Pythagore). Deux vecteurs u, v ∈ E sont orthogonaux
ssi ||u + v||2 = ||u||2 + ||v||2.

Vecteurs normés. Famille orthogonale. Famille orthonormale. Une famille ortho-
normale quelconque est libre. Écriture dans une base orthonormale.

1.2.1. Orthonormalisation d’une base (Gram-Schmidt). Principe : on part d’une
base e1, . . . , en d’un espace euclidien et on construit de proche en proche une base
orthonormée ε1, . . . , εn telle que Vect(ei) = Vect(εi).

On a ε1 = e1 puis on cherche ε2 tel que

(1) Vect(e1, e2) = Vect(ε1, ε2) (2) 〈ε1, ε2〉 = 0.

On peut écrire ε2 = λ1e1 + λ2e2, avec λ1, λ2 à déterminer de sorte que la condition
(1) soit remplie et alors la condition (2) s’écrit

λ1〈e1, e1〉+ λ2〈e1, e2〉 = 0

Il y a plusieurs choix possibles pour λ1, λ2. Il suffit de prendre λ1 = −〈e1, e2〉/〈e1, e1〉
et λ2 = 1 pour obtenir une base orthogonale ε1, ε2. Pour obtenir une base orthonor-
male, il faut normaliser chaque vecteur de base en divisant par la norme du vecteur
en question.

Procédure dans le cas général : soit e1, . . . , en une base de E euclidien. On peut
supposer cette base normée : pour tout j, ||ei|| = 1. Supposons avoir construit une
base orthonormale ε1, . . . , εn−1 telle que Vect(ei)1≤i≤n−1 = Vect(εi)1≤i≤n−1. On
construit εn de la manière suivante : on le cherche sous la forme

εn =
n−1∑

j=1

λjεj + λnen,

avec des constantes λj à déterminer. On a alors, pour tout i < n,

0 = 〈εi, εn〉 =
n−1∑

j=1

λj〈εi, εj〉+ λn〈εi, en〉 = λi · 1 + λn〈εi, en〉.

Pour que ces égalités soient vérifiées, il suffit de choisir

λi = −〈εi, en〉, λn = 1.
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La base ε1, . . . , εn est orthogonale. Pour la rendre orthonormale, il suffit de norma-
liser le dernier vecteur. En conclusion, il suffit de prendre

εn =

en −
n−1∑

j=1

〈εj , en〉εj

∣∣∣
∣∣∣en −

n−1∑

j=1

〈εj , en〉εj

∣∣∣
∣∣∣
.

On a ainsi démontré le

Théorème 2 (Orthonormalisation). Soit e1, . . . , en une base d’un espace euclidien
E. Il existe un automorphisme de E transformant la base e1, . . . , en en une base or-
thonormale ε1, . . . , εn de E. De plus, la matrice de passage de la base e1, . . . , en à la
base ε1, . . . , εn est triangulaire supérieure avec des 1 sur la diagonale (unipotente).

Exemple 5. Orthonormaliser la base (1, 0, 0), (1, 1, 0), (1, 1, 1) de R3 à l’aide de la
procédure de Gram-Schmidt ci-dessus.

Théorème 3. Soit E un espace euclidien et ε1, . . . , εn une base orthonormale. Tout
vecteur v ∈ E s’écrit de façon unique

v =
∑

j

〈v, εj〉εj

et
||v||2 =

∑

j

〈v, εj〉2.

Pour tout couple v, w ∈ E,

〈v, w〉 =
∑

j

〈v, εj〉〈w, εj〉.

Orthogonal à un ensemble, à un sous-espace. Somme orthogonale de sous-espaces.

Proposition 5. On suppose E de dimension finie. Soit F un sous-espace de E.
Alors

E = F ⊕ F⊥, et F⊥⊥ = F.

Démonstration 4. Par définition, 〈F, F⊥〉 = 0 et F ∩ F⊥ = 0 (car x ∈ F ∩ F⊥

implique 〈x, x〉 = 0 d’où x = 0). Donc F et F⊥ sont en somme orthogonale.
L’application

E → HomR(F,R), x 7→ 〈−, x〉
est surjective de noyau exactement F⊥. Par conséquent, E/F⊥ ' HomR(R,R) ' F .

En particulier, E = F
⊥⊕ F⊥.

La seconde égalité se montre en observant d’abord que F ⊆ F⊥⊥. Puis d’après
la première appliquée successivement à F et F⊥,

E = F
⊥⊕ F⊥ = F⊥

⊥⊕ F⊥⊥,

donc dimF = dim F⊥⊥ (tous les supplémentaires de F⊥ ont même dimension). Ce
qui permet de conclure. ¥

Exemple 6. L’orthogonal d’un vecteur non nul est un hyperplan.
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1.2.2. Projections orthogonales.

Proposition 6 (Pythagore). Soit (v1, . . . , vn) une famille de vecteurs orthogonale
dans un espace euclidien E. Alors

||v1 + . . . vn||2 = ||v1||2 + ||v2||2 + · · ·+ ||vn||2.
Projections orthogonales. Dessins, exemples. Reformuler Pythagore en terme de

projection orthogonale : pour tout x ∈ E, les vecteurs x− p(x) et p(x) sont ortho-
gonaux.

v

pF (v)

pG(v)

G

F

E = F⊕G

F

F⊥

pF (v)

pF⊥(v)

v

E = F
⊥

⊕ F⊥

Fig. 2. Projection et projection orthogonale

Caractérisation d’une projection orthogonale (parmi les projections).

Proposition 7. Soit E un espace euclidien. Une projection p : E → E est une
projection orthogonale ssi ||p(x)|| ≤ ||x|| pour tout x ∈ E.

Démonstration 5. Si p est orthogonale alors E = Ker(p)
⊥⊕ Im(p) et pour tout

x ∈ E,
||x||2 = ||x− p(x)||2 + ||p(x)||2

d’après le théorème de Pythagore. Il en résulte que

||p(x)|| ≤ ||x||.
Réciproquement, vu que p est une projection, F = Ker(p) et G = Im(p) sont
supplémentaires dans E. Soit x ∈ E. Il existe y ∈ Ker(p) et z ∈ Im(p) tels que

x = y + z.

Donc pour tout λ ∈ R, nous avons

p(λy + z) = p(z) = z.

Donc
||z||2 = ||p(λy + z)||2 ≤ ||λy + z||2 = λ2||y||2 + 2λ〈y, z〉+ ||z||2.

D’où :
0 ≤ λ2||y||2 + 2λ〈y, z〉 pour tout λ ∈ R.

On en déduit aisément que 〈y, z〉 = 0. Donc G ⊆ F⊥. Comme dim E = dim F +
dim G = dim F + dim F⊥, nous avons dim G = dimF⊥. Par conséquent G = F⊥.
¥
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y

z = p(λy + z)

λy
λy + z

Im(p)

Ker(p)

Fig. 3. L’explication de la démonstration de la prop. 7 : si l’on
augmente la longueur d’un vecteur v = λy + z dans la direction de
la projection, la longueur de la projection.

Remarque utile. Si ε1, . . . , εn est une base orthonormale de F , la projection de
v sur F s’écrit

pF (v) =
n∑

i=1

〈v, εi〉 εi.

Exemple 7. E = R3, F = Vect




1
1
1


. Si x =




x1

x2

x3


 ∈ E, alors

pF (x) =
x1 + x2 + x3

2
√

3




1
1
1


 .

Distance d’un point à un sous-espace. On rappelle que la distance d’un vecteur
v ∈ E à un sous-espace F est par définition

d(v, F ) = inf
x∈F

||v − x||.

Proposition 8. Soit F un sous-espace d’un espace euclidien E et v ∈ E. Alors

d(v, F ) = ||v − pF (v)||.
Démonstration 6. On peut justifier abstraitement l’existence d’un vecteur x0 ∈ E
tel que la borne inférieure soit atteinte : intersecter F avec une sphère unité qui est
compacte en dimension finie, d’où le fait que la fonction x 7→ ||v−x||2 continue sur
un compact atteint en un vecteur x0 sa borne inférieure.

D’un autre côté on peut calculer ce minimum. Soit p la projection orthogonale
sur F . Nous avons

||v − p(v)|| ≤ ||v − y|| pour tout y ∈ F

avec égalité ssi y = p(v). Faire un dessin et utiliser le théorème de Pythagore. Le
résultat s’en suit. ¥
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G

F

v

s(v)

p(v)

Fig. 4. Symétrie vectorielle par rapport à F parallèlement à G.

1.2.3. Symétries orthogonales. Rappel : symétrie vectorielle sF,G par rapport à un
sous-espace F , parallèlement à un sous-espace G. Formule en terme de décomposition
E = F ⊕G et de projection.

Rappelons que s2 = s ◦ s = IdE , que l’espace F est l’espace invariant par s,
c’est-à-dire Ker (s − IdE) = F et que l’espace G est l’espace (−1)-invariant par
s, c’est-à-dire que Ker (s + IdE) = G. Réciproque : tout endomorphisme s de E
vérifiant s ◦ s = IdE est une symétrie par rapport à Ker(s − IdE) parallèlement à
Ker(s + IdE).

Une symétrie orthogonale par rapport à un sous-espace F est la symétrie par
rapport à F et parallèlement à F⊥. Elle est donc uniquement déterminée par le
sous-espace F .

Propriété : “une symétrie orthogonale conserve les longueurs”. Cette propriété
est caractéristique. En formule :

Proposition 9. Une symétrie s d’un espace euclidien E vérifie

||s(x)|| = ||x|| pour tout x ∈ E

ssi s est orthogonale.

Dans ce cas, s est LA symétrie orthogonale par rapport à Ker(s− IdE).

Démonstration 7. Supposons s orthogonale par rapport à un sous-espace F .
Écrire

x = y + z

avec y ∈ F et z ∈ F⊥. Alors

||x||2 = ||y||2 + ||z||2 = ||y − z||2 = ||s(x)||2.
Réciproquement, soit s une symétrie par rapport à F parallèlement à G conservant
la norme. Nous avons

||x||2 = ||y + z||2 = ||y − z||2 = ||s(x)||2
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ssi
2〈y, z〉 = −2〈y, z〉

ssi
〈y, z〉 = 0.

Il en résulte aisément que G = F⊥ d’où le résultat. ¥
Nous verrons que les symétries orthogonales sont un cas particulier fondamental

d’isométries de E.

Exemple 8. Soit F = v⊥ de codimension 1 dans E. Alors

sF (x) = x− x, v

〈v, v〉v.

Une telle symétrie est appelée symétrie hyperplane.

1.3. Dualité et théorème de représentation. Le fait que le produit scalaire
soit défini implique que l’application adjointe

E → E∗ = HomR(E,R), v 7→ 〈v,−〉
est injective. Si E est de dimension finie – ce qu’on suppose toujours sauf mention
expresse du contraire – alors on sait que E ' E∗ (isomorphisme non canonique)
donc dim E = dim E∗ d’où il résulte que l’application ci-dessus est bijective.

En particulier toute forme linéaire s’obtient via l’adjoint.

Théorème 4 (Th. de représentation). Soit ϕ ∈ HomR(E,R) une forme linéaire.
Il existe un unique vecteur v ∈ E tel que

〈v, x〉 = ϕ(x) pour tout x ∈ E.

L’argument précédent n’est pas constructif. Comment trouver un tel v ? D’après
le th. du rang, le noyau d’une forme linéaire est un hyperplan H. Donc ϕ(H) =
〈v, H〉 = 0 pour le vecteur v cherché. Donc v ∈ H⊥. Vu que H est un hyperplan,
son orthogonal est une droite vectorielle, disons H⊥ = Rw. Donc pour tout x ∈ E,

ϕ(x) = λ〈w, x〉
pour un certain λ ∈ R à déterminer. En spécifiant x = w, nous trouvons que
nécessairement

ϕ(w) = λ〈w,w〉, soit λ =
ϕ(w)
||w||2 .

Donc finalement

ϕ(x) =
ϕ(w)
||w||2 〈w, x〉 pour tout x ∈ E,

pour n’importe quel vecteur w ∈ (Ker(ϕ))⊥.

1.4. Isométries d’un espace euclidien. Définition d’une isométrie : toute ap-
plication linéaire de E dans E conservant la norme. De façon équivalente, toute
application linéaire de E dans E conservant le produit scalaire.

Proposition 10. L’ensemble des isométries de E forme un groupe pour la compo-
sition, appelé le groupe orthogonal de E et noté O(E).

Démonstration 8. La composée de deux isométries reste une isométrie en appli-
quant successivement la définition. Inverse : il suffit de voir qu’une isométrie est
bijective. La définition donne l’injectivité, le fait que dimE < ∞ donne le reste. ¥
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Exemple 9. Une symétrie orthogonale est une isométrie. On a même caractérisé
les symétries orthogonales parmi les isométries par la proposition 9. Les symétries
hyperplanes (orthogonales) sont donc les isométries non triviales de E laissant in-
variant le plus gros sous-espace possibles.

Théorème 5 (Décomposition géométrique). Le groupe O(E) est engendré par les
symétries hyperplanes. De manière plus précise, toute isométrie g est le produit de
q symétries hyperplanes avec q = dim Ker(g − IdE).

1.5. Matrices orthogonales et isométries. Le groupe orthogonal agit librement
et transitivement sur les bases orthonormales de E. Écriture du produit scalaire
dans une base orthonormée, d’une isométrie dans une base orthonormée de E. Pour
tout g ∈ O(E), det g ∈ {±1} (utiliser la représentation matricielle ou l’adjoint).

Définition du groupe spécial orthogonal SO(E) = {g ∈ O(E) | det g = 1}. Ce
sont les isométries préservant l’orientation de E.

Traduction matricielle en prenant E = Rn.

1.6. Orientation d’un espace euclidien. Equivalence de bases orthonormées.
Orientation d’un espace euclidien E : choix d’une classe de bases. Orientation op-
posée.

1.7. Volume d’un espace euclidien. Soit n = dim E. On sait que l’espace
ΛnE∗ des formes n-linéaires alternées de E est de dimension 1. Par définition du
déterminant, on a l’identité :

ϕ(f(v1), . . . , f(vn)) = det(f) ϕ(v1, . . . , vn),

pour tout f ∈ ΛnE∗ et tout v1, . . . , vn ∈ E. Supposons que v = (v1, . . . , vn) soit
une base orthonormale de E. Alors il existe deux formes ϕ1, ϕ2 et deux seulement
telles que

|ϕ1(v)| = |ϕ2(v)| = 1.

Les ensembles

Bi = {v base orthonormale de E | ϕi(v) = +1}
sont les deux orientations possibles de E. Réciproquement, si E est orienté par B,
alors la forme ϕi ∈ ΛnE∗ telle que B = Bi est appelée forme volume de E.

Supposons E orienté muni de sa forme volume ϕ. Alors pour x1, . . . , xn−1 ∈ E
fixés, l’application

E → R, x 7→ ϕ(x1, . . . , xn−1, x)

est linéaire. D’après le th. de représentation, il existe donc un vecteur unique x1 ∧
x2 ∧ · · · ∧ xn−1 ∈ E tel que

ϕ(x1, . . . , xn−1, x) = 〈x1 ∧ x2 ∧ · · · ∧ xn−1, x〉.
C’est le produit mixte des (n− 1) vecteurs x1, . . . xn−1 dans cet ordre.

Proposition 11. L’application

En−1 → E, (x1, . . . , xn−1) 7→ x1 ∧ x2 ∧ · · · ∧ xn−1

est (n− 1)-linéaire alternée et son image est dans Vect(x1, . . . , xn−1)⊥. De plus,

ϕ(x1, . . . , xn−1, x1 ∧ x2 ∧ · · · ∧ xn−1) = ||x1 ∧ x2 ∧ · · · ∧ xn−1||2.
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En particulier, si les x1, . . . , xn−1 sont deux à deux orthogonaux, alors x1, . . . , xn−1, x1∧
x2 ∧ · · · ∧ xn−1 est une base orthogonale directe.

La preuve est immédiate de la définition.
Si E = Rn muni de sa structure euclidienne orientée canonique (c’est-à-dire que

la base canonique est orthonormée directe), alors ϕ = det. Écriture de x1 ∧ x2 ∧
· · · ∧ xn−1 en fonction des xi.

2. STRUCTURE DU GROUPE ORTHOGONAL

2.1. Petites dimensions. A l’aide de la caractérisation des matrices orthogonales
comme matrices formées par les vecteurs d’une base orthonormale, on trouve que
O(1) = {±1} et SO(1) = {1}.

Un petit calcul montre que

SO(2) = {A =
[

a −b
b a

]
∈ GL2(R) | a2 + b2 = 1.}.

Interprétation de SO(2) comme groupe de rotations. Conséquence : SO(2) est
commutatif. [Pour O(2), qui n’est pas commutatif, voir plus loin.]

2.2. Décomposition des isométries. Les isométries se décomposent en isométries
plus simples. Forme normale.

Lemme 1. Soit E un espace vectoriel de dimension finie et f ∈ L(E). Il existe un
sous-espace 0 6= F ⊆ E tel que dim F ≤ 2 et f(F ) ⊆ F .

Démonstration 9. Soit P un polynôme à coefficients réels tel que P (f) = 0.
[Preuve rapide : L(E) est de dimension n2 donc il doit y avoir une relation linéaire
entre 1, f, f2, f3, . . . , fn2−1.] On décompose P = p1 . . . pr en un produit de po-
lynômes irréductibles à coefficients réels, donc de degré 1 ou 2. Il existe un polynôme,
disons p1, tel que p1(f) n’est pas inversible (sinon P (f) = p1(f) . . . pr(f) = 0
est inversible, absurde). Donc il existe un vecteur non nul v ∈ Ker(p1(f)). Alors
Vect(v, f(v)) est invariant par f (utiliser le fait que p1 est de degré au plus égal à
2.) ¥

Un sous-espace F ⊆ E est dit irréductible sous g si les seuls sous-espaces de F
invariant par g sont 0 et F lui-même.

Théorème 6 (Forme normale d’une isométrie). Soit g ∈ O(E). Il existe une
décomposition orthogonale

E = E1

⊥⊕ E2

⊥⊕ · · · ⊥⊕ Ek

telle que
• g(Ei) = Ei pour tout 1 ≤ i ≤ k ;
• 1 ≤ dim Ei ≤ 2 pour tout 1 ≤ i ≤ k ;
• Ei est irréductible sous g pour tout 1 ≤ i ≤ k ;
• Si dim Ei = 2 alors g|Ei ∈ SO(Ei).

Démonstration 10. Récurrence sur dim E. C’est acquis pour dimE = 1, 2.
Soit maintenant F un sous-espace non nul invariant par g de dimension minimale.
D’après le lemme, 1 ≤ dim F ≤ 2. Nous avons alors

E = F
⊥⊕ F⊥, g(F⊥) = F⊥.
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(La seconde égalité est un petit exercice.) On peut alors appliquer l’hypothèse de
récurrence à (F⊥, g|F⊥). L’irréductibilité vient de la minimalité de dim F 6= 0. Si
maintenant dim Ei = 2, je dis que g|Ei

a un déterminant égal à 1. Sinon c’est un
produit d’un nombre impair q ≥ 1 de symétries hyperplanes, avec q = dim Fix(g|Ei),
d’après le théorème de représentation géométrique. Mais puisque q ≥ 1, il existe
un vecteur non nul v ∈ Ei tel que g(v) = v, ce qui contredit l’irréductibilité de Ei.
Donc det g|Ei

= 1. ¥

Puisque l’on a décrit les isométries en petites dimensions, on peut en déduire la
forme matricielle du théorème.

Théorème 7. Pour tout g ∈ O(E), il existe une base orthonormée de E telle que
la matrice M(g) de g relativement à cette base soit de la forme

M(g) =




A1

· · ·
Ap

Iq
−Ir




, p, q, r ≥ 0 2p + q + r = dim E

où Ai ∈ SO(2), Ai 6= ±I2 pour tout 1 ≤ i ≤ p.

Sous forme normale, on peut calculer le déterminant de g : c’est (−1)r.

2.3. Application à la classification en petites dimensions suivant le sous-
espace des points fixes.

2.3.1. dim E = 2. .

Lemme 2. det g = 1 implique que g est l’identité ou le produit de deux symétries
hyperplanes ; det g = −1 implique que g est une symétrie hyperplane.

[Preuve directe sans référence au théorème de décomposition : on sait que g2 −
Trace(g) − 1 = 0. Le discriminant est ∆ = Trace(g)2 + 4 > 0 donc g admet deux
valeurs propres réelles distinctes. Comme g est une isométrie, ce ne peut être que
1 et −1. Ainsi g est diagonalisable avec 1 et −1 sur la diagonale dans une base
appropriée. Donc g2 = IdE . C’est donc une symétrie orthogonale. Ce ne peut être
g = −IdE car det(−IdE) = +1. Donc g est bien une symétrie hyperplane (une
réflexion = une symétrie par rapport à une droite). ¥.]

Proposition 12. Soit r une rotation de E. Il existe s1, s2 symétries hyperplanes (
= symétries par rapport à des droites) telles que r = s1 ◦ s2. De plus, l’une d’entre
elles peut être choisie arbitrairement.

Démonstration 11. Prendre pour s1 une symétrie hyperplane quelconque. Posons
s2 = s−1

1 r. Alors s2 est une isométrie négative de E donc une symétrie hyperplane
d’après le lemme précédent. ¥

On a vérifié que le groupe SO(E) est commutatif. Le groupe O(E) n’est pas
commutatif :

Pour tout r ∈ SO(E), s ∈ O(E)− SO(E), srs−1 = r−1.

En termes de groupes, O(E) est le produit semi-direct de SO(E) par Z/2.
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En conséquence, pour E de dim 2 : si dim Fix(g) = 0 alors g est une rotation ; si
dimFix(g) = 1 alors g est une symétrie hyperplane (sinon ce serait un produit de
deux symétries hyperplanes distinctes donc n’aurait pas de vecteur fixe non nul).

2.3.2. dimE = 3. Utiliser la forme normale pour écrire la matrice de g en fonction
de det g. En déduire que si g ∈ SO(E) avec g 6= IdE alors dim Fix(g) = 1. C’est
bien la rotation autour de son axe fixe.

Finalement en dimension 3, on a la classification suivante :

- dimFix(g) = 0 : g = r ◦ s = s ◦ r ;

- dimFix(g) = 1 : g = r ;

- dim Fix(g) = 2 : g = s ;

- dimFix(g) = 3 : g = IdE .

3. RAPPELS ET COMPLÉMENTS SUR LES ACTIONS DE GROUPES

3.1. Groupes. Généralités (groupe, sous-groupe, groupe engendré) avec les exemples
suivants : Aut(X) = SX (groupe symétrique sur un ensemble), Aut(V ) = GL(V )
(groupe des automorphismes sur un espace vectoriel) et O(V ) (groupe orthogonal).

Les trois groupes sont liés : 1) il existe un unique morphisme injectif

Aut(X) → GL(VX)

envoyant une permutation d’un ensemble X sur l’automorphisme de l’espace vec-
toriel VX librement engendré par X. 2) si de plus, on met une structure euclidienne
sur VX définie par

〈x, y〉 = δx,y =
{

1 si x = y;
0 sinon

alors le morphisme Aut(X) → GL(VX) se factorise en un morphisme injectif

Aut(X) → O(VX).

Groupe distingué. Groupe quotient, groupe produit. Suites exactes. Définition
d’une extension de groupe. Produit direct.

3.2. Actions de groupes. Généralités. Action fidèle. Stabilisateur (groupe d’iso-
tropie Gx). Relation gGxg−1 = Ggx. Orbites. Une orbite Gx est en bijection en-
sembliste avec G/Gx. Action transitive. Exemples. Action n-transitive. Action libre.
Une action libre est fidèle. Libre + transitive = simplement transitive.

g = h2h1

h1

h2

x

y

z

Fig. 5. Action libre et transitive.
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Proposition 13. Une action fidèle et transitive d’un groupe commutatif G est
simplement transitive.

Démonstration 12. Supposons gx = hx pour un certain x ∈ X. Il s’agit de voir
que g = h. Nous avons k(gx) = k(hx) pour tout k ∈ G. Comme G est commutatif,
cela équivaut à : g(kx) = h(kx) pour tout k ∈ G. Comme l’action est transitive,
Gx = X donc gy = hy pour tout y ∈ X. D’où g−1hy = y pour tout y ∈ X. Comme
l’action est fidèle, cela implique g−1h = 1 soit g = h. ¥
3.3. Produit semi-direct de groupes. Produit semi-direct externe : soit H et
K deux groupes et ϕ : K → Aut(H) un morphisme de groupes (nb : c’est une
action du groupe K sur le groupe H). Le produit semi-direct de H et K par ϕ est
le groupe H ×K muni de l’opération :

(h, k) · (h′, k′) = (hϕ(k)(h′), kk′).

(C’est bien un groupe. On vérifie notamment que (h, k)−1 = (ϕ(k−1)(h−1), k−1).)
On le note Hoϕ K. Dans le cas où H et K sont finis, alors Hoϕ K est aussi fini et

|H oϕ K| = |H| · |K|.
Dans le cas où ϕ est trivial (constant égal à l’identité), on retrouve le produit direct :
H oid K = H ×K.

Théorème 8. Soit G un groupe. Les propriétés suivantes sont équivalentes :

1. Il existe une suite exacte

1 → H
i→ G

p→ K → 1

et un morphisme s : K → G tel que p ◦ s = IdK ;

2. Il existe un sous-groupe distingué ∆ de G et un sous-groupe Γ de G tel que
Γ ∩∆ = {1} et G = ∆Γ.

3. Il existe un morphisme de groupe ϕ : K → Aut(H) et un isomorphisme
H oϕ K → G.

Démonstration 13. (1) =⇒ (2) : on prend Γ = s(K) et ∆ = i(H). Soit x ∈ Γ∩∆.
L’exactitude de la suite implique x = s(0) = 0. Le fait que ∆Γ = G résulte de la
section s. (2) =⇒ (3) : soit ϕ : Γ → Aut(∆) défini par

ϕ(γ)(δ) = γδγ−1, γ ∈ Γ.

(Noter que ce morphisme est bien défini comme étant à valeurs dans Aut(∆) car ∆
est distingué dans G.) On définit un morphisme ∆oϕ Γ → G par

(δ, γ) 7→ δγ.

On vérifie que c’est un isomorphisme. (3) =⇒ (1) : on a la suite exacte

1 → H
i→ H oϕ K

p→ K → 1

avec les morphismes inclusion i : h 7→ (h, 1) et projection p : (h, k) 7→ k. La
projection a une section s : K → H oϕ K définie par s(k) = (1, k) et qui vérifie
bien p ◦ s = idK . Soit f l’isomorphisme de G sur H oϕ K. Alors la suite

1 → H
i′→ G

p′→ K → 1

avec i′ = f−1 ◦ i et p′ = p ◦ f est exacte. De plus, s′ = f−1 ◦ s est une section de p′

(ie : p′ ◦ s′ = idK). ¥
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Exemple 10. Le groupe diédral D2n des symétries d’un polygône régulier à n côtés
est engendré par une réflection σ et une rotation ρ d’angle 2π/n. La réflection σ
engendre un groupe cyclique d’ordre 2 (isomorphe à Z/2Z) et la rotation ρ engendre
un groupe cyclique d’ordre n (isomorphe à Z/nZ). La réflection agit sur le sous-
groupe C = 〈ρ〉 engendré par ρ :

σ · ρ = σ · ρ · σ−1.

On a ainsi un morphisme 〈σ〉 → Aut(C). Alors D2n = 〈ρ〉oϕ 〈σ〉. On vérifie en effet
que tout élément de D2n s’écrit comme un produit unique ρnσk pour n ∈ Z/nZ et
k ∈ Z/2Z.

Exemple 11. Le groupe O(n) est isomorphe à un produit semi-direct de SO(n)
par Z/2Z. Il existe en effet une suite exacte

1 → SO(n) → O(n) det→ Z/2Z→ 1.

Une section s : Z/2Z→ O(n) du morphisme det est par exemple donnée par

s(±1) =




±1 0 · · · 0
0 1 · · · 0
... 0

. . . 0
0 0 · · · 1




4. GÉOMÉTRIE AFFINE

4.1. Généralités. Définition d’un espace affine : un espace affine E est un ensemble
E muni d’une action simplement transitive d’un groupe commutatif (E, +). On dit
que E est un espace affine dirigé par E.

Il revient au même de munir E d’une application

E × E → E, (x, y) 7→ ~xy

vérifiant les axiomes suivants :

• Pour tout x ∈ E , l’application E → E, y 7→ ~xy est bijective.

• Pour tous x, y, z, ~xy + ~yz = ~xz. (Relation de Chasles)

Il revient au même de se donner un ensemble E et un groupe commutatif E et
une application

E × E → E , (v, x) 7→ x + v

telle que (x + v) + w = x + (v + w), x + 0 = x pour tout x ∈ E et v, w ∈ E et pour
tout x ∈ E , l’application v 7→ x + v est une bijection de E dans lui-même.

Points = éléments de E . La dimension de E est la dimension de E comme espace
vectoriel. Droite affine, plan affine.

Quelques remarques : 1) −→xy = −−→yx pour tout x, y ∈ E .
2) −→xx = ~0 pour tout x ∈ E .

Vectorialisation d’un espace affine = privilégier un point de E pour définir une
structure d’ev sur E . Isomorphisme alors entre E et E. Notion de repère cartésien.
Repère affine : soit E un espace affine de dimension n. Un repère affine est constitué
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de (n + 1) points A,B1, . . . , Bn tels que ( ~AB1, . . . , ~ABn) est une base de E.

Tout espace vectoriel E peut être regardé comme un espace affine. En effet, E
agit sur lui-même simplement transitivement. À un vecteur x ∈ E = E, on associe
x + v ∈ E = E.

Notation de Grassmann : y = x + ~v. Pour un espace affine dirigé par E, on note
E = x + E pour tout x ∈ E .

Proposition 14. Pour tout x, y ∈ E, v ∈ E,
−−−−−−−−−−→
(x + v)(y + v) = −→xy.

Démonstration 14. C’est une reformulation des notations et des axiomes. ¥
Exemple 12. Droite affine ; équation d’une droite affine ; direction d’une droite
affine.

Exemple 13. Plan affine ; équation d’un plan affine ; direction d’un plan affine.

Exemple 14. L’ensemble des solutions d’un système Ax = b est un espace affine.

Exemple 15. Produit d’espaces affines.

4.2. Sous-espaces affines. Une partie F d’un espace affine E est un sous-espace
affine de E s’il existe un sous-espace vectoriel F de la direction E de E et un point
x ∈ F tel que

F = x + F = {x + v | v ∈ F}.
Les points d’un espace affine sont ainsi les sous-espaces affines dirigés par l’es-

pace nul {0}.

Les sous-espaces vectoriels sont les sous-espaces affines qui passent par l’origine 0.

Des points sont alignés (coplanaires) s’il appartiennent à une même droite affine
(à un même plan affine). Deux sous-espaces affines sont parallèles s’ils ont même
direction. Il résulte de la définition la

Proposition 15. Deux sous-espaces affines parallèles sont confondus ou disjoints.

La réciproque est fausse : par exemple, deux droites dans R3 peuvent être dis-
jointes sans être parallèles.

Proposition 16. Deux sous-espaces affines de même direction s’obtiennent l’un
de l’autre par une unique translation.

Démonstration 15. Écrire F + v, c’est un sous-espace affine encore dirigé par la
direction F de F . ¥

C’est une généralisation de l’axiome des droites parallèles d’Euclide. La proposi-
tion suivante fait aussi partie des axiomes d’Euclide. Elle se déduit ici des axiomes
de la géométrie affine :

Proposition 17. Par deux points distincts x et y d’un espace affine passe une et
une seule droite xy.

Démonstration 16. Par définition, il existe un unique vecteur v ∈ E tel que
x + v = y. La droite vectorielle D = Vect(v) dirige donc la droite affine x + D. ¥
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Sous-espace affine engendré par une famille de points. Notion de parallélisme (les
directions cöıncident), voire de parallélisme faible (l’une des direction est incluse
dans l’autre).

4.3. Applications affines. Soit E et F deux espaces affines. Une application affine
entre E et F est une application f : E → F telle qu’il existe F ∈ L(E,F ) tel que

f(x + ~v) = f(x) + F (~v), pour tout x ∈ E , ~v ∈ E.

Une application affine entre deux espaces affines est une application qui ressemble
à une application équivariante.

L’application linéaire F associée à f est déterminée par le fait que

F (~v) =
−−−−−−−−−→
f(x)f(x + ~v).

On la note souvent F = ~f .

Réciproquement, si l’on connâıt ~f , alors l’application affine f est déterminée par
l’image d’un point O de E . En effet, on alors

f(x) = f(O) + ~f(
−→
Ox), pour tout x ∈ E .

Notion d’isomorphisme affine, d’automorphisme affine. Affinités.
On peut transformer n’importe quelle application linéaire ~f : E → F en une

application affine en posant

f(o + v) = o′ + ~f(v), v ∈ E,

où o ∈ E et o′ ∈ F .
En particulier, à tout ~f ∈ GL(E), on associe une affinité en posant

fo(o + v) = o + ~f(v), v ∈ E.

Exemple 16. Applications constantes.

Exemple 17. Homothétie de centre x et de rapport λ.

Exemple 18. Translations.

Exemple 19. Expression analytique des applications affines.

Proposition 18. Soit f : E → F une application affine.
(i) Si A ⊆ E est un sous-espace affine de E de direction A, alors f(A) est un

sous-espace affine de F de direction ~f(A).
(ii) Si B ⊆ F est un sous-espace affine de F de direction B alors f−1(B) est

un sous-espace affine de E de direction f−1(B).
(iii) En particulier, si f−1(y) est non vide et contient x ∈ E alors f−1(y) =

x + Ker(~f). De plus, dim E = dim f−1(y) + dim f(E).

L’application f 7→ ~f vérifie les propriétés suivantes :

(i) La composée d’applications affines est affine et
−−→
f ◦ g =

−→
f ◦ −→g ;

(ii) L’inverse d’une application affine bijective est affine et
−−→
f−1 =

−→
f −1.

Il en résulte :

Proposition 19. L’ensemble des automorphismes affines de E est un groupe GA(E)
pour la composition.
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Noter qu’en fixant un repère cartésien, on peut se ramener à considérer GA(Rn) :

Proposition 20. Tout espace affine réel de dimension n est affinement isomorphe
à Rn.

Démonstration 17. Soit (o, x1, . . . , xn) un repère cartésien. L’application

(λ1, . . . , λn) 7→ o +
∑

i

λixi

est l’isomorphisme affine recherché. ¥

Le groupe affine est un exemple particulier de produit semi-direct. Notons

τ : (E, +) → GA(E)

le morphisme qui à un vecteur ~v associe la translation τ~v ∈ GA(E). Notons

λ : GA(E) → GL(E)

l’application f 7→ ~f qui à un isomorphisme affine associe son isomorphisme linéaire
associé.

Théorème 9. La suite

1 → (E, +) τ→ GA(E) λ→ GL(E) → 1

est exacte. Elle est de plus scindée : une section de λ est donnée par ~f 7→ fo. Il en
résulte que GA(E) ' E oϕ GL(E).

On peut expliciter le produit semi-direct : ϕ : GL(E) → Aut(E, +) est l’inclusion.
Ici Aut(E) est le groupe des Z-automorphismes de E (bijections de E dans E
préservant l’addition seulement). L’application

E ×GL(E) → GA(E), (~v, ~f) 7→ τ~v ◦ fo

est bijective. Avec le produit approprié sur E×GL(E), elle devient un isomorphisme
de groupes E oϕ GL(E) ' GA(E). Vu sur E ×GL(E), le produit est donné par

(~v, ~f) · (~v′, ~f ′) = (~v + ~f(~v′), ~f ◦ ~f ′).

On vérifie en effet que fo ◦ τ~w = τ~f(w) ◦ fo.

4.4. Barycentres. On commence par montrer, comme au collège, l’existence de
barycentre d’un système de points pondérés.

Proposition 21 (Barycentre). Soit x1, . . . , xk des points de E et λ1, . . . , λk des
nombres réels.

• Si λ1 + · · ·+ λk = 0 alors le vecteur λ1
−−→
Ox1 + · · ·+ λk

−−→
Oxk est indépendant

du point O de E.
• Si λ =

∑
j λj 6= 0 alors il existe un unique point x ∈ E tel que

λ
−→
Ox = λ1

−−→
Ox1 + · · ·+ λk

−−→
Oxk.

De plus, l’égalité ci-dessus ne dépend pas du point O choisi.
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Démonstration 18. On utilise la relation de Chasles
−→
Oy =

−−→
OO′ +

−−→
O′y.

Ainsi pour la première affirmation,

λ1
−−→
Ox1 + · · ·+ λk

−−→
Oxk = λ1(

−−→
OO′ +

−−→
O′x1) + · · ·+ λk(

−−→
OO′ +

−−−→
O′xk)

= (λ1 + · · ·+ λk)
−−→
OO′ + λ1

−−→
O′x1 + · · ·+ λk

−−−→
O′xk

= λ1

−−→
O′x1 + · · ·+ λk

−−−→
O′xk.

L’existence de x dans la seconde affirmation résulte des axiomes des espaces affines ;
l’indépendance du choix de O de l’avant-dernière égalité ci-dessus. ¥

C’est la définition du barycentre d’un système de points pondérés (x1, λ1), . . . , (xk, λk),
pour

∑
j λj 6= 0.

Exemple 20. Milieu d’un segment = barycentre de (x, 1) et de (y, 1). Que se
passe-t-il si (x, 1) et (y,−1) ?

Exemple 21. Le segment [x, y] est l’ensemble des barycentres de (x, λ) et de
(y, 1− λ) pour 0 ≤ λ ≤ 1.

Exemple 22. La droite xy est l’ensemble des barycentres de x et de y.

Dans le vectorialisé EO, l’égalité définissant le barycentre devient

λx = λ1x1 + · · ·+ λkxk.

Proposition 22 (Caractérisation du barycentre). x est le barycentre du système
{(xi, λi), 1 ≤ i ≤ k} ssi

λ1
−−→xx1 + · · ·+ λk

−−→xxk = ~0.

En conséquence, c’est aussi le barycentre du système {(xi, λλi), 1 ≤ i ≤ k} pour
tout λ 6= 0.

On ne perd donc rien à supposer que
∑

j λj = 1 6= 0.

Exemple 23. Isobarycentre.

Proposition 23 (Associativité du barycentre). Le barycentre d’un système de
points pondérés est inchangé si l’on remplace un sous-système de points par leur
barycentre affecté de la somme des poids de ses points.

Démonstration 19. Soit A = {(xi, λi)}i∈I et B = {(yj , µj)}j∈J deux systèmes
de points pondérés deux à deux distincts. On suppose que∑

i∈I

λi = λ 6= 0,
∑

j∈J

µj = µ 6= 0, λ + µ 6= 0.

Soit xA le barycentre de A et x le barycentre de A∪B. Pour montrer la proposition,
il suffit de montrer que x est le barycentre de

{(xA, λ)} ∪B.

D’après la caractérisation de la proposition 21 du barycentre x :∑

i∈I

λi
−→xxi

︸ ︷︷ ︸
=λ−−→xxA (prop.22)

+
∑

j∈J

µj
−→xyj = ~0.
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Et donc
λ−−→xxA +

∑

j∈J

µj
−→xyj = ~0,

ce qui dit bien que x est le barycentre de {(xA, λ)} ∪B. ¥

Exemple 24. Comme application de la proposition, on peut montrer (exercice) que
l’isobarycentre d’un triangle ( = de ses sommets) est à l’intersection des médianes =
centre de gravité d’un triangle. Exercice analogue pour un quadrilatère quelconque.
Cas particulier du parallélogramme.

Proposition 24. Soit x0, . . . , xk des points de E. Les affirmations suivantes sont
équivalentes :

(1) Aucun des xi n’est barycentre des autres points ;

(2) La famille −−→x0x1, . . . ,
−−→x0xk est libre dans E ;

(3) Pour tout j, la famille des k vecteurs −−→xjx1, . . . ,
−−→xjxk est libre dans E.

Démonstration 20. (1) implique (2) : évident [en écrivant la contraposée non (2)
implique non (1)]. (2) implique (3) : soit F = Vect(−−→x0x1, . . . ,

−−→x0xk). Alors F est un
sev de dimension k. Soit Fj le sev engendré par les k vecteurs −−→xjx1, . . . ,

−−→xjxk. C’est
aussi un sev de dimension k dont chaque générateur est dans F . Donc F = Fj . (3)
implique (1) :

Définition de famille de points affinement libre, affinement génératrice. Notion
de position générale de k points = cöıncide avec famille affinement libre.

Une famille affinement libre dans E a au plus dim E + 1 points. Une famille
affinement libre est un repère de E ssi elle a dim E + 1 points.

La proposition suivante est la généralisation de l’exemple 22. Elle est souvent
utilement combinée avec la propriété d’associativité. (Cf. exemple du centre de
gravité du triangle.)

Proposition 25. Une partie F ⊆ E non vide d’un espace affine est un sous-espace
affine si et seulement tout barycentre d’une famille finie de points de F est dans F .

Démonstration 21. F est un sous-espace affine ssi il existe x0 ∈ F tel que F =
x0 + F où F est un sev de E. C’est équivalent à dire que tout point de F s’écrit
comme x = x0 +

∑
j λjvj où les vj forment une base de F . (On peut choisir les vj

de sorte que
∑

j λj = 1.) Cette dernière écriture dit qu’un point x arbitraire est le
barycentre des xj tels que −−→x0xj = ~vj . ¥

On peut noter la conséquence suivante :

Proposition 26 (Coordonnées barycentriques). Dans un repère affine (a, a1, . . . , an)
de E, tout point x ∈ E s’écrit comme barycentre du système (a1, λ1), . . . , (an, λn)
pour un unique (λ1, . . . , λn) ∈ Rn tel que λ1 + · · ·+ λn = 1.

On peut déduire les coordonnées barycentriques d’un point de ses coordonnées
cartésiennes. Soit (x0, x1, . . . , xn) un repère affine de E . Tout x ∈ E s’écrit de façon
unique

x = x0 + λ1
−−→x0x1 + . . . + λn

−−−→x0xn.

On peut donc réécrire que

x = λx0 + λ1x1 + . . . + λnxn



COURS DE GÉOMÉTRIE – LICENCE PLURIDISCIPLINAIRE 3ÈME ANNEE 21

avec λ0 = 1 − ∑
j λj . Donc si (λ1, . . . , λn) sont les coordonnées cartésiennes x

dans le repère (x0, x1, . . . , xn), alors (1 − ∑
j λj , λ1, . . . , λn) sont ses coordonnées

barycentriques.

Proposition 27. Une application E → F est affine si et seulement si elle conserve
les barycentres.

Démonstration 22. Soit ~f l’application linéaire associée. Nous avons

λ
−→
f (
−−→
OG) =

−→
f (λ

−−→
OG) =

−→
f (λ1

−−→
OA1 + · · ·+ λn

−−→
OAn)

= λ1

−−−−−−−→
f(0)f(A1) + · · ·+ λn

−−−−−−−→
f(0)f(An)

= λ
−−−−−→
f(O)G′,

où G′ est le barycentre de (f(Ai), λi)1≤i≤n. Il résulte de
−→
f (
−−→
OG) =

−−−−−→
f(O)G′

que G′ = f(G).

Cette proposition peut s’exprimer en formules :

f


∑

j

λjxj


 =

∑

j

λjf(xj), pour tous xj ∈ E ,
∑

j

λj = 1.

En conséquence : une application affine est déterminée par l’image des points
d’un repère affine. En particulier, il existe un unique isomorphisme affine envoyant
les points d’un repère affine sur un repère affine.

Une autre conséquence : l’image d’un segment (resp. d’une droite) par une ap-
plication affine est un segment (resp. une droite).

4.5. Projections et symétries affines.

Lemme 3. Soit F ,G deux sous-espaces affines de E tels que F + G = E. Alors
F ∩ G n’est pas vide.

Démonstration 23. Soit a, b ∈ F ,G respectivement. Alors
−→
ab = u + v avec u ∈ F

et v ∈ G. Donc
a + u = b− v

avec a + u ∈ F et b− v ∈ G. Donc a + u ∈ F ∩ G. ¥
Ce lemme permet de définir les projections affines.

Proposition 28. On garde les mêmes hypothèses que dans le lemme et on suppose
de plus que E = F ⊕G est une décomposition en somme directe de E. Alors pour
tout x ∈ E, l’intersection F ∩ (x + G) est un unique point : c’est la projection de x
sur F parallèlement à G.

On note
pF,G : E → E , p(x) = F ∩ (x + G).

Démonstration 24. On sait que l’intersection est non vide par le lemme. C’est
donc un sous-espace affine dont la dimension est donnée par dim(F ∩G) = 0. ¥
Proposition 29. L’application p = pF,G est affine, vérifie p2 = p et ~p = pF,G (la
projection vectorielle sur F parallèlement à G).
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Démonstration 25. Exercice. ¥

Réciproquement, la propriété p2 = p caractérise les projections parmi les appli-
cations affines : c’est la projection affine sur p(E) parallèlement à Ker(~p).

Définition d’une symétrie affine : s(x) = x+2
−−−→
xp(x) pour une projection affine p,

pour tout x ∈ E . Propriété : s2 = id. Caractérise aussi les symétries affines parmi
les applications affines.

4.6. Quelques classiques. Soit p, q, r trois points alignés tels que p 6= q. On a
alors :

−→pq = λ−→pr

pour un unique λ ∈ R. On note

R(p, q, r) = λ.

Lemme 4. Soit f une application affine. Si p, q, r sont trois points deux à deux
distincts alignés, alors f(p), f(q), f(r) sont aussi deux à deux distincts et alignés.
De plus,

R(f(p), f(q), f(r)) = R(p, q, r).

Démonstration 26. Si −→pq = λ−→pr alors

q = p + λ−→pr

d’où
f(q) = f(p) + λ

−−−−−→
f(p)f(r).

¥

Théorème 10 (Thalès). Soit H1,H2,H3 trois hyperplans affines parallèles deux à
deux distincts et D1, D2 deux droites dont aucune n’est pas parallèle aux Hj. Notons
pi = Hi ∩D1 et qi = Hi ∩D2. Alors

R(p1, p2, p3) = R(q1, q2, q3).

H1

H2

H3

D1 D2

p1

p2

p3

q1

q2

q3

Fig. 6. Théorème de Thalès.

Démonstration 27. On applique le lemme précédent à la projection affine sur D2

le long de
−→
H1. ¥

Théorème 11 (Menelaüs). Soit (p0, p1, p2) un repère affine d’un plan affine E.
Soit q0 ∈ (p0p1), q1 ∈ (p1p2) et q2 ∈ (p2p1). On suppose q0 6∈ {p0, p1}, q1 6∈ {p1, p2}
et q2 6∈ {p2, p0}. Alors les qi sont alignés si et seulement si

∏

i∈Z/3Z
R(qi, pi, pi+1) = +1.
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Démonstration 28. Soit ∆ le déterminant des coordonnées barycentriques des qi

par rapport au repère affine (p0, p1, p2). On sait que ∆ = 0 si et seulement si les qi

sont alignés. En utilisant l’hypothèse, on écrit

qi = λipi + µipi+1, λi + µi = 1

de sorte que
R(qi, pi, pi+1) = −µi

λi
.

Le déterminant ∆ est donc

∆ =

∣∣∣∣∣∣

λ0 µ0 0
0 λ1 µ1

λ2 0 µ2

∣∣∣∣∣∣
= λ0λ1λ2 + µ0µ1µ2.

Donc ∆ = 0 ssi
µ0µ1µ2

λ0λ1λ2
= −1.

Vu que µi

λi
= −R(qi, pi, pi+1), le résultat s’ensuit. ¥

5. ESPACES AFFINES EUCLIDIENS

Un espace affine euclidien est un espace affine dont la direction est un espace
euclidien. L’exemple fondamental est Rn affine avec direction Rn muni du produit
scalaire canonique.

L’application (x, y) 7→ ||−→xy|| est une distance sur E .
Il existe toujours un repère orthonormal de E : un repère affine p0, p1, . . . , pn tel

que les vecteurs −−→p0p1, . . . ,
−−→p0pn forment une base orthonormale de E.

Proposition 30. Tout espace affine euclidien (de dimension finie) est isométrique
à Rn.

Une isométrie affine est une application affine f : E → F telle que

||−−−−−→f(p)f(q)||F = ||−→pq||E .

Exemples d’isométries : translations, symétries orthogonales, rotations.
Les isométries d’un espace affine euclidien E dans lui-même forment un sous-

groupe, noté Isom(E), du groupe affine GA(E). De plus :

Proposition 31. L’application

λ| : Isom(E) → O(E)

est un morphisme de groupes surjectif dont le noyau est le sous-groupe des transla-
tions.

L’application λ| comme la notation le suggère, n’est autre que la restriction de
l’application ’partie linéaire’, déjà introduite dans le cadre purement affine, aux
isométries. De même, cette application admet une section ~f → fo. C’est la restric-
tion de la section correspondante GL(E) → GA(E). Vu le théorème 9, il en résulte
la

Proposition 32. L’application

E oO(E) → Isom(E), (~v, f) 7→ τ~v ◦ fo

est un isomorphisme de groupes.
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Rappelons que le produit (non commutatif) sur E ×O(E) est donné par

(~v, f) · (~v′, f ′) = (~v + f(~v′), f ◦ f ′).

Rappelons aussi la formule

fo ◦ τ~w = τ~f(~w) ◦ fo.

On peut donc décomposer une isométrie comme produit d’une translation et
d’une isométrie avec point(s) fixe(s). Cependant, cette décomposition dépend du
choix de la section f 7→ fo. Peut-on obtenir une décomposition distinguée en un
sens géométrique ?

Soit S un sous-espace affine de E . On note comme d’habitude S =
−→S la direction.

On va définir un morphisme O(S⊥) → Isom(E) de la manière suivante. Soit r ∈
O(S⊥). On pose

ρr(x + ~v) = x + r(~v), x ∈ S, v ∈ S⊥.

S

S⊥

x

x + ~v

x + r(~v)

Fig. 7. Construction de ρr.

Noter que ρr|S = idS . On remarque aussi la propriété suivante (exercice).

Proposition 33. L’application ρr est une isométrie affine. De plus l’application

O(S⊥) → Isom(E), r 7→ ρr

est un morphisme injectif de groupes.

Un cas particulier important : r = −IdS⊥ . On reconnâıt la symétrie orthogonale
par rapport à S. On la note sS .

Lemme 5. Une application affine f de E dans E admet un point fixe unique ssi
Fix(~f) = ~0.

Démonstration 29. Donnons nous un point o de E . Alors on sait que f(o + ~v) =
f(o) + ~f(~v). Donc

f(o + ~v) = o + ~v ⇐⇒ (~f − Id)(v) =
−−−→
f(o)o.

Par conséquent, si o et o + ~v sont deux points fixes distincts de f alors Fix(~f) 6= 0.
Si o est unique point fixe, alors f(o + ~v) = f(o) + ~f(~v) = o + ~f(~v). Donc ~f(~v) 6= ~v
pour ~v 6= 0. ¥

Pour le lemme suivant : espace vectoriel quotient, espace affine quotient. Ou bien
remplacer la démonstration par une récurrence sur la dimension k. Le cas k = 0
correspond au lemme ci-dessus.
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Lemme 6. Soit g ∈ Isom(E) et k = dim Fix(~g). Il existe un unique sous-espace
affine S de dimension k tel que g|S est une translation de S.

Autrement dit, il existe un sous-espace affine S de dimension maximale avec la
propriété remarquable que g(S) = S et g|S est une translation de vecteur ~v ∈ S =−→S .

Démonstration 30. On sait que la restriction de g sur un sea S est une translation
ssi

−→
g|S est l’identité sur

−→S = S. C’est équivalent à dire que S ⊆ Fix(~g). Mais
comme on demande que les dimensions cöıncident, i.e. dim S = k = dim Fix(~g),
c’est équivalent à dire que S = Fix(~g).

Si S convient, sa direction S est Fix(~g). On dispose donc d’une application affine

g′ = ḡ : E/S → E/S, x + S 7→ ḡ(x + S) = g(x) + S.

Sa partie linéaire n’est autre que l’application linéaire définie par ~g′(~v + S) =
~g(~v)+S. Il suffit de montrer ḡ a un unique point fixe. D’après le lemme, il suffit donc
de montrer que Fix(~g′) = 0. Or ~g′(~v + S) = ~v + S ssi ~g(~v) − ~v ∈ S. Décomposons
E = S ⊕ S⊥. Rappelons que S⊥ est un sous-espace stable par g, et même que
g(S⊥) = S⊥. Soit ~v = s + t, s ∈ S, t ∈ S⊥. Nous avons donc

~g(~v)− ~v = ~g(t)− t ∈ S ∩ S⊥ = 0.

Il en résulte que ~g(t) = t c’est-à-dire que t ∈ S. Donc t ∈ S ∩ S⊥ = 0. C’est le
résultat voulu. ¥

La conséquence fondamentale est le

Théorème 12 (Décomposition canonique des isométries affines). Soit g ∈ Isom(E)
et k = dim Fix(~g). Il existe un unique sous-espace affine S ⊆ E de dimension k, un
vecteur ~v ∈ −→S = S et une isométrie vectorielle r ∈ O(S⊥) telle que

g = τ~v ◦ ρr.

Le triplet (S, ~v, r) est unique et

τ~v ◦ ρr = ρr ◦ τ~v.

Remarques :

• g a des points fixes ssi ~v = ~0.

• ~v ∈ Fix(r) (voir la démonstration).

Exemple 25. Pour g = σF , symétrie orthogonale par rapport à F = x0 + F :
l’ensemble des points fixes de g est F et ~v = ~0.

Exemple 26. Une rotation dans un plan suivi d’une translation est encore une
rotation. Quel est le nouveau centre et l’angle ?

L’intérêt de la décomposition vient du fait que la translation et l’isométrie com-
mutent (exercice : le vérifier). Une décomposition arbitraire en une composition de
translation et d’isométrie vectorielle n’a pas en général cette propriété.

Par exemple, l’application affine f définie par
{

x′ = − 3
5x + 4

5y + 13
5

y′ = 4
5x + 3

5y + 6
5
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se décompose bien sous la forme f = τ~v ◦ ρ avec ~v = (− 13
5 , 6

5 ) et ρ définie sur R2

par la matrice 1
5

(−3 4
4 3

)
qui est bien une isométrie vectorielle. Mais ce n’est pas

la décomposition canonique car ρ ◦ τ~v 6= τ~v ◦ ρ. Exercice : trouver sa décomposition
canonique.

Démonstration 31. Unicité : g = τ~v ◦ ρr avec ~v ∈ S et r ∈ O(S⊥) implique

g(S) = τ~v ◦ ρr(S) = τ~v(S) = S.

Vu que ρr|S = idS , on voit que

g|S = (τ~v ◦ ρr)|S = τ~v ◦ ρr|S = τ~v|S .

En particulier ~v est unique. Il résulte aussi du lemme précédent que S est unique.
Donc finalement

r = ~g|S⊥
est aussi uniquement déterminé.

Existence : on choisit S grâce au lemme précédent : c’est le sea de dimension k
sur lequel g agit comme une translation de vecteur ~v ∈ S. Donc τ~v = g|S . On a

Fix(~g) = S =
−→S et r = ~g|S⊥ .

Soit maintenant x ∈ S et ~w ∈ S⊥ :

g(x + ~w) = g(x) + ~g(~w) = τ~v(x) + r(~w) = ρr(τ~v(x) + ~w) = ρr(τ~v(x + ~w)).

Donc g = ρr ◦ τ~v = τ~v ◦ ρr. ¥
Explication et argument alternatif du théorème 12 : on sait qu’une isométrie affine
quelconque n’admet pas toujours un point fixe (cf. translation par exemple). On
peut au besoin, à l’aide de l’isométrie de la proposition 30, identifier l’espace affine à
l’espace affine euclidien standard Rn. Dans ce cas, une isométrie affine g est identifée
à une matrice orthogonale M plus une translation de vecteur ~w. Alors la composée
de g avec la translation de vecteur −~w aura des points fixes. Cherchons toutes les
translation dont la composition suivant g garantit l’existence de points fixes : on
veut que M + ~u ait un point fixe dans Rn, donc on demande

Mx + ~w + ~u = x.

Cela équivaut à

(M − I)(x) = −(~w + ~u), soit : ~w + ~u ∈ Im(M − I).

Cela revient donc à choisir ~u de telle sorte que ~w+~u ∈ Im(M−I). Cela ne détermine
pas encore ~u de façon unique. Cependant si l’on requiert que la translation et
l’isométrie commutent, i.e.,

Mx + ~w + ~u = M(x + ~u) + ~w, ∀x,

alors
M~u = ~u.

Là on utilise un lemme (vu ou à revoir en exercice) qui dit que

E = Ker(M − I)
⊥⊕ Im(M − I).

Il s’ensuit que les deux conditions ensemble{
~w + ~u ∈ Im(M − I)
~u ∈ Ker(M − I)
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détermine ~u de manière unique. ¥

Ce théorème réduit donc formellement la classification des isométries affines à
celles des isométries vectorielles. Les applications sont la classification géométriques
des isométries affines en dimensions 2 et 3 en fonction de la dimension de Fix(~g).

Vocabulaire : isométrie affine directe (resp. indirecte) = isométrie affine dont la
partie linéaire est directe (resp. indirecte) = isométrie affine dont la partie linéaire
a un déterminant +1 (resp. −1). Les isométries affines directes forment un sous-
groupe distingué Isom+(E) du groupe Isom(E). Exercice : pourquoi ?

Autre terminologie : positif = direct ; négatif = indirect. Déplacement = isométrie
affine directe ; antidéplacement = isométrie affine indirecte.

Théorème 13. Soit E un plan affine euclidien. Toute isométrie g ∈ Isom(E) s’iden-
tifie à un des trois types suivants :

dimFix(~g) 0 1 2
S singleton droite plan
~g det~g = 1 det~g = −1 id
g ρr sD ◦ τ~v τ~v

type rotation symétrie glissée translation

La démonstration est un exercice basé sur la classification idoine des isométries
vectorielles.

Remarque : en termes de points fixes de l’isométrie affine :

1. les translations et les symétries glissées sont les seules isométries affine du
plan n’admettant aucun point fixe.

2. les rotations ont un unique point fixe (”centre de la rotation”).

3. la symétrie (réflexion) admet une droite fixe affine.

4. l’identité admet le plan comme ensemble de points fixes.

Théorème 14. Soit E un espace affine euclidien de dimension 3. Toute isométrie
g ∈ Isom(E) s’identifie à l’un des quatre types suivants :

dim Fix(~g) 0 1 2 3
S D ∩ P D P E
~g det g = −1 det g = +1 det g = −1 g = id

g
g = sP ◦ ρr

r ∈ O(P )
D⊥P

g = τ~v ◦ ρr

r ∈ O(D⊥)
~v ∈ D

g = τ~v ◦ sP
~v ∈ P

τ~v

type symétrie rotation vissage symétrie glissée translation

D désigne une droite, P un plan et r ∈ O(D⊥) est une isométrie distincte de
l’identité.

La démonstration est basée sur le théorème précédent (dimension 2) et la clas-
sification des isométries vectorielles en dimension 3.

Remarque : en termes de points fixes de l’isométrie affine g,

1. Les symétries glissées et les vissages (dont les translations sont un cas par-
ticulier) sont les seules isométries affines sans point fixe.

2. Les symétries rotations ont un unique point fixe.

3. Les rotations sont les vissages qui admettent une droite fixe.
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4. Les symétries par rapport à un plan (retournements) admettent ce plan
comme plan fixe.

5. L’identité admet E comme ensemble de points fixes.

Dessins.
Groupe d’isométries d’une figure. Exemples.


