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Abstract

Problem of simulation of multivariate Lévy processes is investigated.
The method based on shot noise series expansions of such processes
combined with Gaussian approximation of the remainder is established
in full generality. Formulas that can be used for simulation of tempered
stable, operator stable and other multivariate processes are obtained.
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1 Introduction

In this work we consider a general problem of simulation of multivariate
Lévy processes with applications to stable-like and other processes. Sim-
ulation of stochastic processes is widely used in science, engineering and
economy to model complex phenomena. There is a vast literature on this
subject, just to mention classical monographs [9] on numerical solutions of
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SDE’s and [6] on simulation of one-dimensional stable processes. Applica-
tions of Lévy processes to stochastic finance and physics created the need
to have efficient simulation schemes for such processes. In this regard we
refer the reader to the recent monograph [3] and references therein. Beside
applications, computer simulation can be useful to understand the structure
of some multivariate Lévy processes for which we have now many interesting
theoretical results but for which our empirical understanding of the sample
paths is limited. For instance, we think that simulation of multivariate tem-
pered stable and operator stable processes will improve their understanding
and the way that they can be used as model.

Contrary to the one-dimensional case, close formulas for simulation of
increments of multidimensional Lévy processes are rarely available. Thus
one needs to use approximate methods. At the first level of approximation
of a Lévy process one can use an appropriate compound Poisson process.
However, when the Lévy process has paths of infinite variation, the error
(the remainder process) of such approximation can be significant. In the
one–dimensional case it was shown in [1] that the remainder process can
often be approximated by a Brownian motion with small variance. Adding
such small Brownian motion to the compound Poisson process will account
for the variability between the epochs of the latter process, improving the
approximation in general (see [1]).

There are two main issues related to the extension of this method to
the multidimensional setting. The first one is the construction of a family of
successive compound Poisson approximations of a multivariate Lévy process.
We use generalized shot noise series expansions of Lévy processes (cf. [15])
for this purpose. Such expansions can also be related to Lévy copulas (see
[3], Sect. 6.6) but we do not consider them here. The second issue is the
availability of a Gaussian approximation for the remainder process in the
multivariate setting. We want to approximate the remainder by a Brownian
motion with small covariance matrix.

Computational problems are the first features which distinguish the mul-
tidimensional and one-dimensional cases. Verification that a given process
admits Gaussian approximation can be involved and may constitute a result
by itself. Please see the operator stable case in Section 3.4. Once a Gaussian
approximation of the remainder is establish, we seek to replace the original
normalizing matrices by their asymptotics, wherever possible, to give simpler
formulas for simulation (cf. the tempered stable case, Section 3.3). Another
difference is that the remainder process in the one-dimensional case is sim-
ply a small-jump part of the Lévy process (cf. [1]). In the multidimensional
case such approach is too restrictive and may lead to substantial technical
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difficulties (see Section 3.3 and Remark 3.5). Generally, a choice of the re-
mainder depends on the geometry of the Lévy measure of the process under
consideration.

The paper is organized as follows. The general problem of Gaussian ap-
proximation is considered in Section 2. In Section 3 we give applications to
multivariate stable, tempered stable and operator stable processes. Simula-
tion of stochastic integral processes driven by an infinitely divisible random
measure is discussed in Section 4.

In this article theoretical issues have been adressed. In an upcoming
article practical questions as well as efficiency of the simulation will be con-
sidered.

2 Gaussian approximation

In this section we give necessary and sufficient conditions for normal ap-
proximation of a multivariate infinitely divisible distributions.

Let {Xε}ε∈(0,1] be a family of infinitely divisible random vectors in Rd

with characteristic functions of the form

Eei〈y,Xε〉 = exp
{∫

Rd

[ei〈y,x〉 − 1− i〈y, x〉]νε(dx)
}

(2.1)

where ∫
Rd

‖x‖2 νε(dx) < ∞. (2.2)

Xε has zero mean and covariance matrix Σε which can also be written as

Σε =
∫

Rd

xx> νε(dx). (2.3)

In the sequel we will assume that Σε is nonsingular. It is helpful to relate
this assumption to the properties of νε and the distribution L(Xε) of Xε.
Let us first state a general lemma.

Lemma 2.1 Let ν be a measure such that
∫

Rd ‖x‖2 ν(dx) < ∞ and Σ =∫
Rd xx> ν(dx). The following conditions are equivalent

(i) Σ is non singular;

(ii) the smallest linear space supporting ν equals Rd.
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Proof: Suppose Σ is singular, that is Σy = 0 for some y such that ‖y‖ = 1.
Consider

V = {x ∈ Rd : 〈y, x〉 = 0}.
For any z ∈ Rd we have

0 = 〈Σy, z〉 =
∫

Rd

〈y, x〉〈z, x〉 ν(dx)

=
∫

V c

〈y, x〉〈z, x〉 ν(dx)

where V c = Rd \ V . In particular∫
V c

〈y, x〉2ν(dx) = 0.

Since |〈y, x〉| > 0 when x ∈ V c, ν(V c) = 0 which means that ν is concen-
trated on a proper subspace V of Rd.

Conversely, if ν is concentrated on a proper subspace V of Rd and y is
any unit vector perpendicular to V, then the above computation shows that
〈Σy, z〉 = 0 for any z ∈ Rd. Therefore Σ is singular. �

If we apply this equivalence to Σε, then not only the smallest linear space
supporting νε equals Rd, but also L(Xε) is not concentrated on any proper
hyperplane of Rd, which follows from Proposition 24.17 (ii-3) in [17].

In the sequel Id will denote the identity matrix of rank d, N (0, Id) will

stand for a standard normal vector in Rd, and “
(d)−→” will mean the conver-

gence in distribution. Our first theorem is a starting point of a method that
will be further developed in more specific situations.

Theorem 2.2 Suppose that Σε is nonsingular for every ε ∈ (0, 1]. Then,
as ε → 0,

Σ−1/2
ε Xε

(d)−→ N (0, Id) (2.4)

if and only if for every κ > 0∫
〈Σ−1

ε x,x〉>κ
〈Σ−1

ε x, x〉 νε(dx) → 0. (2.5)

Proof: We have

Eei〈y,Σ
−1/2
ε Xε〉 = exp

{∫
Rd

[ei〈y,Σ
−1/2
ε x〉 − 1− i〈y, Σ−1/2

ε x〉] νε(dx)
}

= exp
{

i〈y, bε〉+
∫

Rd

[ei〈y,x〉 − 1− i〈y, x〉1(‖x‖ ≤ 1)] ν̃ε(dx)
}
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where ν̃ε = νε ◦ Σ1/2
ε is the push forward of νε by the map x → Σ−1/2

ε x and

bε = −
∫
‖x‖>1

xν̃ε(dx) = −
∫
‖Σ−1/2

ε x‖>1
Σ−1/2

ε x νε(dx).

To prove that (2.5) implies (2.4) we verify conditions from Theorem 15
in [8]. We need to show thus as ε → 0

bε → 0 (2.6)∫
‖x‖≤1

xx> ν̃ε(dx) → Id (2.7)

ν̃ε(‖x‖ ≥ κ) → 0, ∀κ > 0. (2.8)

(2.6) holds because

‖bε‖ ≤
∫
‖Σ−1/2

ε x‖>1
‖Σ−1/2

ε x‖ νε(dx)

≤
∫
‖Σ−1/2

ε x‖>1
‖Σ−1/2

ε x‖2 νε(dx)

=
∫
〈Σ−1

ε x,x〉>1
〈Σ−1

ε x, x〉 νε(dx) → 0.

by the assumption (2.5). Notice that∫
Rd

xx> ν̃ε(dx) =
∫

Rd

(Σ−1/2
ε x)(Σ−1/2

ε x)> νε(dx) (2.9)

= Σ−1/2
ε

∫
Rd

xx> νε(dx) Σ−1/2
ε = Id.

Denoting also by ‖ · ‖ the operator norm we get

‖Id −
∫
‖x‖≤1

xx> ν̃ε(dx)‖ = ‖
∫
‖Σ−1/2

ε x‖>1
(Σ−1/2

ε x)(Σ−1/2
ε x)> νε(dx)‖

≤
∫
‖Σ−1/2

ε x‖>1
‖Σ−1/2

ε x‖2 νε(dx) → 0

as above, which proves (2.7). To get (2.8) we observe that

ν̃ε(‖x‖ > κ) ≤ κ−2

∫
‖x‖>κ

‖x‖2 ν̃ε(dx)

= κ−2

∫
‖Σ−1/2

ε x‖>κ
‖Σ−1/2

ε x‖2 νε(dx) → 0.
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Therefore, we proved that (2.5) implies (2.4).
To obtain the converse, note that from Theorem 15.14 [8], we must have

∀κ > 0 ∫
‖x‖≤κ

xx> ν̃ε(dx) → Id

as ε → 0. By (2.9) we have∫
‖x‖>κ

xx> ν̃ε(dx) → 0.

We infer that∫
〈Σ−1

ε x,x〉>κ
〈Σ−1

ε x, x〉 νε(dx) =
∫
‖Σ−1/2

ε x‖>κ1/2

‖Σ−1/2
ε x‖2 νε(dx)

=
∫
‖x‖>κ1/2

‖x‖2 ν̃ε(dx) =
d∑

i=1

∫
‖x‖>κ1/2

〈ei, x〉2 ν̃ε(dx)

=
d∑

i=1

〈ei,

∫
‖x‖>κ1/2

xx> ν̃ε(dx) ei〉 → 0

where {ei}d
i=1 is an orthonormal basis in Rd. The proof of Theorem 2.2 is

complete. �

Note that in order to verify (2.5) it is enough to show it for some lower
bound for Σε. We state this simple observation for a convenient reference.

Lemma 2.3 Suppose that for every κ > 0 there exist ε(κ) > 0 and a family
of positive definite matrices {Σ̃ε : ε ∈ (0, ε(κ))} such that ∀ε ∈ (0, ε(κ))

Σε ≥ Σ̃ε (2.10)

and
lim
ε→0

∫
〈Σ̃−1

ε x,x〉>κ
〈Σ̃−1

ε x, x〉 νε(dx) = 0. (2.11)

Then (2.5) holds.

Proof: From (2.10) we have Σ−1
ε ≤ Σ̃−1

ε . Hence, for 0 < ε < ε(κ),∫
〈Σ−1

ε x,x〉>κ
〈Σ−1

ε x, x〉 νε(dx) ≤
∫
〈Σ̃−1

ε x,x〉>κ
〈Σ̃−1

ε x, x〉 νε(dx) → 0

as ε → 0. �
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Corollary 2.4 Let d = 1 and νε(dx) = 1(−ε,ε)(x)ν(dx), where ν is a Lévy
measure on R. Put

σ2(ε) =
∫

(−ε,ε)
x2 ν(dx).

By Theorem 2.2,

σ−1(ε)Xε
(d)−→ N (0, 1) (2.12)

if and only if ∀ κ > 0

σ−2(ε)
∫
{|x|>κ1/2σ(ε), |x|<ε}

x2 ν(dx) → 0 (2.13)

as ε → 0.

It is easy to see that (2.13) is equivalent to the condition of [1]: ∀ κ > 0

σ(ε ∧ κσ(ε))
σ(ε)

→ 1. (2.14)

A simpler than the above and sufficient condition for (2.12) is

lim
ε→0

σ(ε)
ε

= ∞.

This is also a necessary condition when ν does not have atoms in a neigh-
borhood of zero, see [1].

We can extend (2.14) (equivalently (2.13)) to a more general setting as
follows. Suppose νε is given in polar coordinates as

νε(dr, du) = µε(dr |u)λ(du) r > 0, u ∈ Sd−1 (2.15)

where λ is a finite measure on the unit sphere Sd−1 and {µε(· |u) : u ∈ Sd−1}
is a measurable family of Lévy measures on (0,∞). Define

σ2
ε (u) =

∫ ∞

0
r2 µε(dr |u). (2.16)

Theorem 2.5 Let νε be Lévy measures on Rd given by (2.15) such that the
support of λ is not contained in any proper subspace of Rd. Suppose there
exists a function b : (0, 1] 7→ (0,∞) such that

lim inf
ε→0

σε(u)
b(ε)

> 0 λ− a.e. (2.17)

7



and for every κ > 0

lim
ε→0

b(ε)−2

∫
‖x‖>κb(ε)

‖x‖2 νε(dx) = 0. (2.18)

Then Σε is nonsingular for sufficiently small ε and

Σ−1/2
ε Xε

(d)−→ N (0, Id) as ε → 0.

Proof: Consider
Λ =

∫
Sd−1

uu> λ(du).

Λ is nonsingular by Lemma 2.1. Hence infv∈Sd−1〈Λv, v〉 =: 2a > 0. For any
Borel subset B of Sd−1 put

ΛB =
∫

B
uu> λ(du). (2.19)

There exists a δ > 0 such that ‖Λ − ΛB‖ < a whenever λ(Sd−1 \ B) < δ.
For such a set B and any v ∈ Sd−1

〈ΛBv, v〉 ≥ 〈Λv, v〉 − ‖Λ− ΛB‖ > a.

Hence
ΛB ≥ aId (2.20)

whenever λ(Sd−1 \B) < δ.
From (2.17) we can find ε0, ε1 ∈ (0, 1] such that the set

B := {u ∈ Sd−1 : inf
0<ε<ε0

b(ε)−2σ2
ε (u) > ε1}

satisfies λ(Sd−1 \B) < δ. Using (2.20) we get

Σε =
∫

Sd−1

∫ ∞

0
r2 µε(dr|u)uu> λ(du) ≥

∫
B

σ2
u(ε)uu> λ(du)

≥ aε1b(ε)2Id =: Σ̃ε.

Thus for any κ > 0 we have∫
〈Σ̃−1

ε x,x〉>κ
〈Σ̃−1

ε x, x〉 νε(dx)

≤ a−1ε−1
1 b(ε)−2

∫
‖x‖>(aε1κ)1/2b(ε)

‖x‖2 νε(dx).
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Since the last expression converges to 0 by (2.18), Lemma 2.3 concludes the
proof. �

Typically νε is of the form

νε = 1Dε ν (2.21)

and
Σε =

∫
Dε

xx> ν(dx). (2.22)

where ν is a Lévy measure and Dε is a bounded neighborhood of the origin.
This is a natural extension of the case studied in [1] for d = 1. However,
contrary to the one–dimensional case, a centered ball is not always the best
choice for Dε. We illustrate this point on examples in the next section.
On the other hand, the case when Dε is a ball of radius ε is typical and
important

Suppose a Lévy measure ν has a representation in polar coordinates

ν(dr, du) = µ(dr |u)λ(du) r > 0, u ∈ Sd−1. (2.23)

Here {µ(· |u) : u ∈ Sd−1} is a measurable family of Lévy measures on (0,∞)
and λ is a finite measure on the unit sphere Sd−1 such that the support of
λ is not contained in any proper subspace of Rd.

Theorem 2.6 Let ν be a Lévy measure on Rd given by (2.23). Consider
νε(dx) = 1Dε(x) ν(dx) where

Dε = {x ∈ Rd : ‖x‖ < ε}.

If

lim
ε→0

ε−2

∫
(0,ε)

r2 µ(dr |u) = ∞ λ− a.e. (2.24)

then Σε is nonsingular and

Σ−1/2
ε Xε

(d)−→ N (0, Id) as ε → 0,

where Σε is given by (2.22).

Proof: We have
σ2

ε (u) =
∫

(0,ε)
r2 µε(dr |u).
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Therefore, condition (2.24) says that

lim
ε→0

σε(u)
ε

= ∞ λ− a.e. (2.25)

We can choose a sequence εk ↘ 0 such that the sets

Bk :=
{

u ∈ Sd−1 : inf
{

σε(u)
ε

: 0 < ε ≤ εk

}
> k2

}
satisfy λ(Bk) > λ(Sd−1)(1 − 2−k), k = 1, 2, . . . . Then S0 =

⋃∞
n=1

⋂∞
k=n Bk

has full λ-measure. Put b(ε) = εk for εk+1 < ε ≤ εk. It is clear that

lim
ε→0

b(ε)
ε

= ∞. (2.26)

and for each u ∈ S0 there is an n such that u ∈ Bk for k ≥ n. Hence for
εk+1 < ε ≤ εk ≤ εn

σε(u)
b(ε)

=
σε(u)
kε

> k,

which proves that

lim
ε→0

σε(u)
b(ε)

= ∞ λ− a.e.

Thus (2.17) of Theorem 2.5 holds. Using (2.26) and the form of νε we infer
that for each κ > 0 and sufficiently small ε > 0,∫

‖x‖≥κb(ε)
‖x‖2 νε(dx) =

∫
{‖x‖≥κb(ε),‖x‖<ε}

‖x‖2 ν(dx) = 0.

This verifies condition (2.18) and Theorem 2.5 concludes the proof. �

3 Application to simulation of multivariate stable–
like Lévy processes

3.1 General Lévy processes setting

Consider a Lévy process X = {X(t) : t ≥ 0} in Rd determined by its
characteristic function in the Lévy–Khintchine form

E exp i〈y, X(t)〉

= exp
{

t

[
i〈a, y〉+

∫
Rd

(ei〈y,x〉 − 1− i〈y, x〉1(‖x‖ ≤ 1)) ν(dx)
]}

. (3.1)
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We will say that ν is the Lévy measure of X. Let νε ≤ ν be a measure
satisfying (2.2), that is ∫

Rd

‖x‖2 νε(dx) < ∞,

and such that νε := ν−νε is a finite measure for every ε ∈ (0, 1]. Decompose
X into a sum of two independent Lévy processes

X = Xε + Xε (3.2)

where Xε is determined by

E exp i〈y, Xε(t)〉 = exp
{

t

[∫
Rd

(ei〈y,x〉 − 1− i〈y, x〉) νε(dx)
]}

.

Process Xε can be represented as

Xε = aε + Nε (3.3)

where aε = {taε : t ≥ 0},

aε =
∫
‖x‖>1

x νε(dx)−
∫
‖x‖≤1

x νε(dx), (3.4)

and Nε = {N ε(t) : t ≥ 0} is a compound Poisson process with Lévy measure

νε. There are various methods to simulate process Nε. If Σ−1/2
ε Xε(1)

(d)−→
N (0, Id), then we may approximate Xε by Wε, a centered Brownian motion
with covariance matrix Σε, where

Σε =
∫

Rd

xx> νε(dx).

Sometimes, Σε may be too complicated for practical use. In this case we may
try to replace it by a simpler asymptotic. The method of approximation of
X is precisely stated in the following proposition.

Proposition 3.1 Let X = {X(t) : t ≥ 0} be a Lévy process in Rd deter-
mined by (3.1). Suppose that

Σ−1/2
ε Xε(1)

(d)−→ N (0, Id) as ε → 0

and for some family of nonsingular matrices {Aε}ε∈(0,1] of rank d we have

A−1
ε Σε(A−1

ε )> → Id as ε → 0. (3.5)
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Let aε, Nε be as in (3.3), and let W = {W (t) : t ≥ 0} be a standard
Brownian motion in Rd independent of Nε.

Then for every ε ∈ (0, 1] there exists a cadlag process Yε = {Yε(t) : t ≥ 0}
such that

X
(d)
= aε + AεW + Nε + Yε (3.6)

in the sense of equality of finite dimensional distributions and such that for
each T > 0

sup
t∈[0,T ]

‖A−1
ε Yε(t)‖

(P)−→ 0 as ε → 0. (3.7)

Proof: Consider the polar decomposition

A−1
ε Σ1/2

ε = CεUε

where Cε positive definite and Uε is on orthogonal matrix, see, e.g., [4],
Theorem 12.2.22. Then

C2
ε = CεC

>
ε = A−1

ε Σε(A−1
ε )> → Id.

Let εn → 0. There exists a subsequence {nk} such that Uεnk
→ U , for some

orthogonal matrix matrix U . Hence

A−1
εnk

Σ1/2
εnk

= Cεnk
Uεnk

→ U.

Consequently,

A−1
εnk

Xεnk
(1) =

(
A−1

εnk
Σ1/2

εnk

)
Σ−1/2

εnk
Xεnk

(1)
(d)−→ N (0, UU>) = N(0, Id).

Thus A−1
ε Xε(1)

(d)−→ N (0, Id). By a theorem of Skorohod (cf. [8], Theorem

15.17) there exist Lévy processes Zε = {Zε(t) : t ≥ 0} such that Zε
(d)
= A−1

ε Xε

and
sup

t∈[0,T ]
‖Zε(t)−W (t)‖ (P)−→ 0 as ε → 0 (3.8)

for each T > 0. Making W and Nε depend on different coordinates of a
large enough probability space, we may also assume that Zε and Nε are
independent. Put

Yε = Aε(Zε −W).

Then

X
(d)
= aε + Xε + Nε (d)

= aε + AεZε + Nε

= aε + AεWε + Nε + Yε.
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This proves (3.6), (3.7) follows from (3.8). �

Conditions (3.6)–(3.7) make precise the statement

X ≈ aε + AεW + Nε. (3.9)

There are two practical issues related to implementation of (3.9). The first
one is how to define νε so that Σε (or its asymptotic) is computable. The
second one is how to generate Nε efficiently. We will illustrate these issues
in the following examples.

3.2 Stable processes

The Lévy measure ν of an α–stable process X in Rd has the form in polar
coordinates

ν(dr, du) = αr−α−1 dr λ(du) (3.10)

where α ∈ (0, 2) and λ is a finite measure on Sd−1. Denote ‖λ‖ = λ(Sd−1).
Assume that X(1) is not concentrated on a proper hyperplane of Rd, which
by Lemma 2.1 means that λ is not concentrated on a proper subspace of Rd.

The compound Poisson process Nε of (3.3) can be generated from a shot
noise expansion of a stable process. Namely, let {e′j} be an iid sequence of
exponential random variables with parameter 1 and γj = e′1 + · · · + e′j .
{γj} forms a Poisson point process on (0,∞) with the Lebesgue intensity
measure. Let {τj} be an iid sequence of uniform on [0, T ] random variables.
Finally, let {vj} be an iid sequence of random vectors taking values in Sd−1

with the common distribution λ/‖λ‖. Assume that {vj}, {τj}, and {e′j} are
independent. For ε ∈ (0, 1] and t ∈ [0, T ] define

N ε(t) = (T‖λ‖)1/α
∑

γj≤ε−1

I(0,t](τj)γ
−1/α
j vj . (3.11)

It is elementary to check that Nε is a compound Poisson process with char-
acteristic function

E exp i〈y, N ε(t)〉 = exp

{
t

∫
‖x‖≥ε

1/α
0

(ei〈y,x〉 − 1) ν(dx)

}

where
ε0 := ‖λ‖Tε. (3.12)
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Therefore, we define νε(dx) = 1Dε(x)ν(dx), where Dε = {x : ‖x‖ < ε
1/α
0 }.

νε is of the form (2.21). Then, by (2.22),

Σε =
α

2− α
ε
2/α−1
0 Λ (3.13)

where
Λ =

∫
Sd−1

uu> λ(du). (3.14)

Since ν is of the form (2.23) with µ(dr|u) = αr−1−αdr and

ε−2

∫
(0,ε)

r2 µ(dr|u) =
α

2− α
ε−α →∞,

we infer from Theorem 2.6 that

Σ−1/2
ε Xε(1)

(d)−→ N (0, Id).

Therefore, the approximation (3.9) applies. By Proposition 3.1 we have

Proposition 3.2 Let X be an α–stable Lévy process with Lévy measure
given by (3.10). Suppose that the support of λ is not contained in a proper
subspace of Rd. Let T be fixed and recall that ε0 := ‖λ‖Tε. Let Nε be given
by (3.11), W be a standard Brownian motion in Rd independent of Nε, and
aε be a shift determined by (3.4). Then, for every ε ∈ (0, 1] there exists a
cadlag process Yε such that on [0, T ]

X
(d)
= aε + ε

1/α−1/2
0 (

α

2− α
)1/2Λ1/2W + Nε + Yε (3.15)

in the sense of equality of finite dimensional distributions and such that

ε
1/2−1/α
0 sup

t∈[0,T ]
‖Yε(t)‖

(P)−→ 0 as ε → 0. (3.16)

Proof: We apply Proposition 3.1 to Aε = Σ1/2
ε , where Σε is given by (3.13).

We obtain (3.15) and

‖Yε(t)‖ ≤ ‖Aε‖‖A−1
ε Yε(t)‖ ≤ ε

1/α−1/2
0 (

α

2− α
)1/2‖Λ1/2‖‖A−1

ε Yε(t)‖.

Since Λ is nonsingular, (3.7) yields (3.16). �
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3.3 Tempered stable processes

Recall that the Lévy measure of a tempered α–stable process X in Rd is of
the form

ν(dr, du) = αr−α−1q(r, u) dr λ(du), (3.17)

in polar coordinates , where α ∈ (0, 2), λ is a finite measure on Sd−1, and
q : (0,∞)× Sd−1 7→ (0,∞) is a Borel function such that, for each u ∈ Sd−1,
q(·, u) is completely monotone with q(0+, u) = 1 and q(∞, u) = 0. For
this and further facts on tempered stable distributions and processes see
[16]. As in the previous section, assume that λ is not concentrated on a
proper subspace of Rd and put ‖λ‖ = λ(Sd−1). Define a finite measure Q
on Rd

0 := Rd \ {0} by

Q(A) :=
∫

Sd−1

∫ ∞

0
1A(ru) Q(dr|u)λ(du)

where {Q(·|u)}u∈Sd−1 is a measurable family of probability measures on R+

determined by q(r, u) =
∫∞
0 e−rs Q(ds|u). Note that Q(Rd

0) = ‖λ‖.
Let {vj} be an idd sequence in Rd

0 with the common distribution Q/‖λ‖.
Let {uj} and {ej} be iid sequences of uniform on (0, 1) and exponential
with parameter 1 random variables, respectively. Let {γj} and {τj} be as
in the previous section. Assume that {vj}, {uj}, {ej}, {γj} and {τj} are
independent of each other.

Again, it is natural to take as the process Nε the partial sum of a shot
noise representation of a tempered stable process. Such representation is
given in [16], Theorem 5.4. Therefore, we have for ε ∈ (0, 1] and t ∈ [0, T ]

N ε(t) =
∑

γj≤ε−1

1(0,t](τj)

((
γj

T‖λ‖

)−1/α

∧ eju
1/α
j ‖vj‖−1

)
vj

‖vj‖
. (3.18)

Nε is a compound Poisson process with characteristic function

E exp i〈y, N ε(t)〉 = exp

{
t

∫
Rd

0

(ei〈y,x〉 − 1) νε(dx)

}
.

From the proof of Theorem 5.1 [16] or otherwise, we can verify that

νε(dr, du) = kε(r, u) drλ(du),

in polar coordinates, where

kε(r, u) =

{
ε−1
0 α

[
r−1q(r, u)− rα−1

∫∞
r αs−α−1q(s, u) ds

]
, 0 < r < ε

1/α
0 ,

αr−α−1q(r, u) , r ≥ ε
1/α
0

15



and ε0 = T‖λ‖ε, as in (3.12). Notice that the process Nε has both large and
small jumps, which is different from the stable case treated in the previous
section. Moreover, since kε(r, u) ≤ ε−1

0 αr−1q(r, u) ≤ αr−α−1q(r, u), if 0 <

r < ε
1/α
0 , we have νε ≤ ν. Hence νε = ν − νε has polar representation

νε(dr, du) = kε(r, u) drλ(du) where

kε(r, u) = α(r−α−1 − ε−1
0 r−1)q(r, u) + ε−1

0 αrα−1

∫ ∞

r
αs−α−1q(s, u) ds

if 0 < r < ε
1/α
0 and kε(r, u) = 0 if r ≥ ε

1/α
0 . νε is of the form (2.15) (but not

as in (2.21)). We will use Theorem 2.5 to show the normal approximation
for Xε(1). We begin with an estimate for σ2

ε (u).

σ2
ε (u) =

∫ ∞

0
r2kε(r, u) dr ≥ αq(ε1/α

0 , u)
∫ ε

1/α
0

0
(r−α+1 − ε−1

0 r) dr

=
α2

2(2− α)
ε
2/α−1
0 q(ε1/α

0 , u).

Therefore, condition (2.17) holds with b(ε) = ε
1/α−1/2
0 . (2.18) trivially holds

because νε is concentrated on a ball of radius ε
1/α
0 and we have∫

‖x‖>κε
1/α−1/2
0

‖x‖2 νε(dx) =
∫
{‖x‖>κε

1/α−1/2
0 ,‖x‖<ε

1/α
0 }

‖x‖2 ν(dx) = 0

for sufficiently small ε. Consequently, Σ−1/2
ε Xε(1)

(d)−→ N (0, Id). As it is, Σε

can be very complicated. However, we will prove that

ε
1−2/α
0 Σε →

α

2− α
Λ as ε → 0 (3.19)

which shows (3.5) for

Aε = ε
1/α−1/2
0 (

α

2− α
)1/2Λ1/2. (3.20)

To establish (3.19) we will need bounds for σ2
ε (u). First we notice that

σ2
ε (u) ≤ α

∫ ε
1/α
0

0
r−α+1q(r, u) dr ≤ α

2− α
ε
2/α−1
0

which yields

ε
1−2/α
0 Σε = ε

1−2/α
0

∫
Sd−1

σ2
ε (u)uu> λ(du) ≤ α

2− α
Λ. (3.21)
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To get a lower bound we write

σ2
ε (u) = α

∫ ε
1/α
0

0
r2(r−α−1q(r, u)− ε−1

0 `ε(r, u)) dr

≥ q(ε1/α
0 , u)

α

2− α
ε
2/α−1
0 − αε−1

0

∫ ε
1/α
0

0
r2`ε(r, u) dr (3.22)

where
`ε(r, u) = r−1q(r, u)− rα−1

∫ ∞

r
αs−α−1q(s, u) ds.

Then

αε−1
0

∫ ε
1/α
0

0
r2`ε(r, u) dr ≤ αε

2/α−1
0

∫ ε
1/α
0

0
`ε(r, u) dr

= ε
2/α−1
0

∫ ε
1/α
0

0

∂

∂r

(
− rα

∫ ∞

r
αs−α−1q(s, u) ds

)
dr

= ε
2/α−1
0

[
1− ε0

∫ ∞

ε
1/α
0

αs−α−1q(s, u) ds
]

=: ε
2/α−1
0 k(ε0, u).

Notice that 0 ≤ k(ε0, u) ≤ 1 and limε→0 k(ε0, u) = 0. Combining the above
estimate with (3.22) we get

σ2
ε (u) ≥ ε

2/α−1
0

[
q(ε1/α

0 , u)
α

2− α
− k(ε0, u)

]
.

which together with (3.21) yields

α

2− α
Λ ≥ ε

1−2/α
0 Σε ≥

α

2− α
Λ

−
∫

Sd−1

[
(1− q(ε1/α

0 , u))
α

2− α
− k(ε0, u)

]
uu> λ(du).

Applying now the Dominated Convergence Theorem we establish (3.19) and
so (3.20). In conclusion, using Proposition 3.1 we obtain

Theorem 3.3 Let X be a tempered α–stable Lévy process with Lévy measure
given by (3.17). Suppose that the support of λ is not contained in a proper
subspace of Rd. Let T be fixed and ε0 be as in (3.12). Let Nε be given by
(3.18), W be a standard Brownian motion in Rd independent of Nε, and aε

be a shift determined by (3.4).
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Then, for every ε ∈ (0, 1] there exists a cadlag process Yε such that on
[0, T ]

X
(d)
= aε + ε

1/α−1/2
0 (

α

2− α
)1/2Λ1/2W + Nε + Yε (3.23)

in the sense of equality of finite dimensional distributions and such that

ε
1/2−1/α
0 sup

t∈[0,T ]
‖Yε(t)‖

(P)−→ 0 as ε → 0. (3.24)

The basic difference between (3.23) and (3.15) is in the form of Nε (and
implicitly, in aε and Yε).

3.4 Operator stable processes

A Lévy process X as in (3.1) is said to be operator stable with exponent
B ∈ GL(Rd) if for every t > 0 there exists a vector b(t) ∈ Rd such that

X(t)
(d)
= tBX(1) + b(t) (3.25)

where tB = exp(B log t). A comprehensive introduction to operator stable
laws can be found in the monographs [7] and [12]. Since X has no Gaussian
part, the necessary and sufficient condition for B to be an exponent is that
all the roots of the minimal polynomial of B have real parts greater than
1/2 (cf. [7], Theorem 4.6.12). For a description of the Lévy measure of X
it is convenient to use a norm ‖ · ‖B on Rd that depends on B as follows

‖x‖B =
∫ 1

0
‖sBx‖s−1 ds.

Let SB denote the unit sphere in Rd with respect to ‖·‖B. Then there exists
a finite Borel measure λ on SB such that the Lévy measure ν of X is of the
form

ν(A) =
∫

SB

∫ ∞

0
1A(sBu)s−2 dsλ(du) (3.26)

where A ∈ B(Rd) (cf. [7], Proposition 4.3.4).
To establish the approximation (3.9) we start with the compound Poisson

process N. It is natural to look at a shot noise representation of X. As
suggested by a remark following Corollary 4.4 [14], we may take

N ε(t) =
∑

γj≤ε−1

I(0,t](τj)
(

γj

T‖λ‖

)−B

vj . (3.27)
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This is a complete analogy of (3.11) with the same notation, except 1/α
is replaced by B and Sd−1 by SB. It is elementary to check that Nε is a
compound Poisson process with characteristic function

E exp i〈y, N ε(t)〉 = exp
{

t

∫
SB

∫ ∞

ε0

(ei〈y,sBu〉 − 1)s−2 dsλ(du)
}

where ε0 = ‖λ‖Tε, as in (3.12). Combining this with (3.26) we have

νε(A) =
∫

SB

∫ ε0

0
1A(sBu)s−2 dsλ(du).

¿From (2.3) we get

Σε =
∫

SB

∫ ε0

0
(sBu)(sBu)> s−2 dsλ(du)

=
∫ ε0

0
sBΛ(sB)> s−2ds (3.28)

where Λ is given by (3.14) (with Sd−1 replaced by SB). We also observe
that

Σε = ε−1
0

∫ 1

0
(ε0r)BΛ((ε0r)B)> r−2dr = ε−1

0 εB
0 Σ1(εB

0 )>. (3.29)

Let linB(suppλ) denote the smallest B–invariant subspace of Rd containing
the support of λ. If ν is as in (3.26), then the support of ν is not contained
in a proper subspace of Rd if and only if

linB(supp λ) = Rd (3.30)

cf. [7], Corollary 4.3.5. If λ does not lie in a proper subspace of Rd, then
(3.30) clearly holds.

Theorem 3.4 Let X be an operator stable Lévy process with exponent B
and Lévy measure given by (3.26) such that (3.30) holds. Let T be fixed
and ε0 be as in (3.12). Let Nε be as in (3.27), W be a standard Brownian
motion in Rd independent of Nε, and aε be a shift determined by (3.4).

Then, for every ε ∈ (0, 1] there exists a cadlag process Yε such that on
[0, T ]

X
(d)
= aε + ε

−1/2
0 εB

0 Σ1/2
1 W + Nε + Yε (3.31)
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in the sense of equality of finite dimensional distributions and such that for
every δ > 0

ε
1/2−min{b1,...,bd}+δ
0 sup

t∈[0,T ]
‖Yε(t)‖

(P)−→ 0 as ε → 0 (3.32)

where b1, . . . , bd are the real parts of the eigenvalues of B.

Proof. First we will prove that Σ1 is nonsingular. By Lemma 2.1 we
need to show that supp ν1 = Rd. Following Corollary 4.3.5 [7] we have

supp ν1 = {x : x = sBu, 0 ≤ s ≤ 1, u ∈ suppλ}.

Let
L = lin(supp ν1)

be the linear space spanned by supp ν1. We will show that L is B–invariant.
To this end it is enough to show that if x = sBu ∈ supp ν1, 0 < s ≤ 1
and u ∈ suppλ, then BsBu ∈ L. Take θ < 1 such that θs < s ≤ 1. Then
(θs)Bu ∈ supp ν1 and hence

BsBu = lim
θ↗1

(θs)Bu− sBu

log θ
∈ L.

Since L is B–invariant and contains support of λ, L = Rd by (3.30). Thus
Σ1 is nonsingular. We infer that

Σ1 ≥ c1Id

where c1 = min‖x‖=1〈Σ1x, x〉 > 0. By (3.29) we get

Σε ≥ c1ε
−1
0 εB

0 (εB
0 )>. (3.33)

We will use Lemma 2.3 in the proof of normal approximation. To this end
we need to find a lower bound Σ̃ε of Σε which satisfies condition (2.11).

The Jordan decomposition of the exponent B states that

B = D + N (3.34)

where D is semi-simple and N is a nilpotent matrix such that DN = ND.
See e.g., Theorem 2.1.18 [12]. Then, for any s > 0,

sB(sB)> = sDsN (sN )>(sD)>.
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Choose δ > 0 to be determined later. Since −N> is also nilpotent, the real
part of all eigenvalues of −N> are zeros. Therefore, there exists c2 > 0 such
that for all s ∈ (0, 1]

‖s−N>‖ ≤ c2s
−δ (3.35)

(see [11], for instance). Hence

‖x‖ ≤ ‖s−N>‖‖sN>
x‖ ≤ c2s

−δ‖sN>
x‖

for s ∈ (0, 1]. This yields

‖x‖2 ≤ c2
2s
−2δ〈sN (sN )>x, x〉

or
sN (sN )> ≥ c3s

2δId

for s ∈ (0, 1]; c3 = c−2
2 . Consequently, for s ∈ (0, 1]

sB(sB)> ≥ c3s
2δsD(sD)>. (3.36)

Since D is semi-simple, D = UEU−1 where U is a unitary matrix and

E = diag(e1, . . . , ed),

is a diagonal matrix with the diagonal e1, . . . , ed, where ek = bk + ib′k are
the eigenvalues of B. Thus

sD(sD)> = (UsEU−1)(UsE∗
U−1)

= U diag(s2b1 , . . . , s2bd) U−1

where E∗ is the complex conjugate transposed of E. Combining this with
(3.36) we have for s ∈ (0, 1]

sB(sB)> ≥ c3 U diag(s2b1+2δ, . . . , s2bd+2δ) U−1.

Combining this with (3.33) we get for 0 < ε0 ≤ 1

Σε ≥ c4ε
2δ−1
0 U diag(ε2b1

0 , . . . , ε2bd
0 ) U−1 =: Σ̃ε.

where c4 = c1c3.
To verify condition (2.11) we first estimate 〈Σ̃−1

ε x, x〉 for x = sBu, where
0 < s ≤ ε0 ≤ 1 and u ∈ SB. We get

〈Σ̃−1
ε sBu, sBu〉 = 〈(sD)>Σ̃−1

ε sDsNu, sNu〉
≤ c5s

−2δ‖(sD)>Σ̃−1
ε sD‖

= c5c
−1
4 ε1−2δ

0 s−2δ‖U diag
(
(

s

ε0
)2b1 , . . . , (

s

ε0
)2bd

)
U−1‖

= c5c
−1
4 ε1−4δ

0 ‖diag
(
(

s

ε0
)2b1−2δ, . . . , (

s

ε0
)2bd−2δ

)
‖.
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In the first inequality we used the fact that the bound (3.35) holds for any
nilpotent matrix (with possibly different constant) and the fact that SB is
bounded. If δ = 1/8 and c6 = c5c

−1
4 , then the above bound shows that

〈Σ̃−1
ε sBu, sBu〉 ≤ c6ε

1/2
0 , (3.37)

whenever 0 < s ≤ ε0 ≤ 1 and u ∈ SB.
Then, for every κ > 0 and ε0 ≤ 1 we have∫

〈Σ̃−1
ε x,x〉>κ

〈Σ̃−1
ε x, x〉 νε(dx)

=
∫∫

{(s,u)∈(0,ε0]×SB : 〈Σ̃−1
ε sBu,sBu〉>κ}

〈Σ̃−1
ε sBu, sBu〉 s−2 dsλ(du)

= 0

when ε0 < c−2
6 κ2 (or when ε < c−2

6 κ2‖λ‖−1T−1 by (3.12)). Indeed, in view
of (3.37) the region of integration is empty for ε0 < c−2

6 κ2 . Therefore, (2.11)

trivially holds and Σ−1/2
ε Xε(1)

(d)−→ N (0, Id).
Applying Proposition 3.1 for

Aε = ε
−1/2
0 εB

0 Σ1/2
1

we get (3.31) and that

sup
t∈[0,T ]

‖A−1
ε Yε(t)‖

(P)−→ 0 as ε → 0. (3.38)

Proceeding as above we can find positive constants c′1 and c′2 such that for
every ε0 ≤ 1 and δ > 0

AεA
>
ε = Σε ≤ c′1ε

−1
0 εB

0 (εB
0 )>

≤ c′2ε
−1−2δ
0 εD

0 (εD
0 )>

= c′2ε
−1−2δ
0 Udiag(ε2b1

0 , . . . , ε2bd
0 )U−1

≤ c′2ε
−1−2δ+2 min{b1,...,bd}
0 Id.

This yields
‖Aε‖ ≤ cε

−1/2−δ+min{b1,...,bd}
0 .

where c =
√

c′2. Therefore,

‖Yε(t)‖ ≤ ‖Aε‖‖A−1
ε Yε(t)‖ ≤ cε

−1/2−δ+min{b1,...,bd}
0 ‖A−1

ε Yε(t)‖,

which together with (3.38) yields (3.32). The proof is complete. �
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Remark 3.5 One may also consider

Ñ ε(t) =
∑

j

I(0,t](τj)I
(∥∥∥( γj

T‖λ‖

)−B
vj

∥∥∥ ≥ ε
)( γj

T‖λ‖

)−B
vj .

That is, the remainder process X̃ε has jumps of magnitude less than ε. From
both theoretical and computational point of views the compound Poisson ap-
proximation Nε of (3.27) is more tractable than the above. As a matter
of fact, we were unable to establish Gaussian approximation of X̃ε in full
generality, for any operator stable process.

4 Other applications

4.1 Independent marginals

The normal approximation for independent marginals can be deduced from
the one–dimensional result of [1]. The aim of this example is to show how
the approximation follows from our general scheme. Suppose that the co-
ordinates of the multivariate Lévy process X(t) = (X1(t), . . . , Xd(t)) are
independent. Let νi be the Lévy measure of Xi. Then

ν(dx1, . . . , dxd) =
d∑

i=1

δ(dx1)⊗ · · · ⊗ νi(dxi)⊗ · · · ⊗ δ(dxd)

where δ are Dirac masses at 0. Let Dε = {x ∈ Rd : ‖x‖ < ε} and νε = ν|Dε
.

Define σ2
i (ε) =

∫
|xi|<ε x2

i νi(dx) for 1 ≤ i ≤ d. Then

Σε =
∫

Dε

xx>ν(dx) = diag
(
σ2

1(ε), . . . , σ
2
d(ε)

)
where diag(ai) is a diagonal matrix with the diagonal a1, . . . , ad. In view of
Corollary 2.4, (2.5) holds if and only if for every i = 1, . . . , d and κ > 0

σi(κσi(ε) ∧ ε)
σi(ε)

→ 1 as ε → 0. (4.1)

If (4.1) holds then by Proposition 3.1

diag
(
σ−1

1 (ε), . . . , σ−1
d (ε)

)
Xε

(d)−→ W.
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4.2 Normal asymptotic for stochastic integral processes

Let X = {X(t) : t ∈ T} be a stochastic process represented as a stochastic
integral

X(t) =
∫

S
f(t, s) M(ds)

where f is a deterministic function and M is an infinitely divisible random
measure with no Gaussian part. For more information on such integrals, see
[13]. To simulate X it is useful to have the normal asymptotic of the part
corresponding to “small jumps” of M . Then one can write an approximation
of the type (3.9) with W being a Gaussian process. Such approximation was
used in [10, 2] to simulate locally self-similar processes defined by a fractional
integral of a Lévy random measure.

To illustrate how this method fits into our general framework, we con-
sider the following simple situation. Let N be a Poisson random measure
on S ×R, where S is a Borel set. Let m⊗Q be the intensity measure of N,
where

∫
x2 Q(dx) < ∞ and Q({0}) = 0. Consider a random measure

M(A) =
∫

A

∫
R

x [N(ds, dx)−m(ds)Q(dx)],

where A ∈ B(S), m(A) < ∞. Clearly, the process

X(t) =
∫

S
f(t, s) M(ds) =

∫
S

∫
R

xf(t, s) [N(ds, dx)−m(ds)Q(dx)]

is well defined when f(t, ·) : S 7→ R is a Borel function such that∫
S

∫
R

x2|f(t, s)|2 m(ds)Q(dx) < ∞

for every t ∈ T. Put

Mε(A) =
∫

A

∫
|x|<ε

x [N(ds, dx)−m(ds)Q(dx)],

and
Xε(t) =

∫
S

f(t, s) Mε(ds).

We will investigate normal asymptotic of the process Xε = {Xε(t) : t ∈ T}.
To this end, define

σ2(ε) =
∫
|x|<ε

x2 Q(dx)
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and
K(t, u) = Cov(X(t), X(u)) =

∫
S

f(t, s)f(u, s) m(ds). (4.2)

Proposition 4.1 Suppose that for each κ > 0

σ(κσε ∧ ε)
σ(ε)

→ 1 as ε → 0.

Then
σ−1(ε)Xε

(d)−→ W as ε → 0 (4.3)

in the sense of convergence of finite dimensional distributions, where
W = {W (t) : t ∈ T} is a centered Gaussian process with the covariance
function K given by (4.2).

Proof: Let t1, . . . , tn ∈ T, a1, . . . , an ∈ R and n ≥ 1. Then

n∑
j=1

ajXε(tj) =
∫

S
h(s) Mε(ds)

where

h(s) =
n∑

j=1

ajf(tj , s).

We need to show that

σ−1(ε)
n∑

j=1

ajXε(tj)
(d)−→ N (0, σ2

h) (4.4)

where

σ2
h =

n∑
i,j=1

aiajK(ti, tj) =
∫

S
|h(s)|2 m(ds).

For every u ∈ R we have

E exp
{

iu

n∑
j=1

ajXε(tj)
}

= exp
{∫

R
[eiuv − 1− iuv] νε(dv)

}
where

νε(B) = m⊗Q((s, x) : |x| < ε, xh(s) ∈ B \ {0})
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for any B ∈ B(R). Notice that νε is not obtained by a truncation of Lévy
measure and may have unbounded support. Nevertheless, we can use The-
orem 2.2 in this (one–dimensional!) case. We compute

Σε = σ2(ε)
∫

S
|h(s)|2 m(ds) = σ2(ε)‖h‖2

2.

If ‖h‖2 = 0, then
∑n

j=1 ajXε(tj) = 0 a.s. and (4.4) trivially holds. Other-
wise, we verify condition (2.5)

σ−2(ε)‖h‖−2
2

∫
|x|>κ1/2‖h‖2σ(ε),|x|<ε

x2 νε(dx)

= σ−2(ε)
∫
|x|>κ1/2‖h‖2σ(ε),|x|<ε

x2 Q(dx)

≤ 1− σ−2(ε)σ2(ε ∧ κ1/2‖h‖2σ(ε)) → 0.

Theorem 2.2 gives (4.4). �
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