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1. ESPACES EUCLIDIENS

1.1. Produit scalaire. Un produit scalaire sur un R-espace vectoriel E est une
application £ x E — R bilinéaire, symétrique, définie positive.
Notations : (-, ), (-, ), etc.
Remarque : un produit scalaire (-,-) vérifie la propriété
(z,E) =0 = z=0.
Ceci est une conséquence de la propriété “définie positive”. On dit que le produit

scalaire est non dégénéré. Dans ce cas, si E est de dimension finie (ce qui sera la
1
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grande majorité des cas dans ce cours), 'application

E — Homg(E,R), z+— (— x)
est un isomorphisme. En particulier, tout homomorphisme E — R est réalisé (de
fagon unique) comme une évaluation par un produit scalaire sur un vecteur donné
de F.

Un espace euclidien est un R-espace vectoriel muni d’un produit scalaire. Voici
quelques exemples que I'étudiant devrait détailler a titre d’exercice.

Exemple 1. £ = R" est muni du produit scalaire canonique
n
(@,y) = xjy;.
j=1

Exemple 2. E =R" peut étre muni d’autres produits scalaires (voir plus loin).

Exemple 3. Soit E I’espace vectoriel sur R constitué des suites réelles convergentes
vers 0. On peut munir £ du produit scalaire
o0

(,y) = B

= 7

Exemple 4. Soit E l'espace vectoriel des fonctions réelles continues de [0, 1] dans

[0,1]. La formule
t=1

(f,9) = f(t)g(t)dt

t=0
définit un produit scalaire sur E.

Proposition 1 (L’inégalité de Cauchy-Schwarz). Soit E un espace euclidien. Pour
tout x,y € B,

z,y)* < (z,2) (y.9)
avec éqalité si et seulement si x et y sont liés.
Démonstration 1. Soit x,y € E. L’astuce classique consiste a écrire que
(x+t-y,x+t-y) >0, pourtoutteR.
En développant on trouve
(x+t-yx+t-y) = (x,z)+ 2t{x,y) +t2(y,y).

On regarde cette derniére expression comme un trinéme du second degré en t qui
doit rester positif ou nul. En particulier, son discriminant (réduit)

A= <x,y>2 —(z, ) (y,y)

doit étre négatif ou nul, d’ou le résultat. |

Une norme sur un espace vectoriel E est une application £ — R, homogene,
définie et satisfaisant a 'inégalité triangulaire.

Proposition 2 (Norme euclidienne). Si (,) est un produit scalaire sur E, alors
Uapplication

|zl = v/, z)
est une norme sur E.

C’est la norme euclidienne dérivée du produit scalaire sur F.
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Démonstration 2. Seule I'inégalité triangulaire mérite d’étre précisée. On calcule

(x+y,z+y) = (z,2) +2(x,y) + (y,9) < (x,2) + 2(x,2) (y,y) + (¥, y)

ou l'inégalité utilisée est 'inégalité de Cauchy-Schwarz. Réécrivant en terme de
norme, on trouve

llz +yl* < [ll® +2[lz[] [lyll + [lylI* = (=] + [ly])).
L’inégalité triangulaire en résulte. |
Notons I'identité qui apparait dans la démonstration précédente :
(1) [+l = [ull* +2 (u,v) + [o][*.
On appliquant cette identité a (u,v) puis a (u, —v), on en déduit aisément la
Proposition 3 (Identité du Parallélogramme). Pour u,v € E euclidien,

(2) [l + ol + [Ju = o[ = 2 (|[ul* + [Jo]).

Fic. 1. L’identité du parallélogramme

De l'identité (1), on voit que I'on peut déduire de la norme euclidienne le produit
scalaire :

_ 1 2 2 2
(3) () = 5 (Il ol = [full® = 1ol ).
ou encore par la formule
1
(4) (u,v) = 7 (Il vl = [lu = v]]?).

Il n’est pas vrai en général que ’on puisse associer de cette maniére un produit
. N . 2 s -
scalaire & n’importe quelle norme. Par exemple, la norme sur R définie par

(21, 22)|| = max(|z1], [x2])

ne vérifie pas 'identité du parallélogramme. Il en résulte que cette norme ne provient
pas d’un produit scalaire sur R

Proposition 4. Soit (E,||-||) un espace vectoriel normé. La norme ||-|| est eucli-
dienne (c’est-a-dire est dérivée d’un produit scalaire) si et seulement si elle vérifie
lidentité du parallélogramme.

Démonstration 3. La condition est nécessaire : c’est la prop. 3 ci-dessus. Mon-
trons qu'elle est suffisante : supposons donc que || - || vérifie l'identité du pa-
rallélogramme. Nous devons construire un produit scalaire sur E telle que la norme
[|-]| soit la norme dérivée de ce produit scalaire. Mais nous savons déja quel doit étre
ce produit scalaire, il est donné par la formule (3) ou bien (de fagon équivalente)
par (4). Vérifions donc qu’une telle formule définit bien un produit scalaire. Il est
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clair que (u,v) est symétrique en wu,v. Montrons que le produit est défini positif.
Nous avons
(u,u) =0 <= |[u|]|* =0 <= u=0.

Montrons enfin la bilinéarité. Vu la symétrie, il suffit de montrer 'identité
<IE + $/,y> - <$,y> - <:E/,y> =0.
Pour cela, on applique I'identité du parallélogramme a

1.2. Orthogonalité. Deux vecteurs u,v € E sont orthogonaux si (u,v) = 0. No-
tation : ulw.

Théoréme 1 (Théoreme de Pythagore). Deux vecteurs u,v € E sont orthogonaux
ssi [Ju+vl[* = [Jul[* + []v]|*.

Vecteurs normés. Famille orthogonale. Famille orthonormale. Une famille ortho-
normale quelconque est libre. Ecriture dans une base orthonormale.

1.2.1. Orthonormalisation d’une base (Gram-Schmidt). Principe : on part d’une
base eq,...,e, d'un espace euclidien et on construit de proche en proche une base
orthonormée €1, ..., &, telle que Vect(e;) = Vect(g;).

On a g1 = ey puis on cherche &5 tel que

(1) Vect(eq,es) = Vect(e1,e2) (2) {e1,e2) = 0.

On peut écrire e5 = A1eq + Agea, avec A1, Ao a déterminer de sorte que la condition
(1) soit remplie et alors la condition (2) s’écrit

)\1<€1,61> =+ )\2<61762> = 0

Il 'y a plusieurs choix possibles pour A1, Ao. Il suffit de prendre A\ = —({ey, ea)/{e1,€1)
et Ao = 1 pour obtenir une base orthogonale 1, £2. Pour obtenir une base orthonor-
male, il faut normaliser chaque vecteur de base en divisant par la norme du vecteur
en question.

Procédure dans le cas général : soit ey, ..., e, une base de E euclidien. On peut
supposer cette base normée : pour tout j, ||e;|| = 1. Supposons avoir construit une
base orthonormale €1,...,e,_1 telle que Vect(e;)i1<i<n—1 = Vect(g;)i<i<n—1. On

construit ¢,, de la maniére suivante : on le cherche sous la forme
n—1
En = E Aj€j + Apén,
j=1

avec des constantes \; a déterminer. On a alors, pour tout i < n,

n—1

0= <5i7€n> = Z )\j<5i7€j> + /\n<5i7€n> =\ -1+ )\n<€iaen>~

=1
Pour que ces égalités soient vérifiées, il suffit de choisir

)\i:_<5i7en>7 An:].
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La base €1, ...,e, est orthogonale. Pour la rendre orthonormale, il suffit de norma-
liser le dernier vecteur. En conclusion, il suffit de prendre
n—1
€n — Z<€j, €n>5j
j=1
En = o1
‘ €n — Z<5ja €n)€j
j=1
On a ainsi démontré le
Théoréme 2 (Orthonormalisation). Soit ey, ..., e, une base d’un espace euclidien
E. I existe un automorphisme de E transformant la base eq, ..., e, en une base or-
thonormale €1, . ..,&, de E. De plus, la matrice de passage de la base e, ... e, ala
base €1, . ..,ey, est triangulaire supérieure avec des 1 sur la diagonale (unipotente).

Exemple 5. Orthonormaliser la base (1,0,0),(1,1,0),(1,1,1) de R® & I’aide de la
procédure de Gram-Schmidt ci-dessus.

Théoréme 3. Soit E un espace euclidien et ey, . .., e, une base orthonormale. Tout
vecteur v € E s’écrit de facon unique

et

Pour tout couple v,w € E,
<'U, w> = Z<Uv €j><wa €j>'
J
Orthogonal & un ensemble, a un sous-espace. Somme orthogonale de sous-espaces.

Proposition 5. On suppose E de dimension finie. Soit F' un sous-espace de E.
Alors
E=F@®F*, e F't=F

Démonstration 4. Par définition, (F, Ft) =0et FNF+ =0 (car v € FNF+
implique (z,z) = 0 d’ott z = 0). Donc F et F! sont en somme orthogonale.
L’application
E — Homg(F,R), z+— (—,x)
est surjective de noyau exactement F'+. Par conséquent, F/F+ ~ Homg(R,R) ~ F.
1L

En particulier, E = F @ F*.

La seconde égalité se montre en observant d’abord que F' C F++. Puis d’apres
la premiere appliquée successivement & F et F'-,

L L
E=F®F-=F-oF,

donc dim F = dim F** (tous les supplémentaires de F*- ont méme dimension). Ce
qui permet de conclure. |

Exemple 6. L’orthogonal d’un vecteur non nul est un hyperplan.
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1.2.2. Projections orthogonales.

Proposition 6 (Pythagore). Soit (v1,...,v,) une famille de vecteurs orthogonale
dans un espace euclidien E. Alors

[lor + ol = [oa|* + [loal[* + - - + [lvn] -

Projections orthogonales. Dessins, exemples. Reformuler Pythagore en terme de
projection orthogonale : pour tout x € F, les vecteurs z — p(z) et p(x) sont ortho-
gonaux.

PF—(I )

pr(v) pr(v)
E = FoG E=F&F*

F1G. 2. Projection et projection orthogonale

Caractérisation d’une projection orthogonale (parmi les projections).

Proposition 7. Soit E un espace euclidien. Une projection p : E — E est une
projection orthogonale ssi ||p(x)|| < ||z|| pour tout x € E.

1
Démonstration 5. Si p est orthogonale alors F = Ker(p) ® Im(p) et pour tout
r e F,

2] = ||z — p(@)]| + [[p(=)]|?
d’aprés le théoreme de Pythagore. Il en résulte que
llp(@)[] < []=]].
Réciproquement, vu que p est une projection, F' = Ker(p) et G = Im(p) sont
supplémentaires dans E. Soit x € FE. Il existe y € Ker(p) et z € Im(p) tels que
r=y+z.

Donc pour tout A € R, nous avons

p(Ay +2) = p(2) = 2.
Donc
12117 = llp(hy + 2)I12 < 1Ay + 2112 = X2[lyl* + 2M\(y, 2) + [|=]].
D’ou :
0 < X?|yl)* + 2\ (y, z) pour tout X € R.
On en déduit aisément que (y, z) = 0. Donc G C F*. Comme dim E = dim F +

dim G = dim F + dim F*, nous avons dim G' = dim F'+. Par conséquent G = F*.
|
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Im(p)

z :p()\y%z)

FiG. 3. L’explication de la démonstration de la prop. 7 : si I'on
augmente la longueur d’un vecteur v = Ay + z dans la direction de
la projection, la longueur de la projection.

Remarque utile. Si €1, ...,¢, est une base orthonormale de F', la projection de
v sur F s’écrit

i=1
1 X i
Exemple 7. E=R3 F=Vect | 1 |.Siz=| 22 | € E, alors
1 T3

r1+ T2 + X3 1

pr(z) = T .

Distance d’un point a un sous-espace. On rappelle que la distance d’un vecteur
v € F a un sous-espace I’ est par définition

d(v, F) = inf ||v — z|.
(v, F) = inf ||lv — |
Proposition 8. Soit F' un sous-espace d’un espace euclidien E et v € E. Alors

d(v, F) = [[v = pr(v)]].

Démonstration 6. On peut justifier abstraitement I'existence d’un vecteur oy € F
tel que la borne inférieure soit atteinte : intersecter F' avec une sphere unité qui est
compacte en dimension finie, d’ot le fait que la fonction  — ||v — z||? continue sur
un compact atteint en un vecteur x sa borne inférieure.

D’un autre c6té on peut calculer ce minimum. Soit p la projection orthogonale
sur F'. Nous avons

[lv = p(v)|] < [lv — y|| pour tout y € F

avec égalité ssi y = p(v). Faire un dessin et utiliser le théoreme de Pythagore. Le
résultat s’en suit. ]
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G

F1G. 4. Symétrie vectorielle par rapport a F' parallelement & G.

1.2.3. Symétries orthogonales. Rappel : symétrie vectorielle sp ¢ par rapport a un
sous-espace F', parallelement & un sous-espace G. Formule en terme de décomposition
E = F & G et de projection.

Rappelons que s2 = sos = Idg, que lespace F est I’espace invariant par s,
c’est-a-dire Ker (s —Idg) = F et que lespace G est l'espace (—1)-invariant par
s, c’est-a~dire que Ker (s + Idg) = G. Réciproque : tout endomorphisme s de F
vérifiant s o s = Idg est une symétrie par rapport & Ker(s — Idg) parallelement &
Ker(s +Idg).

Une symétrie orthogonale par rapport a un sous-espace F' est la symétrie par
rapport a F et parallelement 4 FL. Elle est donc uniquement déterminée par le
sous-espace F'.

Propriété : “une symétrie orthogonale conserve les longueurs”. Cette propriété
est caractéristique. En formule :

Proposition 9. Une symétrie s d’un espace euclidien E vérifie
[|s(z)]| = ||z||] pour tout x € E
ssi s est orthogonale.

Dans ce cas, s est LA symétrie orthogonale par rapport a Ker(s — Idg).
Démonstration 7. Supposons s orthogonale par rapport a un sous-espace F.
Ecrire

r=y+z
avec y € F et z € F+. Alors
2 2 2 2 2
217 = [lyll” + 1217 = [ly = 2|17 = lIs(2)|I"-

Réciproquement, soit s une symétrie par rapport a F' parallelement a G conservant
la norme. Nous avons

lzll* = 1ly + 2I* = lly — 2|* = ||s(2)|?
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ssi
2y, z) = —2(y, 2)
ssi
(y,z) = 0.
Il en résulte aisément que G = F+ d’ou le résultat. ]

Nous verrons que les symétries orthogonales sont un cas particulier fondamental
d’isométries de F.

Exemple 8. Soit F' = v* de codimension 1 dans E. Alors
z,v

(w,0)"

Une telle symétrie est appelée symétrie hyperplane.

sp(z) =z —

1.3. Dualité et théoréme de représentation. Le fait que le produit scalaire
soit défini implique que 'application adjointe

E — E* = Homg(E,R), v — (v, —)

est injective. Si F est de dimension finie — ce qu’on suppose toujours sauf mention
expresse du contraire — alors on sait que £ ~ E* (isomorphisme non canonique)
donc dim F = dim E* d’ou il résulte que 'application ci-dessus est bijective.

En particulier toute forme linéaire s’obtient via ’adjoint.

Théoréme 4 (Th. de représentation). Soit ¢ € Homg(E,R) une forme linéaire.
1l existe un unique vecteur v € E tel que

(v,z) = (x) pour tout = € E.

L’argument précédent n’est pas constructif. Comment trouver un tel v ? D’apres
le th. du rang, le noyau d’une forme linéaire est un hyperplan H. Donc ¢(H) =
(v, H) = 0 pour le vecteur v cherché. Donc v € H*. Vu que H est un hyperplan,
son orthogonal est une droite vectorielle, disons H+ = Rw. Donc pour tout z € E,

p(z) = Mw, )
pour un certain A € R a déterminer. En spécifiant x = w, nous trouvons que

nécessairement
p(w)
[|w]|[?

p(w) = Mw,w), soit A =

Donc finalement

w
o(z) = [TI(UHl (w,z) pour tout x € E,

pour n’importe quel vecteur w € (Ker(p))*.

1.4. Isométries d’un espace euclidien. Définition d’une isométrie : toute ap-
plication linéaire de E dans E conservant la norme. De fagon équivalente, toute
application linéaire de E' dans F conservant le produit scalaire.

Proposition 10. L’ensemble des isométries de E forme un groupe pour la compo-
sition, appelé le groupe orthogonal de E et noté O(E).

Démonstration 8. La composée de deux isométries reste une isométrie en appli-
quant successivement la définition. Inverse : il suffit de voir qu’une isométrie est
bijective. La définition donne l'injectivité, le fait que dim F < co donne le reste. B
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Exemple 9. Une symétrie orthogonale est une isométrie. On a méme caractérisé
les symétries orthogonales parmi les isométries par la proposition 9. Les symétries
hyperplanes (orthogonales) sont donc les isométries non triviales de F laissant in-
variant le plus gros sous-espace possibles.

Théoréme 5 (Décomposition géométrique). Le groupe O(E) est engendré par les
symétries hyperplanes. De maniére plus précise, toute isométrie g est le produit de
q symétries hyperplanes avec ¢ = dim Ker(g — Idg).

1.5. Matrices orthogonales et isométries. Le groupe orthogonal agit librement
et transitivement sur les bases orthonormales de E. Ecriture du produit scalaire
dans une base orthonormée, d’une isométrie dans une base orthonormée de E. Pour
tout g € O(F), det g € {1} (utiliser la représentation matricielle ou I’adjoint).
Définition du groupe spécial orthogonal SO(E) = {g € O(E) | detg = 1}. Ce
sont les isométries préservant 1'orientation de E.
Traduction matricielle en prenant F = R".

1.6. Orientation d’un espace euclidien. Equivalence de bases orthonormées.
Orientation d’un espace euclidien E : choix d’une classe de bases. Orientation op-
posée.

1.7. Volume d’un espace euclidien. Soit n = dim E. On sait que ’espace
A"E* des formes n-linéaires alternées de E est de dimension 1. Par définition du
déterminant, on a l'identité :

e(f(vr), -, fon)) = det(f) p(v1, ..., vn),

pour tout f € A"E* et tout vq,...,v, € E. Supposons que v = (v1,...,0,) soit
une base orthonormale de E. Alors il existe deux formes 1, 2 et deux seulement
telles que

[p1(v)] = |p2(v)] = 1.
Les ensembles
B; = {v base orthonormale de E | ¢;(v) = +1}
sont les deux orientations possibles de E. Réciproquement, si E est orienté par B,

alors la forme ¢; € A" E* telle que B = B; est appelée forme volume de E.

Supposons E orienté muni de sa forme volume ¢. Alors pour zy,...,z,_1 €
fixés, 'application
E—-R, 2 @(x1,...,Tp-1,%)

est linéaire. D’apres le th. de représentation, il existe donc un vecteur unique z; A
To AN Nxp_1 € F tel que

(X1, Tp1,2) = (X AT A  AZp_1, ).
C’est le produit mizte des (n — 1) vecteurs z1,...2,_1 dans cet ordre.
Proposition 11. L’application
E"' S E, (21,...,%0 1) =TI ATo A AZp_y
est (n — 1)-linéaire alternée et son image est dans Vect(z1,...,z,_1)*. De plus,

0@y T 1, TI AT A A1) = |[2r Aza Ao Azp_q] 2
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En particulier, siles xy,...,xy,—1 sont deux a deux orthogonauz, alors xy,...,Tp—1,T1A
To A ANxp_1 est une base orthogonale directe.

La preuve est immédiate de la définition.

Si F =R" muni de sa structure euclidienne orientée canonique (c¢’est-a-dire que
la base canonique est orthonormée directe), alors ¢ = det. Ecriture de z1 A 22 A
-+ A xp,_1 en fonction des x;.

2. STRUCTURE DU GROUPE ORTHOGONAL

2.1. Petites dimensions. A I’aide de la caractérisation des matrices orthogonales
comme matrices formées par les vecteurs d’une base orthonormale, on trouve que
O(1) = {£1} et SO(1) = {1}.

Un petit calcul montre que

a

b

Interprétation de SO(2) comme groupe de rotations. Conséquence : SO(2) est
commutatif. [Pour O(2), qui n’est pas commutatif, voir plus loin.|

SO(2) = {A = { ‘ab ] € GLy(R) | a® + b = 1.}.

2.2. Décomposition des isométries. Lesisométries se décomposent en isométries
plus simples. Forme normale.

Lemme 1. Soit E un espace vectoriel de dimension finie et f € L(E). Il existe un
sous-espace 0 £ F C E tel que dimF < 2 et f(F)C F.

Démonstration 9. Soit P un polynome & coefficients réels tel que P(f) = 0.
[Preuve rapide : £(E) est de dimension n? donc il doit y avoir une relation linéaire
entre 1, f, f2,f3,...,f"~1] On décompose P = p;...p, en un produit de po-
lynomes irréductibles & coefficients réels, donc de degré 1 ou 2. Il existe un polynome,
disons p1, tel que pi(f) n’est pas inversible (sinon P(f) = p1(f)...p.(f) = 0
est inversible, absurde). Donc il existe un vecteur non nul v € Ker(pi(f)). Alors
Vect(v, f(v)) est invariant par f (utiliser le fait que p; est de degré au plus égal &
2. |

Un sous-espace F' C E est dit irréductible sous g si les seuls sous-espaces de F’

invariant par g sont 0 et F' lui-méme.

Théoréeme 6 (Forme normale d’'une isométrie). Soit g € O(E). Il existe une
décomposition orthogonale

1 1 iR
E=FE ®oE,® --OE,

telle que
e g(E;) = E; pour tout 1 <i<k;
e 1 <dimkFE; <2 pourtoutl <i<k;
o E; est irréductible sous g pour tout 1 <1i < k;
B, € SO(E;).
Démonstration 10. Récurrence sur dim E. C’est acquis pour dimFE = 1, 2.

Soit maintenant F' un sous-espace non nul invariant par g de dimension minimale.
D’apres le lemme, 1 < dim F' < 2. Nous avons alors

e SidimE; =2 alors g

1
E=F&F*, g(F+)=F"
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(La seconde égalité est un petit exercice.) On peut alors appliquer ’hypothese de
récurrence a (F*, g|p1). L'irréductibilité vient de la minimalité de dim F' # 0. Si
maintenant dim E; = 2, je dis que g|g, a un déterminant égal & 1. Sinon c’est un
produit d’un nombre impair ¢ > 1 de symétries hyperplanes, avec ¢ = dim Fix(g|g,),
d’apres le théoréeme de représentation géométrique. Mais puisque g > 1, il existe
un vecteur non nul v € E; tel que g(v) = v, ce qui contredit I'irréductibilité de F;.
Donc det g|g, = 1. [ |

Puisque 'on a décrit les isométries en petites dimensions, on peut en déduire la
forme matricielle du théoréeme.

Théoréme 7. Pour tout g € O(FE), il existe une base orthonormée de E telle que
la matrice M(g) de g relativerment a cette base soit de la forme

Ay
M(g) = Ay, , p,¢,r>0 2p+qg+r=dmFE

-1,
ot A; € SO(2), A; # 15 pour tout 1 <1i < p.
Sous forme normale, on peut calculer le déterminant de g : c’est (—1)".

2.3. Application a la classification en petites dimensions suivant le sous-
espace des points fixes.

231. dmE=2..

Lemme 2. det g = 1 implique que g est l’identité ou le produit de deux symétries
hyperplanes ; det g = —1 implique que g est une symétrie hyperplane.

[Preuve directe sans référence au théoréme de décomposition : on sait que g% —
Trace(g) — 1 = 0. Le discriminant est A = Trace(g)? + 4 > 0 donc g admet deux
valeurs propres réelles distinctes. Comme g est une isométrie, ce ne peut étre que
1 et —1. Ainsi g est diagonalisable avec 1 et —1 sur la diagonale dans une base
appropriée. Donc g2 = Idg. C’est donc une symétrie orthogonale. Ce ne peut étre
g = —Idg car det(—Idg) = +1. Donc g est bien une symétrie hyperplane (une
réflexion = une symétrie par rapport & une droite). LN

Proposition 12. Soit r une rotation de E. Il existe s1, so symétries hyperplanes (
= symélries par rapport a des droites) telles que r = s1 0 so. De plus, l'une d’entre
elles peut étre choisie arbitrairement.

Démonstration 11. Prendre pour s; une symétrie hyperplane quelconque. Posons
So = 31_17“. Alors s est une isométrie négative de E' donc une symétrie hyperplane
d’apres le lemme précédent. |

On a vérifié que le groupe SO(FE) est commutatif. Le groupe O(E) n’est pas

commutatif :

Pour tout r € SO(E), s € O(E) — SO(E), srs™ ' =r""
En termes de groupes, O(F) est le produit semi-direct de SO(FE) par Z/2.
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En conséquence, pour F de dim 2 : si dim Fix(g) = 0 alors g est une rotation ; si
dim Fix(g) = 1 alors g est une symétrie hyperplane (sinon ce serait un produit de
deux symétries hyperplanes distinctes donc n’aurait pas de vecteur fixe non nul).

2.3.2. dimE = 3. Utiliser la forme normale pour écrire la matrice de g en fonction
de det g. En déduire que si g € SO(FE) avec g # Idg alors dimFix(g) = 1. C’est
bien la rotation autour de son axe fixe.

Finalement en dimension 3, on a la classification suivante :

- dimFix(g) =0:g=ros=sor;

- dimFix(g) =1:g=r;
- dimFix(g9) =2 :g=s;
- dimFix(g9) =3 : g = Idg.

3. RAPPELS ET COMPLEMENTS SUR LES ACTIONS DE GROUPES

3.1. Groupes. Généralités (groupe, sous-groupe, groupe engendré) avec les exemples

suivants : Aut(X) = Sx (groupe symétrique sur un ensemble), Aut(V) = GL(V)

(groupe des automorphismes sur un espace vectoriel) et O(V') (groupe orthogonal).
Les trois groupes sont liés : 1) il existe un unique morphisme injectif

Aut(X) — GL(Vx)
envoyant une permutation d’'un ensemble X sur 'automorphisme de ’espace vec-
toriel Vx librement engendré par X. 2) si de plus, on met une structure euclidienne
sur Vx définie par
- 1 sixz=uy;
(@y) =0ny = { 0 sinon

alors le morphisme Aut(X) — GL(Vx) se factorise en un morphisme injectif
Aut(X) — O(Vx)
Groupe distingué. Groupe quotient, groupe produit. Suites exactes. Définition

d’une extension de groupe. Produit direct.

3.2. Actions de groupes. Généralités. Action fidele. Stabilisateur (groupe d’iso-
tropie G,). Relation gG,g~! = G,,. Orbites. Une orbite Gz est en bijection en-
sembliste avec G/G,,. Action transitive. Exemples. Action n-transitive. Action libre.
Une action libre est fidele. Libre + transitive = simplement transitive.

z

hy

F1c. 5. Action libre et transitive.
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Proposition 13. Une action fidéle et transitive d’un groupe commutatif G est
simplement transitive.

Démonstration 12. Supposons gz = hz pour un certain x € X. Il s’agit de voir
que g = h. Nous avons k(gz) = k(hz) pour tout k € G. Comme G est commutatif,
cela équivaut & : g(kxz) = h(kzx) pour tout k € G. Comme l'action est transitive,
Gz = X donc gy = hy pour tout y € X. D’oll g~ hy = y pour tout y € X. Comme
laction est fidele, cela implique ¢~'h = 1 soit g = h. |

3.3. Produit semi-direct de groupes. Produit semi-direct externe : soit H et
K deux groupes et ¢ : K — Aut(H) un morphisme de groupes (nb : c’est une
action du groupe K sur le groupe H). Le produit semi-direct de H et K par ¢ est
le groupe H x K muni de I'opération :

(h,k) - (W, k') = (ho(k)(h'), kk').

(C’est bien un groupe. On vérifie notamment que (h,k)~! = (p(k~1)(h71),k71).)
On le note H x4, K. Dans le cas ott H et K sont finis, alors H x, K est aussi fini et
|H x, K| = [H| - |K].

Dans le cas ol ¢ est trivial (constant égal a 'identité), on retrouve le produit direct :

HxgK=HxK.
Théoréme 8. Soit G un groupe. Les propriétés suivantes sont équivalentes :
1. Il existe une suite exacte
1-HLGE K -1
et un morphisme s : K — G tel que po s =1Idg ;
2. Il existe un sous-groupe distingué A de G et un sous-groupe I' de G tel que
'NnA={1} et G=AT.
3. 1l existe un morphisme de groupe ¢ : K — Aut(H) et un isomorphisme
Hx,K—G.
Démonstration 13. (1) = (2) :onprend I' = s(K) et A =i(H). Soit x € TNA.
L’exactitude de la suite implique z = s(0) = 0. Le fait que A’ = G résulte de la
section s. (2) = (3) : soit ¢ : I’ — Aut(A) défini par
9(7)(0) = 7oy~
(Noter que ce morphisme est bien défini comme étant a valeurs dans Aut(A) car A
est distingué dans G.) On définit un morphisme A x, I' — G par
(6,7) = &7

On vérifie que c’est un isomorphisme. (3) = (1) : on a la suite exacte

, vel.

1-HSHx, KL K -1

avec les morphismes inclusion i : h +— (h,1) et projection p : (h,k) — k. La
projection a une section s : K — H x, K définie par s(k) = (1,k) et qui vérifie
bien p o s =idg. Soit f l'isomorphisme de G sur H x, K. Alors la suite

1-HLe2 K1

1 1

avec i’ = f~loiet p = po f est exacte. De plus, s’ = f~! o s est une section de p’
(ie : p' o s’ =1idk). [ |
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Exemple 10. Le groupe diédral Ds,, des symétries d’un polygone régulier a n cotés
est engendré par une réflection o et une rotation p d’angle 27/n. La réflection o
engendre un groupe cyclique d’ordre 2 (isomorphe & Z/27) et la rotation p engendre
un groupe cyclique d’ordre n (isomorphe & Z/nZ). La réflection agit sur le sous-
groupe C' = (p) engendré par p :

a-p:a-p~a_1.
On a ainsi un morphisme () — Aut(C'). Alors D, = (p) X, (). On vérifie en effet
que tout élément de Dy, s’écrit comme un produit unique p"o* pour n € Z/nZ et
keZ/2Z.

Exemple 11. Le groupe O(n) est isomorphe a un produit semi-direct de SO(n)
par Z/27. 11 existe en effet une suite exacte

det

1—S0(n) — O(n) = 2Z/2Z — 1.

Une section s : Z/2Z — O(n) du morphisme det est par exemple donnée par

+£1 0 --- 0
0 1 0
s(£1) = " 0
0 0 1

4. GEOMETRIE AFFINE

4.1. Généralités. Définition d’un espace affine : un espace affine £ est un ensemble
€ muni d’une action simplement transitive d’un groupe commutatif (E, +). On dit
que & est un espace affine dirigé par E.

Il revient au méme de munir £ d’une application

EXE—E, (x,y)— Y
vérifiant les axiomes suivants :
e Pour tout x € &, application £ — E, y — ¥ est bijective.
e Pour tous z,y, z, £j + y= = 2%. (Relation de Chasles)

Il revient au méme de se donner un ensemble £ et un groupe commutatif E et
une application
Ex&E—=E, (v,o)—ax+wv

telle que (z4+v) +w =2+ (v+w), £+ 0=z pour tout « € £ et v,w € E et pour
tout = € &, 'application v — x + v est une bijection de £ dans lui-méme.

Points = éléments de £. La dimension de £ est la dimension de E comme espace
vectoriel. Droite affine, plan affine.

Quelques remarques : 1) 7y = —yz pour tout z,y € &.
2) x7 = 0 pour tout = € £.

Vectorialisation d’un espace affine = privilégier un point de £ pour définir une
structure d’ev sur €. Isomorphisme alors entre £ et E. Notion de repére cartésien.
Repeére affine : soit £ un espace affine de dimension n. Un repére affine est constitué
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de (n + 1) points A, By, ..., B, tels que (A_Bl, . ,A_Bn) est une base de F.

Tout espace vectoriel E peut étre regardé comme un espace affine. En effet, F
agit sur lui-méme simplement transitivement. A un vecteur z € £ = E, on associe
r+vef=FE.

Notation de Grassmann : y = x + ¢. Pour un espace affine dirigé par E, on note
& =x+ E pour tout z € £.

Proposition 14. Pour tout z,y € £, v € E,
—_—
(z +v)(y +v) = 7.
Démonstration 14. C’est une reformulation des notations et des axiomes. |

Exemple 12. Droite affine; équation d’une droite affine; direction d’une droite
affine.

Exemple 13. Plan affine; équation d’un plan affine; direction d’un plan affine.
Exemple 14. L’ensemble des solutions d’un systéme Ax = b est un espace affine.
Exemple 15. Produit d’espaces affines.

4.2. Sous-espaces affines. Une partie F d’un espace affine £ est un sous-espace
affine de £ §’il existe un sous-espace vectoriel F' de la direction E de £ et un point
x € F tel que
F=z+F={z+v|veF}
Les points d’un espace affine sont ainsi les sous-espaces affines dirigés par l'es-
pace nul {0}.

Les sous-espaces vectoriels sont les sous-espaces affines qui passent par ’origine 0.

Des points sont alignés (coplanaires) s’il appartiennent & une méme droite affine
(2 un méme plan affine). Deux sous-espaces affines sont paralléles s’ils ont méme
direction. Il résulte de la définition la

Proposition 15. Deuz sous-espaces affines paralléles sont confondus ou disjoints.

La réciproque est fausse : par exemple, deux droites dans R® peuvent étre dis-
jointes sans étre paralleles.

Proposition 16. Deuzx sous-espaces affines de méme direction s’obtiennent l'un
de Dautre par une unique translation.

Démonstration 15. Ecrire F + v, c’est un sous-espace affine encore dirigé par la
direction F' de F. [ ]

C’est une généralisation de 'axiome des droites paralleles d’Euclide. La proposi-
tion suivante fait aussi partie des axiomes d’Euclide. Elle se déduit ici des axiomes
de la géométrie affine :

Proposition 17. Par deux points distincts x et y d’un espace affine passe une et
une seule droite xy.

Démonstration 16. Par définition, il existe un unique vecteur v € E tel que
x + v = y. La droite vectorielle D = Vect(v) dirige donc la droite affine z + D. R
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Sous-espace affine engendré par une famille de points. Notion de parallélisme (les
directions coincident), voire de parallélisme faible (I'une des direction est incluse
dans 'autre).

4.3. Applications affines. Soit £ et F deux espaces affines. Une application affine
entre £ et F est une application f: & — F telle qu’il existe F' € L(E, F) tel que
f(zx+9) = f(z)+ F(U), pourtoutz €&, v € E.

Une application affine entre deux espaces affines est une application qui ressemble
a une application équivariante.
L’application linéaire F' associée a f est déterminée par le fait que

F(0) = f(2)f(z + 7).

On la note souvent F' = f

Réciproquement, si ’on connait f, alors 'application affine f est déterminée par
I'image d’un point O de £. En effet, on alors

f(z) = f(O)+ f(@‘)), pour tout x € &.
Notion d’isomorphisme affine, d’automorphisme affine. Affinités.

On peut transformer n’importe quelle application linéaire f : EF — F en une
application affine en posant

flo+v) =0+ f(v), veE,

onoe&eto eF.
En particulier, & tout f € GL(FE), on associe une affinité en posant

—

folo+v) =0+ f(v), ve E.
Exemple 16. Applications constantes.
Exemple 17. Homothétie de centre x et de rapport A.
Exemple 18. Translations.
Exemple 19. Expression analytique des applications affines.

Proposition 18. Soit f : £ — F une application affine.
(i) Si A C & est un sous-espace affine de € de direction A, alors f(A) est un

—

sous-espace affine de F de direction f(A).

(i) Si B C F est un sous-espace affine de F de direction B alors f~1(B) est
un sous-espace affine de € de direction f~1(B).

(iii) En particulier, si f~'(y) est non vide et contient x € & alors f~1(y) =
x + Ker(f). De plus, dim & = dim f~1(y) + dim f(€).

L’application f — f vérifie les propriétés suivantes :
. 2, P . . - - —
(i) La composée d’applications affines est affine et fog= f o 7¢;

N
(ii) L’inverse d’une application affine bijective est affine et f=1 = f ~1.

|

Il en résulte :

Proposition 19. L’ensemble des automorphismes affines de £ est un groupe GA(E)
pour la composition.
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Noter qu’en fixant un repere cartésien, on peut se ramener a considérer GA(R") :

Proposition 20. Tout espace affine réel de dimension n est affinement isomorphe

a R™.
Démonstration 17. Soit (o,z1,...,2,) un repére cartésien. L’application
()\1;“-7)\71) — 0+Z)\z$z
i
est I'isomorphisme affine recherché. |

Le groupe affine est un exemple particulier de produit semi-direct. Notons
T:(E,+) = GA(E)
le morphisme qui & un vecteur ¥ associe la translation 73 € GA(E). Notons
A:GA(E) — GL(E)

I’application f — f qui a un isomorphisme affine associe son isomorphisme linéaire
associé.

Théoréme 9. La suite

1 (E,+) 5 GAE) D GL(E) — 1
est exacte. FElle est de plus scindée : une section de \ est donnée par f»—> fo- Il en
résulte que GA(E) ~ E x, GL(E).

On peut expliciter le produit semi-direct : ¢ : GL(E) — Aut(E, +) est 'inclusion.
Ici Aut(E) est le groupe des Z-automorphismes de F (bijections de F dans E
préservant addition seulement). L’application

=

E x GL(E) —» GA(E), (U,f)— 150 [,

)
est bijective. Avec le produit approprié sur E x GL(FE), elle devient un isomorphisme
de groupes E x, GL(E) ~ GA(£). Vu sur E x GL(E), le produit est donné par

- -

(@, f)- (W, f') = @+ f(v), fo f).
On vérifie en effet que f, o 75 = TFw) © fo-
4.4. Barycentres. On commence par montrer, comme au college, existence de

barycentre d’un systeme de points pondérés.

Proposition 21 (Barycentre). Soit x1,...,x; des points de € et A\y,..., A\, des
nombres réels.

— —
e Si A+ -+ A =0 alors le vecteur \1Ox1 + - - - + M\,Oxy, est indépendant
du point O de &.

e Si\= Zj Aj # 0 alors il existe un unique point x € £ tel que

— — —
AOx = A\ Ozq + - - - + M\ Oxy.

De plus, l’égalité ci-dessus ne dépend pas du point O choisi.
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Démonstration 18. On utilise la relation de Chasles
— _— —_—
Oy = 00"+ O0'y.
Ainsi pour la premiere affirmation,
— RN _— — —_— ——
MOzxy + -+ MO0z = M(OO" +O0'z1) + - + M\ (O0" + O'zy,)
— — —_
= ()\1 +---+ )\k)OO/ + )\10/$1 + -+ /\kOll‘k
— —_
= )\10/331 + -4 )\kO/.%‘k.

L’existence de x dans la seconde affirmation résulte des axiomes des espaces affines ;
I'indépendance du choix de O de ’avant-derniere égalité ci-dessus. |

C’est la définition du barycentre d’un systéme de points pondérés (x1, A1), ..., (Tk, Ak),
pour > A; # 0.
Exemple 20. Milieu d’'un segment = barycentre de (z,1) et de (y,1). Que se
passe-t-il si (z,1) et (y,—1)?
Exemple 21. Le segment [z,y] est 'ensemble des barycentres de (z,)) et de
(y,1—A) pour 0 < A< 1.

Exemple 22. La droite zy est ’ensemble des barycentres de x et de y.

Dans le vectorialisé £p, ’égalité définissant le barycentre devient
AL = Ax1+ -+ ATk
Proposition 22 (Caractérisation du barycentre). x est le barycentre du systéme
{(ziy A), 1 <i <k} ssi
MNzzi 4 -+ \pzan = 0.
En conséquence, c’est aussi le barycentre du systeme {(x;,A\;), 1 < i < k} pour
tout A # 0.
On ne perd donc rien & supposer que Zj Aj=1#0.

Exemple 23. Isobarycentre.

Proposition 23 (Associativité du barycentre). Le barycentre d’un systéme de
points pondérés est inchangé si l'on remplace un sous-systéeme de points par leur
barycentre affecté de la somme des poids de ses points.

Démonstration 19. Soit A = {(x;, \;) }icr et B = {(y;, ;) }jes deux systemes
de points pondérés deux a deux distincts. On suppose que

STAN=AA0, D py=p#0, A+p#£0.

il jed
Soit x 4 le barycentre de A et x le barycentre de AU B. Pour montrer la proposition,
il suffit de montrer que x est le barycentre de

{(za,A)}UB.
D’apres la caractérisation de la proposition 21 du barycentre x :
YoNam 4y pEy; =0
iel jeJ

—_———
=A\zza (prop.22)
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Et donc
A\TTA + Z p;zy; =0,
jed
ce qui dit bien que z est le barycentre de {(x4,\)} U B. [ |

Exemple 24. Comme application de la proposition, on peut montrer (exercice) que
’isobarycentre d'un triangle ( = de ses sommets) est a 'intersection des médianes =
centre de gravité d’un triangle. Exercice analogue pour un quadrilatéere quelconque.
Cas particulier du parallélogramme.

Proposition 24. Soit xg, ...,z des points de £. Les affirmations suivantes sont
équivalentes :

(1) Aucun des x; n'est barycentre des autres points ;
(2) La famille xox1,...,Toxy est libre dans E ;

(3) Pour tout j, la famille des k vecteurs T;x1,...,T;xk est libre dans E.

Démonstration 20. (1) implique (2) : évident [en écrivant la contraposée non (2)
implique non (1)]. (2) implique (3) : soit F' = Vect(zox1,...,Tozy). Alors F est un
sev de dimension k. Soit F} le sev engendré par les k vecteurs z;z71, . .., z;z5. Clest
aussi un sev de dimension k dont chaque générateur est dans F'. Donc F' = F;. (3)
implique (1) :

Définition de famille de points affinement libre, affinement génératrice. Notion
de position générale de k points = coincide avec famille affinement libre.

Une famille affinement libre dans £ a au plus dim E + 1 points. Une famille
affinement libre est un repere de &£ ssi elle a dim E + 1 points.

La proposition suivante est la généralisation de ’exemple 22. Elle est souvent
utilement combinée avec la propriété d’associativité. (Cf. exemple du centre de
gravité du triangle.)

Proposition 25. Une partie F C € non vide d’un espace affine est un sous-espace
affine si et seulement tout barycentre d’une famille finie de points de F est dans F.

Démonstration 21. F est un sous-espace affine ssi il existe zy € F tel que F =
xg + F ou I est un sev de E. C’est équivalent a dire que tout point de F s’écrit
comme r = o + Zj Ajv; ol les v; forment une base de F'. (On peut choisir les v;
de sorte que > N = 1.) Cette derniere écriture dit qu’un point x arbitraire est le
barycentre des z; tels que aTx; = vj. |

On peut noter la conséquence suivante :

Proposition 26 (Coordonnées barycentriques). Dans un repére affine (a,ay,...,an)
de &, tout point x € £ s’écrit comme barycentre du systéeme (a1, A1), ..., (Gn, An)
pour un unique (A1,...,A,) € R™ tel que A\ +---+ A, = 1.

On peut déduire les coordonnées barycentriques d’un point de ses coordonnées
cartésiennes. Soit (xg,x1, ..., x,) un repere affine de £. Tout x € £ s’écrit de fagon
unique

T =20+ MToZi + ...+ A\ZoZn.
On peut donc réécrire que

T=Arg+ Mx1+...+\xp
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avec Ag = 1 — > . A;. Donc si (A1,...,A,) sont les coordonnées cartésiennes x
dans le repere (zg,z1,...,zy), alors (1 — Ej Aj, AL, ..., Ap) sont ses coordonnées
barycentriques.

Proposition 27. Une application € — F est affine si et seulement si elle conserve
les barycentres.

Démonstration 22. Soit f I’application linéaire associée. Nous avons
AF(OG) =FM0G) = f(MOA, +---+A,04,)
—_— —_—
= Af(0)f(A1) + -+ Aaf(0) f(An)

= A fO)E,
ol G’ est le barycentre de (f(4;), A\i)1<i<n. Il résulte de
— — —
f(0G) = f(O)G
que G' = f(G).

Cette proposition peut s’exprimer en formules :

f Z)\jxj = Z)\jf(:cj), pour tous z; € &, Z)\j =1.
J J J
En conséquence : une application affine est déterminée par I'image des points
d’un repere affine. En particulier, il existe un unique isomorphisme affine envoyant
les points d’un repere affine sur un repere affine.
Une autre conséquence : I'image d’un segment (resp. d’une droite) par une ap-
plication affine est un segment (resp. une droite).

4.5. Projections et symétries affines.

Lemme 3. Soit F,G deux sous-espaces affines de &€ tels que F + G = E. Alors
F NG n’est pas vide.

Démonstration 23. Soit a,b € F,G respectivement. Alors ab=u +wvavecu € F
et v € G. Donc

at+u=b—v
avecat+ue Fetb—veG. Donca+ue FNG. |

Ce lemme permet de définir les projections affines.

Proposition 28. On garde les mémes hypothéses que dans le lemme et on suppose
de plus que E = F @ G est une décomposition en somme directe de E. Alors pour
tout x € &, lintersection F N (xz + G) est un unique point : c’est la projection de x
sur F parallélement a G.

On note
prc:€—E&, plx)=FN(x+G).
Démonstration 24. On sait que l'intersection est non vide par le lemme. C’est
donc un sous-espace affine dont la dimension est donnée par dim(FNG) =0. MW

Proposition 29. Lapplication p = pr.q est affine, vérifie p> =p et p=prc (la
projection vectorielle sur F' parallelement a G).
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Démonstration 25. Exercice. |

Réciproquement, la propriété p> = p caractérise les projections parmi les appli-
cations affines : c’est la projection affine sur p(£) parallelement a Ker(p).
-
Définition d’une symétrie affine : s(x) = x + 2xp(z) pour une projection affine p,
pour tout x € &. Propriété : s? = id. Caractérise aussi les symétries affines parmi
les applications affines.

4.6. Quelques classiques. Soit p,q,r trois points alignés tels que p # ¢. On a
alors :

— —
pq = Apr
pour un unique A € R. On note
R(p,q,7) = A

Lemme 4. Soit f une application affine. Si p,q,r sont trois points deux o deux
distincts alignés, alors f(p), f(q), f(r) sont aussi deux ¢ deux distincts et alignés.
De plus,

R(f(p), f(a), f(r)) = R(p,q. 7).
Démonstration 26. Si pg = A\pr alors
q=p+Apr

d’ou

Théoréme 10 (Thales). Soit Hy, Ho, Hs trois hyperplans affines paralléles deuz a
deux distincts et Dy, Dy deux droites dont aucune n’est pas paralléle aux H;. Notons
pi = H;, "Dy et g; = H; N Dy. Alors

R(phpz,l?s) = R(Ql’ Q2>QS)~

Dy Do
D q
o P
H, b2 q2
: 3
Hy P3 q.

F1G. 6. Théoréeme de Thales.

Démonstration 27. On applique le lemme précédent a la projection affine sur Dy
—
le long de H;. |

Théoréme 11 (Menelaiis). Soit (pg,p1,p2) un repére affine d’un plan affine €.

Soit qo € (pop1), q1 € (p1p2) et g2 € (p2p1). On suppose qo & {po,p1}, @1 & {p1,P2}
et qa € {p2,po}. Alors les q; sont alignés si et seulement si

IT B pipis1) = +1.
i€Z/3Z
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Démonstration 28. Soit A le déterminant des coordonnées barycentriques des ¢;
par rapport au repere affine (po,p1,p2). On sait que A = 0 si et seulement si les g;
sont alignés. En utilisant I’hypothese, on écrit

Qi = Nipi + piPit1, N+ =1
de sorte que

1
R(qi, pi, piy1) = —/\*Z;
1

Le déterminant A est donc

A opo O
A=| 0 A p1 | =XoA1A2+ pop e
)\2 0 H2
Donc A =0 ssi
Hopip2
XoAidg
Vu que ’;— = —R(q;,pi, pit1), le résultat s’ensuit. |

5. ESPACES AFFINES EUCLIDIENS

Un espace affine euclidien est un espace affine dont la direction est un espace
euclidien. L’exemple fondamental est R™ affine avec direction R"™ muni du produit
scalaire canonique.

L’application (z,y) — ||z7|| est une distance sur .

Il existe toujours un repere orthonormal de &€ : un repere affine pg, p1, ..., p, tel
que les vecteurs pop1, ..., popn forment une base orthonormale de F.

Proposition 30. Tout espace affine euclidien (de dimension finie) est isométrique
a R™.

Une isométrie affine est une application affine f : £ — F telle que

£ () f(@)llr =Ipdll5-

Exemples d’isométries : translations, symétries orthogonales, rotations.
Les isométries d'un espace affine euclidien £ dans lui-méme forment un sous-
groupe, noté Isom(&), du groupe affine GA(E). De plus :

Proposition 31. L’application
Al : Isom(€) — O(F)

est un morphisme de groupes surjectif dont le noyau est le sous-groupe des transla-
tions.

L’application A| comme la notation le suggere, n’est autre que la restriction de
I’application ’'partie linéaire’, déja introduite dans le cadre purement affine, aux
isométries. De méme, cette application admet une section f — fo. C’est la restric-
tion de la section correspondante GL(E) — GA(E). Vu le théoreme 9, il en résulte
la

Proposition 32. L’application
ExO(E) — Isom(€), (V,f)— 150 [,

est un isomorphisme de groupes.
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Rappelons que le produit (non commutatif) sur E x O(E) est donné par
(@ 1)- (W f) = @+ F(0), fo f).
Rappelons aussi la formule
fooTs = Tiw) © fo-

On peut donc décomposer une isométrie comme produit d’une translation et
d’une isométrie avec point(s) fixe(s). Cependant, cette décomposition dépend du
choix de la section f — f,. Peut-on obtenir une décomposition distinguée en un
sens géométrique ?

Soit S un sous-espace affine de £. On note comme d’habitude S = ? la direction.
On va définir un morphisme O(S+) — Isom(€) de la maniere suivante. Soit r €
O(S%). On pose

pr(z+7) =z +7r{@), €8, ve st

S

/

FiGg. 7. Construction de p;..

Noter que p,|s = ids. On remarque aussi la propriété suivante (exercice).
Proposition 33. L’application p, est une isométrie affine. De plus lapplication
0(St) — Isom(&), r— p,

est un morphisme injectif de groupes.

Un cas particulier important : r = —Idg.. On reconnait la symétrie orthogonale
par rapport a S. On la note sg.

Lemme 5. Une application affine f de £ dans € admet un point fixe unique ssi
Fix(f) = 0.

Démonstration 29. Donnons nous un point o de €. Alors on sait que f(o+ ¥)

—

f(o) + f(¥). Donc
o+ P =047 <= (F—Id)() = f(0)o.

Par conséquent, si o et 0 + ¥ sont deux points fixes distincts de f alors Fix( 3 #0.
Si 0 est unique point fixe, alors f(o+ ¥) = f(0) + f(¢) = 0+ f(¥). Donc f(v) # v
|

pour ¥ # 0.
Pour le lemme suivant : espace vectoriel quotient, espace affine quotient. Ou bien

remplacer la démonstration par une récurrence sur la dimension k. Le cas k = 0
correspond au lemme ci-dessus.
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Lemme 6. Soit g € Isom(E) et k = dimFix(g). Il existe un unique sous-espace
affine S de dimension k tel que g|s est une translation de S.

Autrement dit, il existe un sous-espace affine S de dimension maximale avec la
propriété remarquable que g(S) = S et g|s est une translation de vecteur 7 € S =
LN

S.

Dérg)nstration 30. On sait que la restriction de g sur un sea S est une translation
ssi g|s est lidentité sur S = 5. Cest équivalent & dire que S C Fix(g§). Mais
comme on demande que les dimensions coincident, i.e. dim S = k = dim Fix(§),
c’est équivalent a dire que S = Fix(g).

Si S convient, sa direction S est Fix(g). On dispose donc d’une application affine

gd=g:£/S—E/S, v+8S—g(x+S)=g(x)+S.

Sa partie linéaire n’est autre que l'application linéaire définie par g_; (T+95) =
g(¥)+S. Il suffit de montrer § a un unique point fixe. D’apres le lemme, il suffit donc
de montrer que Fix(g') = 0. Or ¢/(T + §) = 7+ S ssi §(7) — 7 € S. Décomposons
E = S @ S+. Rappelons que S+ est un sous-espace stable par g, et méme que
g(S*t) = S*. Soit ¥ =s+t, s€ S, t € S*. Nous avons donc

J@o) —v=gt)—teSnS*t=o.

Il en résulte que G(t) = t c’est-a-dire que ¢t € S. Donc t € SN S+ = 0. Clest le
résultat voulu. [ ]

La conséquence fondamentale est le

Théoréme 12 (Décomposition canonique des isométries affines). Soit g € Isom(&)
et k = dim Fix(g). Il existe un unique sous-espace affine S C € de dimension k, un
—

vecteur € S = S et une isométrie vectorielle r € O(S*) telle que
g ="Ts0pr
Le triplet (S, V,r) est unique et
T30 pr = pr O Ty.
Remarques :
e ¢ a des points fixes ssi 7 = 0.
e ¥ € Fix(r) (voir la démonstration).

Exemple 25. Pour ¢ = o, symétrie orthogonale par rapport a F = zo + F :
I’ensemble des points fixes de g est F et ¥ = 0.

Exemple 26. Une rotation dans un plan suivi d’'une translation est encore une
rotation. Quel est le nouveau centre et 'angle 7

L’intérét de la décomposition vient du fait que la translation et I'isométrie com-
mutent (exercice : le vérifier). Une décomposition arbitraire en une composition de
translation et d’isométrie vectorielle n’a pas en général cette propriété.

Par exemple, 'application affine f définie par

_ 3 4 13
(2 b
Yy = fxt+iy+=z
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se décompose bien sous la forme f = 75 0 p avec U = (71—53, g) et p définie sur R?

. -3 4 . . . - . .
par la matrice % ( 4 3> qui est bien une isométrie vectorielle. Mais ce n’est pas

la décomposition canonique car p o 73 # 75 o p. Exercice : trouver sa décomposition
canonique.

Démonstration 31. Unicité : g = 150 p, avec v € S et r € O(S+) implique
9(8) =150 p(S) =73(S) = S.
Vu que p,|s = ids, on voit que
gls = (T3 0 pr)ls = 75 0 prls = Tols-

En particulier ¥ est unique. Il résulte aussi du lemme précédent que S est unique.
Donc finalement
r=gls:
est aussi uniquement déterminé.
Ezistence : on choisit S grace au lemme précédent : c’est le sea de dimension k
sur lequel g agit comme une translation de vecteur ¥ € S. Donc 73 = g|s. On a

. — = —
Fix() =S=S8 et r=glgs.
Soit maintenant = € S et @ € S* :

9(z + @) = g(z) + §(W) = 75(x) + r(w) = pr(75(x) + &) = pr(75(2 + ).
Donc g = pr o715 = 150 py. |
Explication et argument alternatif du théoréme 12 : on sait qu’une isométrie affine
quelconque n’admet pas toujours un point fixe (cf. translation par exemple). On
peut au besoin, & ’aide de 'isométrie de la proposition 30, identifier I’espace affine a
I’espace affine euclidien standard R™. Dans ce cas, une isométrie affine g est identifée
a une matrice orthogonale M plus une translation de vecteur . Alors la composée
de g avec la translation de vecteur —w aura des points fixes. Cherchons toutes les

translation dont la composition suivant g garantit I’existence de points fixes : on
veut que M + @ ait un point fixe dans R", donc on demande

Mz + W+ U=
Cela équivaut a
(M —1)(z)=—(0 + ), soit: W+ue&Im(M—1I).

Cela revient donc a choisir @ de telle sorte que W+ € Im(M —1I). Cela ne détermine
pas encore @ de fagon unique. Cependant si 'on requiert que la translation et
I’isométrie commutent, i.e.,

Mz +wW+d=M(z+d)+w, Vz,
alors
M = .
La on utilise un lemme (vu ou a revoir en exercice) qui dit que
E =Ker(M — I) & Im(M — I).
Il s’ensuit que les deux conditions ensemble

W4 eIm(M—1I)
€ Ker(M —1I)
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détermine @ de manieére unique. |

Ce théoreme réduit donc formellement la classification des isométries affines a
celles des isométries vectorielles. Les applications sont la classification géométriques
des isométries affines en dimensions 2 et 3 en fonction de la dimension de Fix(§).

Vocabulaire : isométrie affine directe (resp. indirecte) = isométrie affine dont la
partie linéaire est directe (resp. indirecte) = isométrie affine dont la partie linéaire
a un déterminant +1 (resp. —1). Les isométries affines directes forment un sous-
groupe distingué Isom™ (€) du groupe Isom(€). Exercice : pourquoi ?

Autre terminologie : positif = direct ; négatif = indirect. Déplacement = isométrie
affine directe ; antidéplacement = isométrie affine indirecte.

Théoréme 13. Soit £ un plan affine euclidien. Toute isométrie g € Isom(E) s’iden-
tifie a un des trois types suivants :

dim Fix(g) 0 1 2

S singleton droite plan

g detg=1 detg=—1 id

g Pr SD O Ty Ty
type rotation | symétrie glissée | translation

La démonstration est un exercice basé sur la classification idoine des isométries
vectorielles.
Remarque : en termes de points fixes de 'isométrie affine :

1. les translations et les symétries glissées sont les seules isométries affine du
plan n’admettant aucun point fixe.

2. les rotations ont un unique point fixe (”centre de la rotation”).

3. la symétrie (réflexion) admet une droite fixe affine.

4. T'identité admet le plan comme ensemble de points fixes.

Théoréme 14. Soit £ un espace affine euclidien de dimension 3. Toute isométrie
g € Isom(E) s’identifie a l'un des quatre types suivants :

dim Fix(g) 0 1 2 3
S DNPpP D P &
g detg=—1 detg = +1 detg=—1 g=1id
g=spopr 9="Ty0pr
g r € O(P) r € O(D1) g :67;;87) T
D1P veD
type symétrie rotation vissage symétrie glissée | translation

D désigne une droite, P un plan et v € O(DL) est une isométrie distincte de
lidentité.

La démonstration est basée sur le théoréme précédent (dimension 2) et la clas-
sification des isométries vectorielles en dimension 3.
Remarque : en termes de points fixes de I'isométrie affine g,

1. Les symétries glissées et les vissages (dont les translations sont un cas par-
ticulier) sont les seules isométries affines sans point fixe.

2. Les symétries rotations ont un unique point fixe.

3. Les rotations sont les vissages qui admettent une droite fixe.
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4. Les symétries par rapport & un plan (retournements) admettent ce plan
comme plan fixe.

5. L’identité admet £ comme ensemble de points fixes.

Dessins.
Groupe d’isométries d’une figure. Exemples.



