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Foreword

These notes summarize a series of lectures given by Claudia Negulescu at the Institut
supérieur de l’aéronautique et de l’espace (ISAE-SUPAERO) during the years 2019-2022.
They are devoted to an elementary and self-consistent approach of the mathematical
theory emerging in the modelling of the collective behaviour of certain natural phenom-
ena. The notion of entropy plays here a crucial role, in particular entropy dissipative
techniques are the basis for the investigation of the qualitiative behaviour of nonlinear
PDEs.

The lectures are based on published works, which were specifically chosen to illus-
trate different techniques in the field of collective behaviour. The writing was facilitated
by a very careful and critical reading of the mansucript by the two PhD students of
Claudia Negulescu, namely Axel Maupoux and Etienne Lehman. Furthermore the nu-
merical plots were also furnished by these PhD students, such that their contribution
was very useful for rendering this work comprehensible and beneficial. The PhD of
Axel Maupoux is financed by the French Defence Innovation Agency, whereas Etienne
Lehman is financed by the Ecole Normale Supérieure de Lyon.
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Introduction

The central theme of this course is the introduction of a mathematical model for the
description of an autonomous drone swarm, constituted of a large number of drones
which shall self-organize and cooperate in order to perform collective tasks in real-world
situations, such as assistance in emergency situations (forest fire, avalanche, shipwreck,
earthquake, etc), oil and gas pipelines surveys, geo-magnetic surveys, protection of vul-
nerable sites etc. The model will be based on simple mathematical rules describing the
inter-drone interaction forces, like repulsion and attraction for example and resulting
in a global behaviour of the whole swarm. A detailed mathematical analysis of the
designed model as well as numerical simulations shall be performed with the aim to
remain as close as possible to reality.

Understanding the essential characteristics of the emergent collective behaviour of
a drone swarm, requires a deep understanding of the repercussion of each (inter-drone)
force on the overall collective behaviour, as well as of the influence of several factors,
such as the environment, time-delays in the reaction times and inertial effects of the
drones as well as inaccuracies of the on-board sensors. Thus a lot of aspects enter into
the modelling, rendering the design of such autonomous drone swarms very challenging
and interesting from a mathematical point of view.

The present work is thus concerned with the mathematical modelling and analysis
of the autonomous dynamics of a drone swarm. Numerical simulations will be also per-
formed. The manuscript is composed of the following chapters:

• The introduction gives a general overview of the existing theory in this domain;

• Chapter 1 explains briefly how to obtain the Fokker-Planck equation from the
underlying Langevin’s system, which corresponds to Newton’s laws with an addi-
tional stochastic force field (noise term); this part is necessary to understand the
mesoscopic description of particle swarms;

• Chapter 2 introduces the entropy methods as a “standard” mathematical tool for
the investigation of the long-time behaviour of solutions to ODE systems;

• Chapter 3 is the main part of this course and deals with the particular case of
drone swarm modelling and the mathematical as well as numerical analysis of the
proposed model;

• Chapter 4 regroups some fundamental lemmas and inequalities necessary in the
whole manuscript.
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4 Introduction

0.1 Collective behaviour in nature

Collective motion or self-organization is an astonishing phenomenon, that can be ob-
served in various natural processes, such as fish schools, bird flocks, herds of bulls or
sheep, insect swarms, cellular dynamics, pedestrian behaviours etc (see Fig. 1). Pat-
terns appear due to the organized (cooperative) motion of a large number of small
constituents. Such natural systems composed of inter-connected particles tend to self-
organize into macroscopic structures with the aim to form more intelligent or more
adaptive large-scale dynamics. Self-organization does not happen by chance, but rather
due to the numerous, specific interactions among the lower-level components of the sys-
tem. The rules specifying these interactions among the components are local, without
reference to the global behaviour of the swarm, and decisions are made by the compo-
nents/particle themselves.

Figure 1: Examples of collective behaviours arising in nature [41–43].

The underlying forces leading to self-organization can be of various type, as for example:

• physical mechanisms (gravity, electromagnetic forces, nuclear forces, ...);

• chemical mechanisms (pheromones, Van-der-Waals forces, ...);

• instinctive survival mechanisms (fear, feeding, ...).

Self-organized systems obey evolution equations which are generally highly non-linear.
Such models take the form of ODE systems or transport-type PDEs, where the individ-
uals are submitted to forces generated by their neighbours. Depending on the nature
of the inter-particle interactions, the collective behaviour of the swarm may differ, for
instance individuals can aggregate, align their velocities or disperse.

The systematic mathematical study of ”flocking”-models began with Viscek and
his collaborators [?], with the introduction of a stochastic, time-discrete model. Later
Cucker-Smale [18, 19] proposed a deterministic, time-continuous model. Other models
have been then proposed for the description of the collective fish behaviour [21,36] and
bacteria [11]. Among the numerous existing models one is particularly appreciated,
namely the three-zone model, based on Reynold’s empirical rules, namely

• Flocking: the desire of individuals to stay together, for safety or social reasons;

• Collision avoidance: individuals tend to repel, when coming too close together;

• Velocity matching: attempt to keep similar velocities and flying directions as
its neighbours.
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0.2 Drones

To model mathematically the dynamics of a swarm of autonomous flying robots like
drones, the observation of natural emergent systems can offer lot of inspiration. By
autonomous we mean that every agent uses on-board sensors to measure its state as
well as the states of its neighbours and performs all controlling computations with an
on-board computer, i.e. the control system is decentralized (see Fig. 2 for some ex.).
Important to underline is that the paths of the agents are not predefined, but emergent
from the underlying inter-particle relations as well as from exteriour force-fields.

One essential question to be asked is: ”Which is the interaction between the individ-
uals at the microscopic level, which gives rise to the desired macroscopic bahaviour?”
There is no need to assume sophisticated local inter-particle connections to provoke a
complex macroscopic pattern. Models describing clouds or swarms of particles are es-
sentially based on a delicate balance between long-range attraction (to form a cloud)
and short-range repulsion (to avoid collisions). Only when the desired macroscopic dy-
namics is not obtained, more complex rules have to be considered. Contrary to existing
models for biological swarm behaviours, in a drone model one should additionally take
into account some system-specific features, such as:

• Inertia: The drones are unable to change immediately their position and velocity,
due to their inherent inertia;

• Time delays: Each drone needs time to receive and process the information got
from its neighbours;

• Noise: Inaccuracy of the sensors measuring the position and velocity of the drone
itself as well as of its neighbours is a so-called “inner noise” to be taken into
account, whereas “outer noise” are unpredictable environmental effects, such as
the wind for example;

• Autonomy: Small batteries due to weight restrictions lead to short life-times for
drones.

Other aspects which have to be taken into account, are for example the fact that losing
one or more drones has to have little impact on the overall swarm dynamics. Without
going too much into details, it is clear that an engineer has also other criteria to consider,
as flexibility and robustness of the drone swarm, efficiency and cost constraints.

Figure 2: Examples of application of some drone swarms [44–46].
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0.3 Mathematical problematic

Modelling is the art of taking a real-world situation and of trying to find an accurate
mathematical description for it. It is more than a science, because it involves choices
that can not really/rationally be justified. Intuition and personal preferences for example
play a major role (for ex. when deciding whether a deterministic or a stochastic approach
is better adapted for a specific situation). To imagine how difficult such mathematical
modelling can be in our particular situation, think of some questions which might be
asked, like “Why do we choose this type of a repulsion/attraction force between drones?”
or “Why does one model the environment in such a manner?” Furthermore, a math-
ematical model should not only reproduce a specific natural phenomenon, but it has
also to be consistent with this phenomenon, meaning that the chosen parameters, as for
ex. the maximal velocity of the agents, have to be conceivable from a physical/natural
point of view.

At the microscopic level, the dynamics of a cloud composed of N particles is based
on Newton’s classical laws of mechanics, describing the time-evolution of the position
of each individual xi(t) as well as of its velocity vi(t) via the equation
{

x′i(t) = vi(t) ,

v′i(t) = F ext(t, xi, vi) + F int
i (x1, · · · , xN , v1, · · · , vN) ,

∀i = 1, . . . , N , (1)

where F ext represents an exteriour force term, for example describing the wind, obstacles
or the target of the drones, and F int

i is the inter-particle force term exerted on particle
i by the other surrounding particles. We are thus concerned with a coupled, non-linear
ODE system, which cannot be solved explicitly, however some qualitative study of the
stability of particular solutions, such as equilibrium patterns, can be performed as well
as the study of long-time asymptotic.

The delicate modelling part is now to choose adequate force terms, which permit
a realistic description of the collective behaviour one is observing or is interested to
generate. Depending on the specific choice of these force terms the model can have
rather different properties. The inter-drone interaction force is directly responsible for
the emergence of specific patterns, like milling, flocking, clustering, etc.

0.3.1 ODE, Lyapunov functional, equilibrium

As we just saw, the mathematical modelling of collective behaviours in nature leads to
ODE systems of the following form

{

u′(t) = f(t, u(t)) , ∀t > 0 ,

u(0) = u0 ∈ Ω ,
(2)

where the (non-linear) function f : R+
0 × Ω → Rd, with Ω ⊂ Rd, is assumed to satisfy

the standard conditions for the existence and uniqueness of a global solution u : R+
0 →

Ω (Cauchy-Lipschitz theorem). Let us recall now rapidly the mathematical tools of
Lyapunov stability theory, permitting to analyse in more details the long-time behaviour
of such ODEs.
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Definition 0.3.1 (Equilibrium point)
A solution u⋆ is called equilibrium corresponding to (2) if f(t, u⋆) ≡ 0 for all t ≥ 0.

Remark that by translation one assumes often that the investigated equilibrium point
is u⋆ ≡ 0. Moreover, if several equilibria exist, one usually investigates the stability of
each one separately.

Definition 0.3.2 (Stability in the sense of Lyapunov)
The equilibrium point u⋆ is stable in the sense of Lyapunov if for each ε > 0 there exists
a constant δ > 0 such that one has the implication

||u(0)− u⋆|| < δ ⇒ ||u(t)− u⋆|| < ε ∀t > 0 .

An equilibrium point is said to be ”unstable”, if it is not stable.

Lyapunov stability is a very mild requirement for equilibrium points, as it does not
require that trajectories starting near an equilibrium, tend towards this equilibrium
asymptotically in time, i.e. for t→ ∞.

Definition 0.3.3 (Asymptotic stability)
The equilibrium u⋆ of (2) is asymptotically stable, if

• u⋆ is stable (in the sense of Lyapunov);

• u⋆ is locally attractive, meaning there exists δ > 0 such that

||u(0)− u⋆|| < δ ⇒ lim
t→∞

u(t) = u⋆ .

It is important to note that the definition of asymptotic stability does not quantify the
rate of convergence towards this equilibrium.

Definition 0.3.4 (Exponential stability)
The equilibrium u⋆ of (2) is exponentially stable if there exist some constants C, κ > 0
and δ > 0 such that

||u(0)− u⋆|| < δ ⇒ ||u(t)− u⋆|| ≤ C e−κ t ||u0 − u⋆|| , ∀t > 0 .

The largest constant κ > 0 which may be used is called ”rate of convergence”.

Exponential stability is a strong form of stability, which is very useful in applications.
Indeed, exponentially stable equilibria are very robust with respect to perturbations and
are hence preferred configurations.

Very often it is possible to determine whether an equilibrium of a nonlinear system
is locally stable, by simply investigating the stability of the corresponding linearized
system, linearized around the equilibrium point. This approach is the so-called Lya-
punov’s linearized method, and is based on the following theorem.

Let us consider the following linearized system, with A ∈ Rd×d a constant matrix and
u0 ∈ Rd

{

u′(t) = Au(t) , ∀t > 0 ,

u(0) = u0 .
(3)
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Lemma 0.3.5 (Stability of linear systems)
Let us assume that A is regular, such that u⋆ ≡ 0 is the only equilibrium of (3). If

• A has at least one eigenvalue with strictly positive real part, then the equilibrium
u⋆ is unstable;

• A has all eigenvalues with non-positive real parts, and those eigenvalues having
zero real-part are non-defective (algebraic multiplicity is equal to geometric one),
then the equilibrium u⋆ is stable;

• A has all eigenvalues with negative real parts, then the equilibrium u⋆ is asymp-
totically stable.

Lyapunov’s direct method is different and allows to determine the stability of
a system without linearization and without explicitly integrating the differential equa-
tion. The method is based on some physical arguments, in particular on the existence
of some “energy” or “entropy” E in the system and on the study of the rate of change
of this energy during the time evolution of the system. Briefly, if E is positive definite
and its derivative along the trajectories u(t) of the system is non-positive, then one
can show that the equilibrium point is stable. By imposing additional conditions on E
and d

dt
E(u(t)) one can even show asymptotical or exponential stability, both locally and

globally.

To be more precise, let us consider the autonomous system
{

u′(t) = f(u(t)) , ∀t > 0 ,

u(0) = u0 ∈ Ω ,
(4)

with f : Ω ⊂ Rd → Rd being of class C1 (could be rendered weaker), assuming that a
global solution u : R+

0 → Ω exists, and let u⋆ ∈ Ω be the unique equilibrium solution.

Definition 0.3.6 (Positive definite function)
A continuous function E : Ω ⊂ Rd → R, satisfying

E(u) > 0 , ∀u ∈ Ω\{u⋆} , as well as E(u⋆) = 0 ,

is called positive definite (around u⋆). If these requirements are valid only locally, mean-
ing for all u ∈ Ω with ||u− u⋆|| ≤ R, then one says that E is locally positive definite.

Theorem 0.3.7 (Stability/asymptotic stability)
Let us consider the autonomous ODE (4), with solution u : R+

0 → Ω and equilibrium
point u⋆ ∈ Ω. If there exists a continuously differentiable functional E : Ω ⊂ Rd → R,
such that
(i) E is positive definite around u⋆ and
(ii) d

dt
E(u(t)) ≤ 0 along all trajectories u(t) of (4) ,

then the equilibrium u⋆ is stable.
If in addition

(iii) − d
dt
E(u(t)) is positive definite around u⋆ ,

then u⋆ is asymptotically stable.
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Exponential stability is a special case of asymptotic stability, with a particular conver-
gence rate.

Theorem 0.3.8 (Exponential stability)
Let us consider the autonomous ODE (4), with solution u : R+

0 → Ω and equilibrium
point u⋆ ∈ Ω. If there exists a continuously differentiable functional E : Ω ⊂ Rd → R,
such that
(i) E is positive definite around u⋆ and
(ii) d

dt
E(u(t)) ≤ −κ E(u(t)) along all trajectories of (4), with some constant κ > 0 ,

then u⋆ is exponentially stable.

In Chapter 2 we shall give some details about how to find such Lyapunov functionals for
specific ODE-systems and how to prove the asymptotic stability of equilibrium solutions.

0.4 Some examples of flocking models

Let us consider in the following a particle system consisting of N identical agents with
positions and velocities denoted by (xi(t), vi(t)) ∈ Rd × Rd, and masses mi = 1 for
i = 1, . . . , N , where d = 2 or d = 3. The particles are interacting with each other via
simple local rules, to be defined in the following. The aim is to investigate, starting
from a given initial configuration (x0i , v

0
i )
N
i=1 ∈ (Rd × Rd)N , the long time behaviour of

the whole particle system. For this, let us define what we mean with flocking.

Definition 0.4.1 A multi-particle system {(xi, vi)}Ni=1 is said to have an asymptotic
flocking pattern, if the following two conditions are satisfied:
(i) (Aggregation) The spatial diameter D(t) of the particle cloud is uniformly bounded
in time, meaning

sup
t≥0

D(t) <∞ , D(t) := max
i,j

|xi(t)− xj(t)| .

(ii) (Velocity alignment) The velocity diameter A(t) of the particle cloud tends to-
wards zero as t→ ∞, namely

lim
t→∞

A(t) = 0 , A(t) := max
i,j

|vi(t)− vj(t)| .

Flocking requires thus the emergence of alignment, hence consensus in velocity. Often
the word swarming appears also in literature, usually in relation with insect swarms. It
is a less restrictive notion than flocking, requiring only cohesion, namely

sup
t≥0

max
i

|xi(t)− xc(t)| <∞ , sup
t≥0

max
i

|vi(t)− vc(t)| <∞ ,

where

xc(t) :=
1

N

N
∑

i=1

xi(t) , vc(t) :=
1

N

N
∑

i=1

vi(t) , ∀t ∈ R
+ ,

are the average position and velocity of the particle cloud. Let us present now two
well-known mathematical models for the description of a particle flock dynamics and
recall the results permitting to show flocking under certain conditions.
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0.4.1 Cucker-Smale model

The Cucker-Smale model is a very basic model describing the dynamics of a cloud
consisting of N particles submitted only to a velocity-alignment force, permitting to
obtain a certain self-organization (flocking), if the communication function is sufficiently
large as shall be seen in the following. The evolution of each particle, with position and
velocity (xi, vi) ∈ Rd × Rd is governed for all t ≥ 0 by Newton’s laws















x′i(t) = vi(t) ,

v′i(t) =
1

N

N
∑

j=1

ψ(|xi − xj |) (vj − vi) ,
∀i = 1, . . . , N , (5)

where ψij := ψ(|xi−xj |) represents the strength of the velocity-alignment (communica-
tion strength) between individual i and j and depends on the relative distance between
the particles. One often assumes that ψ is a positive, decreasing function, i.e. satisfying

ψ ∈ C1(R+
∗ ) , ψ(r) > 0 and ψ′(r) ≤ 0 ∀r > 0 . (6)

Two simple communication strengths can be found in literature, a bounded respectively
a singular one, namely

ψb(r) :=
α

(1 + r2)β/2
, ψs(r) :=

α

rβ
, α > 0 , β ≥ 0 , r ∈ R

+ . (7)

The strength of the communication weight is often expressed in terms of integrability
conditions at short or long range, such as (for some fixed r0 > 0)

∫ ∞

r0

ψ(r) dr = ∞ (long range condition, heavy tail) ,
∫ r0

0

ψ(r) dr = ∞ (short range condition) .

These conditions guarantee unconditional flocking and collision avoidance respectively
and are not necessary conditions (see Theorems 0.4.2 and 0.4.3). Let us observe further-
more that the symmetry of the communication weight (ψij = ψji) implies immediately
the conservation of the total momentum. Indeed, introducing the center of mass couple
(xc(t), vc(t)) via

xc(t) :=
1

N

N
∑

i=1

xi(t) , vc(t) :=
1

N

N
∑

i=1

vi(t) , ∀t ∈ R
+ ,

one can show that vc(t) = vc(0) and xc(t) = xc(0)+ tvc(0), such that by translation, one
can assume in the following that

xc(t) ≡ 0 , vc(t) ≡ 0 , ∀t ∈ R
+ .

Let us introduce furthermore the notation

X(t) := (xi(t))
N
i=1 , ||X||22 :=

N
∑

i=1

|xi|2 , ||X||∞ := max
1≤i≤N

|xi| .

Then one has the following flocking theorem in the regular case:
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Theorem 0.4.2 [30] (Flocking in the bounded case)
Let (xi, vi)

N
i=1 be the unique global solution to (5) with regular communication weight ψb

and initial conditions which are non-collisional, namely x0i 6= x0j for all 1 ≤ i 6= j ≤ N .
Then :
(i) if β ∈ [0, 1] (long-range cond.), one has an unconditional flocking , meaning there
exist two constants dm, dM such that

0 ≤ dm ≤ ||X(t)||2 ≤ dM , ||V (t)||2 ≤ ||V 0||2 e−ψb(dM )t , ∀t ∈ R
+ .

(ii) if β ∈ (1,∞), we are in the conditional flocking case, namely for initial conditions
satisfying ||V 0||2 <

∫∞
||X0||2 ψb(r) dr, there exist two constants dm, dM such that

0 ≤ dm ≤ ||X(t)||2 ≤ dM , ||V (t)||2 ≤ ||V 0||2 e−ψb(dM )t , ∀t ∈ R
+ .

(iii) for any β ≥ 0 if one has additionally ||V 0||2 <
∫ ||X0||2
0

ψb(r) dr, then dm > 0.

In the bounded case, the long-range condition (i) guarantees unconditional flocking for
the Cucker-Smale model, regardless the initial condition. If not, one can still ensure
flocking, however assuming an initial restriction on the velocity V 0 (condition (ii)).
This last theorem does after all not say anything about the fact whether the particles
collide or not, it only tells us that no finite-time collapse to a one-point configuration
can occur if dm > 0.

In the strong singular case (β ≥ 1), one can show more, namely the absence of
collisions between agents, regardless the initial data. Let us denote the distance between
the particles as rij(t) := |xi(t)− xj(t)|, then we have the following result.

Theorem 0.4.3 [16] (Flocking in the singular case)
Let us consider (5) with singular communication weight ψs satisfying (6) as well as the
strong singularity condition in r = 0 (short-range cond.), i.e.

∫ r0

0

ψs(r) dr = ∞ for each r0 > 0 ,

which is for ex. satisfied for ψs(r) = α
rβ

with α > 0 and β ≥ 1 and assume initial
conditions which are non-collisional, namely x0i 6= x0j for all 1 ≤ i 6= j ≤ N . Then
(i) system (5) admits a unique global and smooth solution in time, with non-collisional
trajectories, namely

xi(t) 6= xj(t) for all 1 ≤ i 6= j ≤ N and ∀t ≥ 0 ;

(ii) if furthermore the initial conditions satisfy the condition

||V 0||∞ <
1

2

∫ ∞

2 ||X0||∞
ψs(r) dr ,

there exist positive functions resp. constants 0 < rm(t) < rM such that

0 < rm(t) ≤ rij(t) ≤ rM , ||V (t)||∞ ≤ ||V 0||∞ e−ψs(2 rM )t , ∀t ∈ R
+ .

Note that rm(t) might go to zero as t → ∞, such that collisions are possible in the
asymptotics of long time.
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In the weak singularity case (β ∈ (0, 1)) the particles can collide and stick together, the
existence of a unique (local) solution is however obtained thanks to the weak singularity
of ψs, in particular to the integrability of ψs at the origin [37, 38].

0.4.2 Three-zone model

The three-zone model describes the dynamics of the cloud of N particles via three
simple interaction rules, namely repulsion at short-range, alignment and attraction at
long-range. The evolution of each particle, with position and velocity (xi, vi) ∈ Rd×Rd,
is governed by the following Newton’s laws















x′i(t) = vi(t) ,

v′i(t) =
1

N

N
∑

j=1

ψ(|xi − xj |) (vj − vi)−
1

N

N
∑

j=1,j 6=i
∇xi [ϕ(|xi − xj |)] ,

∀i = 1, . . . , N ,

(8)
where the function ψij := ψ(|xi−xj |) is the communication weight between the particles,
satisfying the assumptions of the Cucker-Smale model for example. Concerning the
potential ϕ it contains the repulsion and attraction part, and we shall assume that

ϕ ∈ C1(R+
∗ ) , ϕ(r) > 0 ∀r > 0 , lim

r→0,∞
ϕ(r) = ∞ . (9)

Remark that

∇xiϕ(rij) = −ϕ′(rij)
xj − xi
rij

, rij(t) := |xi(t)− xj(t)| ,

such that we have attraction for ϕ′(r) > 0 and repulsion in the contrary case (see Fig.
3).

Remark 0.4.4 Condition (9) is used in these lectures to simplify the proofs, however
it can be weakend, as one can observe on the figures we draw and in the numerical
simulations we shall present later. Indeed, for having a bounded swarm, one finally only
needs a smooth potential ϕ under the form of a potential well, however providing then
extra hypothesis on the initial energy of the particles, in order for them not to escape
from the well.

Theorem 0.4.5 [12] (Flocking for the 3-zone model)
Let us suppose the communication weight ψb is bounded, and ψb resp. ϕ are satisfying
(6) resp. (9). Then for any non-collisional initial condition (x0i , v

0
i )
N
i=1 the three zone

model (8) admits a unique global solution (xi, vi)
N
i=1, which converges asymptotically in

time towards a flock, meaning there exist two constants rm, rM > 0 (dependent on N
but not on t), such that for all i, j = 1, · · · , N

0 < rm ≤ rij(t) ≤ rM ∀t ≥ 0 , A(t) →t→∞ 0 .

In particular no collisions occur during the dynamics of the system.
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Figure 3: Illustration of the three zone model interaction potentials.

0.4.3 Other collective behaviour models

These lectures are not intended to cover the whole range of models proposed in liter-
ature for self-organized systems. Our work concerns most specifically the modelling of
drone swarms, such that we shall focus on the Cucker-Smale and the three zone model
presented above. However, for completeness reasons, let us mention in this subsection
briefly some words about other well-known models. All these models offer a number of
mathematically interesting properties, such as flocking behaviour, (exponential) conver-
gence towards equilibrium states, phase-transitions etc, we refer the interested reader
to take a look at the papers cited below, for the mathematical results. A nice review is
given in [14].

Continuous Vicsek model [22, 39]. A simple model widely used in literature to
describe the dynamics of N point-like, self-propelled particles, evolving with a constant
speed c > 0, is given by the following continuous Vicsek model

{

x′i(t) = c ωi(t) ,

ω′
i(t) = (Id − ωi ⊗ ωi)ωi ,

∀i = 1, · · · , N , (10)

where xi(t) ∈ Rd and ωi(t) ∈ Sd−1 are the positions respectively the orientations of the
particles and where

ω̄i(t) :=
Ji(t)

|Ji(t)|
, Ji(t) :=

∑

j ,|xi−xj |≤R
ωj(t) ,

with R > 0 being the interaction range of the particles. The Vicsek model has been
proposed to describe the interactions among animal groups, such as fish schools. The
individuals move with a constant velocity, their orientation being continuously (or dis-
cretely) updated by the direction of the average velocities of the neighbouring individuals
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(sometimes with additional noise terms). The matrix (Id − ωi ⊗ ωi) corresponds to the
orthogonal projector on ω⊥

i . Its role is to ensure that the orientation ωi remains at
all times in S

d−1. Remark that this model considers only alignment without attraction
and/or repulsion. It permits also to investigate phase-transitions between ordered and
disordered states, whenever the noise strength or the particle number is varied. The
link between the Vicsek model and the Cucker-Smale model is investigated in [8].

Kuramoto model [34, 35]. This model is an archetype model for synchronisation
behaviour in heterogeneous systems of coupled oscillators, introduced to model the
collective dynamics of biological and neural oscillator networks. The model describes
the dynamics of N coupled oscillators with natural frequencies ωi(t), via the evolution
of the phase function ϑi(t), solution of the coupled ODE system

ϑ′i(t) = ωi +
K

N

N
∑

j=1

sin (ϑj(t)− ϑi(t)) , ∀i = 1, · · · , N , (11)

where K > 0 is the coupling strength between the oscillators. Individuals are hence
influenced at the microscopic level through pairwise attractive interactions, leading to
an overall collective movement, such as the emergence of synchronisation when all indi-
viduals oscillate in union. Synchrony seems to be essential to the proper functioning of
life processes, such that this model is intensively used to describe several spontaneous
synchronisation phenomena in cardiac or nervous systems.

Aggregation models [17, 33]. At cellular scale, the collective migration of cohe-
sive cell groups and their aggregation sets up the basis of the formation of complex
tissues (vascular and neural structures, cancer growth etc). A proper description of the
intercellular pairwise interactions is a challenging task, the pattern formation being a
combination of adhesive and repulsive mechanisms. Cells have also the particularity to
move in extremely viscous environments, such that inertial terms can be neglected and
first order models are usually employed, i.e.

λi x
′
i(t) = Fi(t) , Fi(t) = −

N
∑

j=1

K(|xi(t)− xj(t)|)
xi(t)− xj(t)

|xi(t)− xj(t)|
, ∀i = 1, · · · , N ,

where λi > 0 are the cell-substrate friction coefficients and Fi is the force acting on cell
i, given for example via a well chosen interaction kernel K.

0.5 Different levels of mathematical description

Let us finish this introductory chapter by remarking that many choices have to be made
in order to work out a mathematical model for the description of a specific phenomenon.
For example one has to single out if a deterministic or a stochastic model is better
suited for the description, or to decide whether a discrete or a continuous approach
is more adequate. Furthermore in the context of the dynamics of large systems of
interacting particles, the level of description has also its importance, in particular one
can distinguish between:
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• the particle description, based on the laws of motion of classical mechanics
(Newton’s laws) for the description of each individual particle trajectory (xi(t), vi(t))

N
i=1

(individual-based models);
→ the particle dynamic model is the most intuitive and physically most accurate
one, but also the most inadequate/heavy from a numerical point of view (6N
degrees of freedom, where N is the number of particles).

• the kinetic description, based on a collective swarm description via the particle
distribution function f(t, x, v), solution of the Vlasov equation. Here f(t, x, v) dv dx
represents the number of particles to be found at time t in the infinitesimal phase-
space volume dv dx around (x, v);
→ although the precise locations of the individual particles are lost in the kinetic
theory, sufficient knowledge of the particle motion is still incorporated and the
numerical costs are still rather high, the system being 6 dimensional.

• the fluid description, describing the particle swarm in terms of averaged macro-
scopic quantities, depending only on t and x, as for example the particle density
n(t, x), the velocity u(t, x), the pressure p(t, x), solutions of the well-known con-
servation laws of fluid mechanics;
→ fluid models are numerically very attractive, but poor from a physical point of
view, based on some empirical assumptions for the closure.

These successive models differ in complexity and precision. They are increasingly simpli-
fied, in the sense that they can be obtained from one another by decreasing the number
of degrees of freedom, hereby becoming less accurate. Depending on the physical phe-
nomenon one wants to investigate, one has to choose within all these models the one
which is the most accurate with respect to the particular physical situation, paying at-
tention at the same time to the numerical costs.

Finally, let us also mention that when designing a collective dynamics model, the
mathematical description of the inter-particle interactions is not a simple task. It
strongly depends on the specific nature of the examined population, for example if one
considers animals, humans or robots. The different internal (microscopic) behaviours
of these three populations can then be observed on the emergent (macroscopic) overall
behaviour. For example humans are much more individualists than animals, thus it is
more difficult for humans to be part of a group and this originality has to be taken
into account in the inter-particle description. For animals hierarchy and rules are very
important. A real population is a complex system, it involves plenty of physical, social,
biological and cognitive variables. Contrary to animals and humans, robots (drones for
ex.) are designed, such that the inter-particle rules are often imagined by the designer
and not given by a natural law. However these rules have to be realistic from a practical
point of view.





Chapter 1

The Fokker-Planck equation

In this chapter we shall explain how one obtains the Fokker-Planck equation start-
ing from Newton’s laws of classical mechanics, where some stochastic noise has been
introduced, to describe the interaction with an environment. The concept of “stochastic
process” is needed for this.

This chapter could seem somehow apart in this manuscript, however it shows how
one makes the link between the microscopic models (for ex. the individual-based models)
and the mesoscopic models, namely the kinetic approach.

1.1 The Langevin system

The botanist Robert Brown (1773-1858) investigated the chaotic mouvement of pollen-
particles in suspension in water. At that time the scientific world was influenced by
Newton’s mechanics and its determinism, such that the erratic dynamics of the pollen-
particles generated rather hard interpretation problems.

Figure 1.1: Example of the erratic dynamics of a particle.

17
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The main idea of Paul Langevin (1872-1946) was that Newton’s equations of classical
mechanics remain valid in average for the Brownian, erratic particle motion. Thus, for
a particle evolving in a viscous environment with friction coefficient γ > 0, the average
dynamics is given by Newton’s laws

m
d

dt
〈v(t)〉 = −mγ 〈v(t)〉 , where 〈v(t)〉 = d

dt
〈x(t)〉 , ∀t ∈ R .

The average 〈·〉 is taken over all possible trajectories of the particles submitted to a
random force field η(t). The equation however which governs in detail the dynamics
of one particle submitted to this force field η(t) (noise term) is the so-called Langevin
equation given by

d

dt
v(t) = −γ v(t) + η(t) , ∀t ∈ R . (1.1)

It is a stochastic differential equation, which incorporates two force terms, the viscous
force −γ v(t) and a fluctuating force η(t), which represents the incessant impacts of the
environmental molecules on our Brownian particle. The choice of this last force field η(t)
is done in such a manner to model in the most realistic way the effects of the microscopic
collisions on the particles. It is an unknown force field, rather complicated, and which
has to be treated stochastically. We shall suppose that η(t) has a Gaussian distribution
(Gaussian white noise), meaning that we assume zero average and zero correlation time,
i.e.

〈η(t)〉 = 0 , 〈η(t) η(t′)〉 = Γ δ0(t− t′) , Γ > 0 , ∀t, t′ > 0 . (1.2)

The constant Γ > 0 measures somehow the strength of the fluctuating force-field. Each
solution of the Langevin equation (1.1) represents a different trajectory of the particle,
depending on the initial condition v0 as well as on the random force field η(t), and is
given by Duhamel’s formula

v(t) = v0 e
−γ t +

∫ t

0

e−γ (t−s) η(s) ds , ∀t > 0 . (1.3)

As η(t) is a Gaussian stochastic process and as the sum or the integral of Gaussian vari-
ables are again Gaussian variables, we can deduce that v(t) is also a Gaussian stochastic
process. Hence for its characterization it is enough to compute the average µ(t) = 〈v(t)〉
and the variance σ(t), averaging over all possible outputs, and to define the correspond-
ing velocity probability distribution function via

f(t, v) :=
1

√

2πσ2(t)
e
− |v−µ(t)|2

2σ2(t) . (1.4)

In view of properties (1.2), we get by averaging (1.3) on one hand

〈v(t)〉 = v0 e
−γ t →t→∞ 0 ,

and on the other hand

v2(t) = v20 e
−2 γ t + 2v0 e

−γ t
∫ t

0

e−γ (t−s) η(s) ds+

∫ t

0

∫ t

0

e−γ (t−s) e−γ (t−s
′) η(s) η(s′) ds′ds ,
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such that

〈v2(t)〉 = v20 e
−2 γ t +

∫ t

0

∫ t

0

e−γ (t−s) e−γ (t−s
′) Γ δ0(s− s′) ds′ds

= v20 e
−2 γ t +

Γ

2 γ

(

1− e−2 γ t
)

→t→∞
Γ

2 γ
.

What can be observed about these two computations is that the initial conditions are
lost after some time, the mean velocity tends towards zero in the long-time asymptotics,
however the mean squared velocity has a non-zero, finite limit. In the long-time limit
t→ ∞ the Brownian particle gets in equilibrium with the surrounding medium. If this
one is in thermodynamic equilibrium, characterized by a temperature T (thermal bath),
the equipartition theorem of thermodynamics relates the temperature of the medium to
the average kinetic energy of the particle via

m

2
〈v2∞〉 = 1

2
kB T ⇒ Γ = 2

kB T

m
γ , (1.5)

where kB is the so-called Boltzmann constant. In other words, in the long-time limit

〈v2(t)〉 approaches the squared of the thermal velocity given by vth :=
√

kB T
m

. The

identity (1.5) relates a quantity associated with the fluctuations, i.e. Γ, to the coeffi-
cient describing the dissipation, i.e. γ (fluctuation-dissipation relation). It expresses
the balance between friction, which tends to drive the system towards an inactive state
, and noise which tends to keep the system in mouvement.

We are now able to characterize the solution to the Langevin equation (1.1) as a
Gaussian process with mean

µ(t) := 〈v(t)〉 = v0 e
−γ t , ∀t > 0 , (1.6)

and variance function

σ2(t) := 〈[v(t)− 〈v(t)〉]2〉 = kB T

m

(

1− e−2 γ t
)

, ∀t > 0 . (1.7)

In the long-time asymptotics we obtain the following equilibrium probability distribution
function for the velocities of our Brownian motion

f∞(v) :=
1

√

2πσ2
∞
e
− v2

2σ2
∞ with σ2

∞ :=
kB T

m
= v2th , µ∞ = 0 , (1.8)

which is the so-called Maxwell-Boltzmann distribution function.

1.2 The Fokker-Planck equation

The question is now how to obtain the probability distribution function of the velocities
for each time instant t. In other words instead of focusing, as in the previous subsec-
tion, on the solution v(t) to the Langevin equation (1.1), we shall be rather interested
in finding an equation governing the dynamics of the velocity probability distribution
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function f(t, v), where f(t, v) dv represents the probability to find at instant t the Brow-
nian particle with velocity in the volume dv around v. This equation will be found by
making a sort of balance between the gain and the loss terms in the velocity variable v,
namely the time-fluctuations of the quantity f(t, v) are given by

∂tf(t, v) =

∫ ∞

−∞

[

b̃(v, v′) f(t, v′)− b̃(v′, v) f(t, v)
]

dv′ , ∀(t, v) ∈ R
+ × R , (1.9)

where b̃(v, v′) is the so-called cross-section and gives the probability per unit time of a
velocity transition from v′ towards v. We suppose here that this cross-section is inde-
pendent of time, so that memory-effects are neglected, and that only small changes in
velocity can occur.

In order to remodel a little bit more the balance equation (1.9), we shall introduce
the new velocity variable y := v− v′ which shall be considered as small when compared
with v, and we shall define the new cross-section

b(u− w,w) := b̃(u, w) , ∀u, w ∈ R .

Assuming the necessary regularity, we have thus

∂tf(t, v) =

∫ ∞

−∞
[b(v − v′, v′) f(t, v′)− b(v′ − v, v) f(t, v)] dv′

=

∫ ∞

−∞
[b(y, v − y) f(t, v − y)− b(−y, v) f(t, v)] dy

=

∫ ∞

−∞
[b(y, v − y) f(t, v − y)− b(y, v) f(t, v)] dy ,

where in the second term of the last line, we made the change of variable y → −y. A
Taylor expansion around v with |y| ≪ |v| yields

b(y, v − y) f(t, v − y) = b(y, v) f(t, v)− y ∂v [b(y, v) f(t, v)] +
y2

2
∂2vv [b(y, v) f(t, v)] + · · ·

Recalling that b is concentrated around y ≈ 0, we have thus altogether

∂tf(t, v) ≈
∫ ∞

−∞

{

−y ∂v [b(y, v) f(t, v)] +
y2

2
∂2vv [b(y, v) f(t, v)]

}

dy

= −∂v
{(
∫ ∞

−∞
yb(y, v) dy

)

f(t, v)

}

+
1

2
∂2vv

{(
∫ ∞

−∞
y2b(y, v) dy

)

f(t, v)

}

.

This can be rewritten as

∂tf(t, v) = −∂v [A(v) f(t, v)] +
1

2
∂2vv [B(v) f(t, v)] ,

where

A(v) :=

∫ ∞

−∞
y b(y, v) dy , B(v) :=

∫ ∞

−∞
y2 b(y, v) dy . (1.10)
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One can use now the expression of the solution to the Langevin equation (1.1) in order
to compute A(v) respectively B(v) and to obtain

A(v) = −γv , B(v) = 2γ
kB T

m
.

Indeed, replacing y = v′ − v in (1.10), thus dy = dv′, reminding that b̃(v′, v) is the
probability per unit time of a velocity transition from v towards v′, and denoting by
v′ := v(∆t) the solution of the Langevin equation (1.1) with initial condition v, then
one has

A(v) = lim
∆t→0

〈v(∆t)− v〉 1

∆t
= lim

∆t→0
v
e−γ∆t − 1

∆t
= −γ v ,

where the mean 〈·〉 is taken over all realizations of the random force field η(t). Similar
computations give rise to the B(v) expression. This leads finally to the Fokker-Planck
equation

∂tf(t, v) = γ∂v

[

v f(t, v) +
kB T

m
∂vf

]

. (1.11)

This is a deterministic partial differential equation on the probability distribution func-
tion f , which has the form of a drift-diffusion equation in the velocity variable. Let us
underline here the interpretation of kB T

m
as a diffusion coefficient in v. The right hand

side of (1.11) can be rewritten in the form γ∂v

[

kB T
m

feq ∂v

(

f
feq

)]

, where feq is defined

in (1.12). These reformulation permits to obtain in a simple manner the stationary
solutions to the Fokker-Planck equation.

It is sometimes interesting to write the Fokker-Planck equation as a continuity equa-
tion

∂tf(t, v) + ∂vJ (t, v) = 0 ,

with the probability current given by

J (t, v) := −γv f(t, v)− γ
kB T

m
∂vf(t, v) .

Integrating the continuity equation over the velocity-interval [v−, v+] yields

∂t

∫ v+

v−

f(t, v) dv = J (t, v−)− J (t, v+) ,

which means that a change in the probability density distribution in the interval [v−, v+]
comes from changes in the current-fluxes through the boundaries.

1.3 Properties and remarks

The Fokker-Planck equation is a basic equation in many areas of physics and biology. It
models a set of particles experiencing both, diffusion and drift. The interplay between
these two effects is at the basis of most of its properties, which shall be briefly summa-
rized here in a multi-dimensional framework.
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Stationary solutions
If the environment of our Brownian particle is in thermal equilibrium at temperature
T , then the Brownian particle is thermalized, and the stationary solutions of (1.11) are
given by the Maxwell-Boltzmann distribution function

feq(v) :=

(

m

2πkB T

)d/2

e
− m |v|2

2 kB T , ∀v ∈ R
d . (1.12)

We recognize the equilibrium probability function f∞ found in (1.8) for d = 1.

Fundamental solutions
Another important question is to find the fundamental solutions of (1.11) if possible,
the so-called Green’s functions. In other words, we are searching for the solutions of the
Fokker-Planck equation with initial condition given by g(0, v; v0) := δ0(v − v0) for an
arbitrary v0 ∈ Rd. These are given by

g(t, v; v0) :=

(

1

2π σ2(t)

)d/2

e
− |v−µ(t)|2

2σ2(t) ∀t > 0 ,

which is nothing but a Gaussian distribution with mean velocity µ(t) and spread/deviation
σ(t) given in (1.6)-(1.7). The fundamental solutions enable now to obtain the solutions
of the Fokker-Planck equation (1.11) for any initial condition f0, namely via

f(t, v) =

∫

Rd

g(t, v; v0) f(v0) dv0 .

Physical properties
Let us now consider the following linear Fokker-Planck equation

∂tf(t, v) = ∇v · [v f(t, v) +∇vf ] , ∀(t, v) ∈ R
+ × R

d ,

and observe that it has the following characteristics:

• One conservation law

∂tρ = 0 , ρ(t) :=

∫

Rd

f(t, v) dv .

• A natural Lyapunov functional, the free-energy, composed of the sum of the en-
tropy and the kinetic energy, namely

E(f) :=
∫

Rd

f log(f) dv +

∫

Rd

|v|2
2
f dv .

• The dissipation-term

D(f)(t) := − d

dt
E(f(t)) =

∫

Rd

1

f
|∇vf + v f |2 dv ≥ 0 , ∀t ∈ R

+ ,
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which can be rewritten as the so-called Fisher information of f with respect to the

equilibrium distribution feq(v) =
1

(2π)d/2
e−

|v|2

2 , namely D(f) = I(f |feq), where

I(f |g) :=
∫

Rd

f

∣

∣

∣

∣

∇v log

(

f

g

)
∣

∣

∣

∣

2

dv .

It is now possible to make use of the Sobolev inequalities, to get an estimate on
the speed of return of the distribution function f towards the equilibrium feq.

Force field from a potential
Finally let us remark that if the particle is immersed in an exteriour potential-field φ(x),
yielding an additional force Fext(t, x) := −∇xφ(t, x), then the Fokker-Planck equations
becomes space-dependent and writes

∂tf(t, x, v) + v · ∇xf −∇xφ(t, x) · ∇vf = γ∇v ·
[

v f(t, x, v) +
kB T

m
∇vf

]

. (1.13)

Boundary conditions
When one is considering the Fokker-Planck equation in a bounded domain Ω ⊂ Rd, with
boundary ∂Ω and outward unit normal vector n(x), then boundary conditions have to
be specified. Different boundary conditions can be imagined, as for example reflecting
boundary conditions (impenetrable wall)

f(t, x, Rx v) = f(t, x, v) , ∀x ∈ ∂Ω , Rxv := v − 2(v · n(x))n(x) ,

or absorbing boundary conditions (absorbing wall), meaning f(t, x, v) = 0 for all incom-
ing velocities v at x ∈ ∂Ω.
In contrast with this, if Ω = Rd natural boundary conditions are imposed, which require
that the distribution function is vanishing as |x| → ∞.

1.4 Variational framework for the Fokker-Planck equa-

tion

The linear Fokker-Planck equation

{

∂tf(t, v)−∇v · [v f +∇vf ] = 0 , ∀(t, v) ∈ R
+ × R

d ,

f(0, ·) = fin ,
(1.14)

is of parabolic type and has a very nice variational framework. Introducing the weighted
Hilbert-spaces

L2
µ :=

{

f ∈ L2(Rd) /

∫

Rd

|f |2 dµ <∞
}

, (f, g)µ :=

∫

Rd

f g dµ , (1.15)

H1
µ :=

{

f ∈ L2
µ / ∇vf ∈ (L2

µ)
d
}

, (f, g)H1
µ
:= (f, g)µ + (∇vf,∇vg)µ , (1.16)
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with measure dµ := M−1 dv and M(v) := 1
(2π)d/2

e−|v|2/2, one can show that Q(f) :=

∇v · [v f +∇vf ] is a linear, bounded operator defined as

Q : H1
µ → H−1

µ , 〈Q(f), g〉H−1
µ ,H1

µ
:= −(vf +∇vf, vg +∇vg)µ ,

where H−1
µ denotes the dual space of H1

µ. It is also important to remark that for f ∈ H1
µ

one has vf ∈ L2
µ. This can be shown in 1D via a Hermite decomposition. Indeed,

defining the Hermite functions {ψk}k∈N recursively as

√
k + 1ψk+1(v) = v ψk(v)−

√
k ψk−1 , ψ−1 ≡ 0 , ψ0 ≡ M , ψ1 ≡ vM ,

these one form a complete, orthogonal basis of L2
µ and satisfy moreover

ψ′
k(v) = −

√
k + 1ψk+1(v) ,

∫ ∞

−∞
ψk(v)ψl(v)M−1 dv = δkl .

The solution to (1.14) can thus be uniquely decomposed as

f(t, v) :=
∞
∑

k=0

αk(t)ψk(v) , (1.17)

decomposition which permits to show the desired property.

A more common mathematical framework is obtained if one rescales the distribution
function f via the equilibrium distribution M(v) := 1

(2π)d/2
e−|v|2/2, in particular by

introducing g := f/M, which satisfies the equation

{

∂tg −∆vg + v · ∇vg = 0 , ∀(t, v) ∈ R
+ × R

d ,

g(0, ·) = gin .
(1.18)

Denoting the new collision operator by L(g) := ∆vg − v · ∇vg and introducing the
corresponding Hilbert-spaces with measure dγ := M dv

H := L2
γ , V := H1

γ , (1.19)

one can show that L : V → V⋆ is a linear, bounded operator defined as 〈L(f), g〉H−1
γ ,H1

γ
:=

−(∇vf,∇vg)γ for all f, g ∈ H1
γ . Introducing the adjoint operator ∇⋆

v of the gradient via

∇⋆
v : L

2
γ → H−1

γ , ∇⋆
v ξ := v ξ −∇v ξ .

one can rewrite the collision operator in a simpler form as L = −∇⋆
v · ∇v.

Proposition 1.4.1 Reducing the collision operator L to an L2-operator, namely to
L : D(L) ⊂ L2

γ → L2
γ, this one satisfies the following properties :

(i) The linear operator L : D(L) ⊂ H → H is symmetric and non-positive.
(ii) The kernel of L is given by

Ker(L) := {ρ ∈ R} .
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(iii) The L2
γ-orthogonal to the kernel of L is

(Ker(L))⊥ :=

{

f ∈ H /

∫

Rd

f(v)M dv = 0

}

,

and we have L2
γ = Ker(L)⊕(Ker(L))⊥, where f = Πf+(Id−Π) f with Π the orthogonal

projection on the kernel of L, given by

Π : L2
γ → Ker(L) f 7→

∫

Rd

f(v)M dv .

(iv) −L is coercive on D(L) ∩ (Ker(L))⊥, i.e.

−(L(f), f)γ = −〈L(f), f〉H−1
γ ,H1

γ
≥ C||f ||2H , ∀f ∈ D(L) ∩ (Ker(L))⊥ .

(v) The range Im(L) of L is closed in L2
γ and coincides with (Ker(L))⊥. We have

moreover the one-to-one mapping

L : D(L) ∩ (Ker(L))⊥ → (Ker(L))⊥ .

Introducing the bilinear form associated to L : V → V⋆, namely

l : V × V → R , l(f, g) := (∇vf,∇vg)γ ,

one enters into the mathematical framework of the Lax-Milgram or Lions theorem, such
that the well-posedness of a solution to (1.18) is a natural consequence. In more details
for each T > 0 there exists a unique weak solution g of (1.18) satisfying

g ∈ W 1
2 (0, T ;V,H) ⊂ C([0, T ];H) .

For this theory one has to consider the evolution triplet V ⊂ H = H⋆ ⊂ V⋆.





Chapter 2

Entropy methods

In this chapter we shall consider the following autonomous evolution equation
{

∂tu(t) = F (u(t)) , ∀t > 0 ,

u(0) = u0 ,
(2.1)

that describes for example the dynamics of some particle swarm. Here F : D(F ) ⊂ X →
X is some possible nonlinear operator on the functional Banach-space X . The questions
we are asking concern, apart the obvious existence and uniqueness investigations, the
asymptotic long-time behaviour of the solution to this problem towards an equilibrium
state u∞ ∈ kerF , to be identified. Entropy dissipation methods have been developed to
investigate this qualitative long-time behaviour of the solutions, and are based as much
as possible on physical arguments, such as dissipation processes, giving the direction of
the time flow.

The notion of Lyapunov functional and entropy play a fundamental role in ODE
resp. PDE theory. For example, in hyperbolic theory the entropy allows to pick up a
unique (physical) weak solution within all the existent weak solutions of the considered
nonlinear hyperbolic equations. In kinetic theory, the entropy is a useful tool to derive
hydrodynamic equations from the underlying kinetic equations (as for ex. Boltzmann,
Fokker-Planck or Landau equations) and this via the so-called H-theorem. The entropy
plays also a fundamental role in the global-in-time existence proof as well as regularity
proof for cross-diffusion systems, which are strongly coupled “parabolic-type” equations,
with a diffusion matrix which is neither symmetric nor positive-definite, such that stan-
dard elliptic/parabolic theories does not apply any more.

Definition 2.0.1 (Lyapunov functional) Let E : D(F ) ⊂ X → R be a functional
decreasing along the trajectories u(t) of (2.1), namely satisfying

d

dt
E(u(t)) ≤ 0 , ∀t > 0 .

Such a functional E is then called a Lyapunov functional for (2.1).

An entropy is a specific Lyapunov functional, as stated in the next definition.

27
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Definition 2.0.2 (Entropy) We call E : D(F ) ⊂ X → R an entropy corresponding to
(2.1), if the following properties are satisfied

• E is a Lyapunov functional corresponding to (2.1);

• E is convex.

The entropy is a physical quantity which has several interpretations, depending on the
problem one is investigating. The entropy measures the disorder in a system (entropy of
mixing), it can be identified with a measure of the ignorance about a system (information
theory) or finally it can measure the irreversible changes in a system (thermodynamics).

Definition 2.0.3 (Entropy dissipation) Let E be an entropy corresponding to (2.1).
Then the entropy dissipation or entropy production is a functional D : D(F ) ⊂ X → R

satisfying

D(u(t)) = − d

dt
E(u(t)) , ∀t > 0 ,

along the trajectories u(t) of (2.1).

In order to be able to use entropies to prove asymptotic convergence results of a solution
towards an equilibrium, we need a further concept, namely the relative entropy.

Definition 2.0.4 (Relative entropy) For a given entropy E and a given function u∞,
we define the relative entropy (Bregman divergence) as follows

E(u|u∞) := E(u)− E(u∞)− dE(u∞) (u− u∞) ≥ 0 ,

which is nothing but the first Taylor expansion of E around u∞. The last term represents
the directional derivative of E (d E(u∞) being the Fréchet derivative in u∞).

The Bregman relative entropy measures somehow the distance between two probability
distributions, even if it is not a metric, as it is not symmetric, nor does it satisfy the
triangle inequality. Remark that one has E(u∞|u∞) = 0 as well as the simple expres-
sion E(u|u∞) = E(u) − E(u∞), if u∞ is a minimizer of E , meaning for u∞ satisfying
dE(u∞) ≡ 0.

Very often, in kinetic theory, one defines a special kind of entropy, the phi-entropy,
given by

Eφ(u) :=
∫

Rd

φ(u(·)) dx , (2.2)

where the entropy generating function φ : R+ → R+ is a continuous, convex function,
satisfying φ(1) = 0. In this case, the relative entropy is often defined as

Eφ(u|u∞) :=

∫

Rd

φ

(

u

u∞

)

u∞ dx . (2.3)

To give an example, the generalized Kullback-Leibler entropy is based on the func-
tion φ(x) := x log(x)− x+ 1, yielding the Kullback-Leibler divergence

Eφ(u|u∞) :=

∫

Rd

[

u(x) log

(

u

u∞

)

− u(x) + u∞(x)

]

dx .
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As a second example, we mention a Bregman-divergence which cannot be written under
the form (2.2), namely taking E(u) := ||u||2L2 yielding E(u|u∞) := ||u− u∞||2L2, which is
a standard distance.
What can be mentioned here is that there are many situations in which it is meaning-
ful to measure the distance between two probability distributions, but the appropriate
metric may depend on the field of application and has to be identified.

The problem we shall be concerned with now is not the existence/uniqueness theory
of the Cauchy-problem (2.1), but rather the asymptotic behaviour of its solutions as
t→ ∞. One may ask,

• if there is a unique equilibrium u∞ of (2.1) (minimizer of entropy E , zero of F );

• if u(t) converges towards u∞ as t→ ∞;

• what is the rate of convergence of u(t) towards u∞.

Naturally, these questions require the definition of a measure, permitting to quantify the
distance between u(t) and u∞. For example this can be done in the entropy sense, by
evaluating the relative entropy E(u|u∞), or in the L1-sense by evaluating ||u(t)−u∞||L1.

The main strategy behind entropy methods is now the following:

• Identify the equilibrium state u∞ and an entropy functional E , associated with the
problem to be treated (2.1). Define a relative entropy E(u|u∞);

• Given the entropy functional, which attains its minimum at the equilibrium state,
the distance between the solution u(t) and the equilibrium u∞ can be measured
by the relative entropy, namely E(u|u∞). To do this, one investigates generally the
entropy dissipation or production functional D(u(t)) = − d

dt
E(u(t)). Indeed, the

main idea is that the entropy production controls the relative entropy, via some
entropy-entropy production inequality of the type

D(u(t)) = − d

dt
E(u(t)) ≥ Φ(E(u|u∞)) ,

where Φ is a positive, continuous, strictly increasing function, satisfying Φ(0) = 0.
Gronwall’s inequality implies then the convergence towards the equilibrium in the
entropy sense, with explicit convergence rate if Φ has a simple form (exponential
convergence rate for linear Φ);

• Finally, a Csiszár-Kullback inequality of the type

||u(t)− u∞||L1 ≤ χ(E(u|u∞)) ,

with χ a positive, continuous, strictly increasing function, satisfying χ(0) = 0,
permits then to show that the distance between the solution u(t) and the equilib-
rium u∞ is controlled by the relative entropy E(u|u∞), implying the convergence
in the L1 sense (with explicit convergence rate, if Φ and χ are simple functions).
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2.1 Coercivity versus Hypo-coercivity

Let us start by introducing the concepts of coercivity and hypocoercivity of the operator
L : D(L) ⊂ H → H, where H is a Hilbert-space endowed with the scalar product (·, ·)H.
We shall assume in this subsection that L is a linear, unbounded operator with closed
range, and let us consider the following problem

{

∂tu = −Lu , ∀t > 0 ,

u(0) = u0 .
(2.4)

Definition 2.1.1 (Coercivity) The operator L is said to be λ-coercive (on (kerL)⊥)
for some λ > 0, if

(Lh, h)H ≥ λ ||h||2H , ∀h ∈ D(L) ∩ (kerL)⊥ . (2.5)

If we denote by Π : D(L) ⊂ H → kerL the orthogonal projection on the kernel of L,
inequality (2.5) can be rewritten as

(Lh, h)H ≥ λ ||(Id−Π) h||2H , ∀h ∈ D(L) .

By Gronwall’s lemma, λ-coercivity implies exponential convergence of the solution u of
(2.1) towards the equilibrium u∞ = Π(u0) ∈ kerL. Indeed, defining the entropy

E(u) := 1

2
||u||2H ,

one gets immediately for a solution u of (2.4) with u0 ∈ D(L) ∩ (kerL)⊥ that

d

dt
E(u(t)) = −(Lu, u)H ≤ −λ||u||2H ,

leading hence to exponential convergence towards zero, namely

||u(t)||H ≤ e−λ t||u0||H , ∀u0 ∈ D(L) ∩ (kerL)⊥ .

Let us mention one simple example of a coercive operator, namely the spatially homo-
geneous Fokker-Planck equation

∂tf = −L1f, L1f := −∂vvf + v ∂vf ,

where the evolution equation lives in (t, v) ∈ R
+×R, the operator L1 is acting only on the

velocity variable v ∈ R and the corresponding Hilbert-space is given by H := L2(dµ∞)
with dµ∞ := M dv and M := 1√

2π
e−v

2/2. Considering t ∈ R+ as a parameter, one has
in this case

(L1f, f)H = ||∂vf ||2H ≥ CP ||f ||2H , ∀f ∈ D(L1) ∩ (kerL1)
⊥ ,

where we used the weighted Poincaré’s inequality as well as

kerL1 := {c ∈ R} , (kerL1)
⊥ :=

{

f ∈ H /

∫

R

fM dv = 0

}

.

However in many cases, despite the fact that coercivity does not hold, the exponential
decay still happens to exist. The notion of hypocoercivity is introduced for describing
such exponential decay of a solution in the absence of coercivity.
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Definition 2.1.2 (Hypocoercivity) The operator L is said to be λ-hypocoercive (on
(kerL)⊥) for some λ > 0, if there exist a constant C > 0 such that

||u(t)||H ≤ C e−λ t||u0||H, , ∀u0 ∈ D(L) ∩ (kerL)⊥ .

The non-homogeneous Fokker-Planck equation is a typical example of a hypocoercive
operator, namely

∂tf = −L2f , L2 f := v ∂xf + (−∂vvf + v∂vf) , (2.6)

the evolution equation living in (t, x, v) ∈ R+ × T × R, with T the periodic torus and
H := L2(dν∞) the Hilbert-space with dν∞ := Mdxdv and M := 1√

2π
e−v

2/2. Let us
observe also that we have

kerL2 := {c ∈ R} , (kerL2)
⊥ :=

{

f ∈ H /

∫

R

∫

T

fM dxdv = 0

}

.

In this case we have to modify the entropy, in order to get an estimate of the rate of
convergence. Indeed, with the standard entropy E(f) := 1

2
||f ||2H one can only get

d

dt

(

1

2
||f ||2H

)

= −||∂vf ||2H ≤ −CP ||f − 〈f〉||2H , 〈f〉(t, x) :=
∫

R

f(t, x, v)M dv ,

and we do not recover the whole entropy on the right, which would permit to get the
desired exponential decay. A better choice would be to consider the modified entropy

G(f) := α ||f ||2H + β ||∂vf ||2H + ||∂xf ||2H + δ (∂vf, ∂xf)H ,

with α, β, δ positive constants to be chosen such that G is decreasing along the trajecto-
ries f of (2.6). The introduction of the additional term (∂vf, ∂xf)H proves to be helpful
to prove the exponential decay, as it introduces some mixing between the two space and
velocity variables x and v. It is important to understand here that it is the combination
of both, on one hand the transport term v ∂xf , which mixes the space and the velocity
variable, and on the other hand the Fokker-Planck term −∂vvf +v∂vf which regularizes
and dissipates in the velocity variable, which leads finally to the decay and regularity
in both variables, and these two effects are now somehow taken into account with the
additional “mixing term”.

Let us first prove that G is equivalent to the H1(dν∞) norm, defined by ||f ||2H1 :=
||f ||2H + ||∂xf ||2H + ||∂vf ||2H, for some well-chosen constants α, β, δ > 0.

Lemma 2.1.3 If δ2 < β then there exist two constants c1, c2 > 0 such that

c1 ||f ||2H1 ≤ G(f) ≤ c2 ||f ||2H1 .

Proof: The Cauchy-Schwarz inequality permits to show that

|δ (∂vf, ∂xf)H| ≤
δ2

2
||∂vf ||2H +

1

2
||∂xf ||2H ,
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thus

α ||f ||2H+(β− δ2

2
) ||∂vf ||2H+

1

2
||∂xf ||2H ≤ G(f) ≤ α ||f ||2H+(β+

δ2

2
) ||∂vf ||2H+

3

2
||∂xf ||2H .

Let us now prove the exponential decay in the modified entropy sense.

Theorem 2.1.4 [31] There exist positive constants α, β, δ as well as κ > 0 such that
the entropy G decreases along the trajectories of the Fokker-Planck equation, for all
f0 ∈ H1 satisfying

∫

T

∫

R
f0M dvdx = 0, namely one has

G(f(t)) ≤ e−κ tG(f0) , ∀t > 0 .

As a consequence, there exists a constant ν > 0 such that the solution to (2.6) satisfies

||f(t)||H1 ≤ ν e−
κ
2
t , ∀t > 0 .

Proof: The proof is based on the evaluation of d
dt
G(f(t)), in particular one can show

that
d

dt
G(f(t)) ≤ −δ

2

(

||∂vf ||2H + ||∂xf ||2H
)

≤ −κG(f(t)) ,

assuming that 1 < δ < β < α, δ2 < β and 1
2
(2β + δ)2 < α as well as using the

inhomogeneous Poincaré’s inequality (4.1). Gronwall’s lemma and the equivalence of
the norms permit to conclude the proof.

Remark 2.1.5 Let us underline here the L2-framework of the first, coercive example,
and the H1-framework of the second, hypocoercive example. It is also possible (but more
complicated) to remain in the L2-framework even for the hypocoercive L2-operator, by
considering the different modified entropy G(f(t)) := 1

2
||f ||2H+(Af, f)H, with an operator

A : H → H which has been defined in [3].

Let us conclude this section by giving some references in the domain of entropy
methods. One can cite for instance the very complete work [6], which relates entropy
methods with the Bakry-Émery calculus, and discusses the sharpness of convex Sobolev
inequalities associated with general Fokker-Planck type equations. This latter discussion
is very relevant when one is interested in getting optimal rates of convergence.

About the entropies constructed in the context of hypocoercive models, one can cite
the review [40], which addresses many aspects of hypocoercivity in details, and in a
very general setting. Therein are discussed the construction of entropies equivalent to a
H1-norm, as we discussed in this document. However in [40], the author also discusses
methods working in an L2-setting, as well as in a weaker, free-energy setting. The theory
for hypocoercivity in a H−1-setting is a very recent development, started in [5].

For specific references in hypocoercive entropy construction in the L2-setting, a very
important reference is [27], giving a general method for the construction of entropies in
abstract settings. This analysis is however limited to the case of equations with only
one conservation law (such as the linear Fokker-Planck equation discussed above). This
limitation is however partially removed in the more recent works [2, 13].
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2.2 Two simple, linear algebraic examples

Let us illustrate with two simple toy models the essential features of the coercive resp.
hypocoercive entropy-method. We consider the system

U ′(t) = −AU(t) , U(t) := (x(t), y(t))t , t ∈ R ,

with the initial condition U(0) = U0 and the coercive resp. hypocoercive matrices (on
(kerA)⊥)

Ac =

(

1 −1
−1 1

)

, Ahc = Q− T =

(

0 0
0 1

)

−
(

0 k
−k 0

)

,

where Q corresponds to a type of collision operator (degenerate diffusion operator),
whereas T corresponds to a skew-adjoint transport operator.

Coercive case: The matrix Ac admits two eigenvalues λ1 = 0 and λ2 = 2 with
corresponding eigenvectors v1 = (1, 1)t and v2 = (1,−1)t. Furthermore one has

kerAc := span(v1) , (kerAc)
⊥ = span(v2) .

Taking as entropy the functional E(U) := 1
2
||U ||2 we get immediately

d

dt
E(U(t)) = −2||U(t)||2 = −4E(U(t)) , ∀U0 ∈ (kerAc)

⊥ ,

thus, we are in a typical coercive case, which yields immediately

E(U(t)) = e−4t E(U0) , ||U(t)|| = e−2t ||U0|| , ∀U0 ∈ (kerAc)
⊥ ,

which is finally in accordance with the exact solution, which is

U(t) = αv1 + βe−2tv2 , where αv1 + βv2 = U0 .

Hypocoercive case: Let us assume that |k| > 1. Then, the matrix Ahc admits the
two complex conjugate eigenvalues and corresponding eigenvectors given by

λ1/2 =
1

2
± i

√
4k2 − 1

2
, v1/2 = (k,−λ1/2)t .

Furthermore one has kerAhc = {0} and (kerAhc)
⊥ = R

2. Choosing as entropy functional
E(U) := 1

2
||U ||2 would be not enough, as

d

dt
E(U(t)) = −y2(t) , U(t) = (x(t), y(t))t ,

and we have no coercivity on R2 = (kerAhc)
⊥. However, if one takes a look at the exact

solution in this case, which reads

U(t) = αe−at [sin(bt+ β) u+ cos(bt + β) v] , U0 = α [sin(β) u+ cos(β) v] ,
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with λ1,2 = a ± ib and v1,2 = u ± iv, we observe an exponential decay. Thus, let us
modify the entropy, adding a corrector term as

G(U) := 1

2
||U ||2 + ε

k

1 + k2
x(t)y(t) ,

with the parameter ε ∈ (0, 1) to be adequately chosen, and try to show the exponential
decay in this new modified entropy sense.

Firstly, one can show that G(U) is equivalent to the standard || · || norm, in particular
one has

1− ε

2
||U ||2 ≤ G(U) ≤ 1 + ε

2
||U ||2 .

Indeed, for k ≥ 1 one can show that

1

2

(

1− ε
k

1 + k2

)

||U(t)||2 ≤ 1

2

(

1− ε
k

1 + k2

)

||U(t)||2+ k

1 + k2
ε

2
|x(t)+y(t)|2 = G(U) ,

and

G(U) = 1

2

(

1 + ε
k

1 + k2

)

||U(t)||2− k

1 + k2
ε

2
|x(t)−y(t)|2 ≤ 1

2

(

1 + ε
k

1 + k2

)

||U(t)||2 ,

where one observes that supk≥1
k

1+k2
= 1

2
≤ 1. Similar arguments for k ≤ −1 yield the

desired result.

Secondly, one can show the existence of some κ > 0, such that one has

d

dt
G(U(t)) ≤ −κG(U(t)) ⇒ G(U(t)) ≤ e−κt G(U0) ,

using Gronwall’s lemma. To see this, remark that 1
2
≤ k2

1+k2
≤ 1 and

d

dt
G(U) = −ε k2

1 + k2
x2 −

(

1− ε
k2

1 + k2

)

y2 − ε
k

1 + k2
xy

≤ −ε
2
x2 − (1− ε) y2 +

ε

2
|x| |y| ≤ −ε

2
(1− λ2)x2 − (1− ε− ε

8 λ2
) y2 ,

for any λ ∈ (0, 1). For sufficiently small ε ∈ (0, 1) one finds the desired constant κ > 0.

Altogether, one has the exponential decay of ||U(t)|| by equivalence of the norms.

2.3 The heat equation (coercive case)

Let us give here an example of the use of the entropy method for investigating the
long-time asymptotics of the heat equation

{

∂tu(t, x) = ∆u , ∀ (t, x) ∈ R
+ × T

d ,

u(0, ·) = u0 ,
(2.7)
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where Td is the d-dimensional torus with d ∈ {1, 2, 3}. Let us suppose that u0 ∈ L2(Td) is
non-negative and define ū :=

∫

Td u0(x) dx. Then problem (2.7) admits a unique smooth,
global, non-negative solution, conserving the mass, namely satisfying

∫

Td u(t, x) dx =
∫

Td u0(x) dx = u for all t > 0. Furthermore we observe that u∞ := ū/meas(Td) is the
unique stationary solution of (2.7). The questions one asks now are:

• Does u→t→∞ u∞? In which norm?

• What is the convergence rate towards the equilibrium?

To answer these questions, we introduce now the two functionals

H1[u] :=

∫

Td

u log

(

u

u∞

)

dx , H2[u] :=
1

2

∫

Td

(u− u∞)2 dx . (2.8)

Firstly one observes that both are non-negative functionals. Indeed, the fact that for
all z ≥ 0 one has z log(z) + 1− z ≥ 0 implies that

0 ≤
∫

Td

(

u log

(

u

u∞

)

+ u∞ − u

)

dx =

∫

Td

u log

(

u

u∞

)

dx+

∫

Td

u∞ dx−
∫

Td

u dx = H1[u] .

Secondly both functionals are Lyapunov functionals along the solutions of the heat
equation (2.7). Indeed, let us start with H2[u]. One has

dH2

dt
[u(t)] =

∫

Td

(u− u∞) ∂tu dx =

∫

Td

(u− u∞)∆u dx = −
∫

Td

|∇u|2 dx ≤ 0 ,

showing that H2[u] is indeed decreasing along the trajectories of (2.7). The next step
is to study if and how the solution to (2.7) converges in the long-time towards an
equilibrium solution, which is u∞. For this asymptotic study we shall make use of the
Poincaré inequality

||u− 1

|Ω|

∫

Ω

u dx||2L2(Ω) ≤ CP ||∇u||2L2(Ω) ∀u ∈ H1(Ω) ,

with Ω ⊂ Rd a bounded smooth domain. This Poincaré inequality shall indeed permit to
relate the entropy H2[u] with the entropy-dissipation D2[u(t)] := −dH2

dt
[u(t)], as follows

dH2

dt
[u(t)] = −||∇u||2L2(Td) ≤ −C−1

P ||u− u∞||2L2(Td) = −2C−1
P H2[u(t)] .

Gronwall’s inequality yields then

1

2
||u− u∞||2L2(Td) = H2[u(t)] ≤ e−2t/CP H2[u0] ∀t > 0 ,

which means that we have indeed the exponential decay of u(t) towards the equilibrium
u∞ := ū/meas(Td) in the L2-sense, with rate 1/CP .
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Let us remark here that in this L2-periodic framework we know the exact solution
of (2.7), which reads

u(t, ·) =
∞
∑

k=1

e−λk t(u0, vk)L2 vk , ∀t ≥ 0 ,

where {λk, vk}k∈N are the eigenvalues resp. associated eigenvectors of the operator
−∆, associated with periodic boundary conditions. The eigenvalues form a positive,
increasing sequence of real numbers, satisfying λk →k→∞ ∞ whereas {vk}k∈N form an
orthonormal basis of L2(Td).
Remarking that λ1 ≡ 0, v1 ≡ cst. and v̄k =

∫

Ω
vk dx = 0 for k 6= 1, we have u∞ =

(u0, v1)L2 v1, such that

||u− u∞||2L2(Ω) =
∞
∑

k=2

e−2λk t(u0, vk)
2
L2 ≤ e−2λ2 t ||u0||2L2(Ω) ,

which gives also the desired exponential decay, with rate λ2. To compare the two con-
vergence rates, observe that in the 1D case CP = µ−1

2 , with µ2 = π2/|T|2 the smallest
possible positive eigenvalue of the Laplacian with Neumann boundary conditions, and
λ2 = π2/|T|2.

Let us now change the functional and try to show the same, however considering
H1[u]. Firstly we have

dH1

dt
[u(t)] =

∫

Td

(

log

(

u

u∞

)

+ 1

)

∂tu dx = −
∫

Td

∇
[

log

(

u

u∞

)]

∇u dx = −4

∫

Td

|∇√
u|2 dx ,

showing that H1[u] is decreasing along the trajectories of (2.7). To relate now the
entropy with the entropy-dissipation, we shall need no more the Poincaré inequality,
but this time the logarithmic Sobolev inequality

∫

Ω

u log

(

u

u∞

)

dx ≤ CL

∫

Ω

|∇√
u|2 dx ∀√u ∈ H1(Ω) , u ≥ 0 ,

with Ω ⊂ Rd a bounded domain. This inequality permits indeed to get the following
estimates

dH1

dt
[u(t)] = −4||∇√

u||2L2(Td) ≤ −4C−1
L H1[u(t)] ⇒ H1[u(t)] ≤ e−4t/CL H1[u0] ∀t > 0 ,

which shows that in the limit of large times H1[u(t)] →t→∞ H1[u∞] = 0. To show
the exponential decay of u(t) in the Lebesgue measure sense, we shall need now the
Csiszár-Kullback inequality

||u− u∞||2L1(Ω) ≤ C (H1[u(t)]−H1[u∞]) ,

which yields an exponential decay in the L1-sense.

Remark 2.3.1 Let us underline at this point the two strategies used for the heat equa-
tion and leading both to an exponential decay of the solution towards the equilibrium
solution, however in different norms. The ”energy-strategy” based on the H2[u] Lya-
punov functional, leads via Poincaré’s and Gronwall’s inequalities to an L2-exponential
decay, and the ”entropy-method” based on the H1[u] Lyapunov functional, which needs
the Csiszár-Kullback inequality to get an L1-exponential decay.
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2.4 Fokker-Planck equation

In this section we shall come back towards the examples proposed in section 2.1 and
shall treat them via an ”entropy-strategy” rather then the ”energy-strategies” proposed
there.

2.4.1 The homogeneous Fokker-Planck equation (coercive case)

As a second example, let us consider the following linear Fokker-Planck equation
{

∂tf = ∇v · (v f +∇vf) , ∀(t, v) ∈ R
+ × R ,

f(0, ·) = f0 .
(2.9)

The unique stationary state of this equation is given by the Maxwellian

f∞(v) := c⋆M(v) =
c⋆

(2π)d/2
e−|v|2/2 ∀v ∈ R

d , c⋆ :=

∫

R

f0 dv .

Defining the entropy

H1[f ] :=

∫

Rd

f log

(

f

M

)

dv ,

we have the following theorem

Theorem 2.4.1 [32] (Exponential decay of the Fokker-Planck equation)
Let f0 ∈ L1(Rd) be a non-negative function satisfying the condition

∫

Rd f0 dv = 1, and
let us denote by f the corresponding unique solution to (2.9). Then the functional H1[f ]
is an entropy for the Fokker-Planck equation and we have

0 ≤ H1[f(t)] ≤ e−2tH1[f0] , ∀t > 0 .

Furthermore f(t, ·) converges in the L1-sense exponentially fast in the long-time limit
towards the equilibrium M, as

||f(t, ·)−M||L1(Rd) ≤ e−t
√

8H1[f0] , ∀t > 0 .

Proof: Let us firstly show that H1[f ] is a Lyapunov functional along the trajectories
of (2.9). For this, we observe that

dH1

dt
[f(t, ·)] =

∫

Rd

∂tf

[

log

(

f

M

)

+ 1

]

dv =

∫

Rd

∂tf log

(

f

M

)

dv

=

∫

Rd

∇v ·
[

M∇v

(

f

M

)]

log

(

f

M

)

dv

= −
∫

Rd

M2

f

∣

∣

∣

∣

∇v

(

f

M

)
∣

∣

∣

∣

2

dv = −
∫

Rd

f

∣

∣

∣

∣

∇v log

(

f

M

)
∣

∣

∣

∣

2

dv ≤ 0 .

We used for this the fact that the collision operator can be rewritten as∇v ·(v f+∇vf) =
∇v ·

[

M∇v

(

f
M
)]

. Finally, the following logarithmic Sobolev inequality (see Section 4.3)

∫

Rd

f

∣

∣

∣

∣

∇v log

(

f

M

)
∣

∣

∣

∣

2

dv ≥ 2

∫

Rd

f log

(

f

M

)

dv ,
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permits to relate the entropyH1[f(t)] with the entropy dissipationD1[f(t, ·)] := −dH1

dt
[f(t, ·)].

Indeed, we obtain thus
dH1

dt
[f(t, ·)] ≤ −2H1[f(t, ·)] .

Gronwall’s inequality yields then the exponential decay of the solution to (2.9) in the en-
tropy sense. Finally the Csiszár-Kullback inequality permits to show the corresponding
exponential decay in the L1-sense, and we conclude the proof.

2.4.2 The inhomogeneous Fokker-Planck equation (hypocoer-
cive case)

To compare, let us consider now the inhomogeneous Fokker-Planck equation

{

∂tf + v · ∇xf −∇xϑ(x) · ∇vf = ∇v · (v f +∇vf) , ∀(t, x, v) ∈ R
+ × R

d × R
d ,

f(0, x, v) = f0(x, v) ,
(2.10)

where ϑ is supposed to be a known smooth potential, which is strictly convexe at infinity,
for ex. let us assume here that ϑ has the form

ϑ(x) := ω2
0

|x|2
2

+ Φ(x) + ϑ0 , with ϑ0 ∈ R , Φ(x) →x→∞ 0 smooth .

The unique steady-state of this equation is given now by

f∞(x, v) := e−ϑ(x)M(v) =
e−ϑ(x)

(2π)d/2
e−|v|2/2 , ∀(x, v) ∈ R

d × R
d .

The asymptotic long-time behaviour of the unique solution to (2.10) towards this equi-
librium is given by the next theorem. The fact that the Fokker-Planck collision operator
(right hand side of (2.10)) acts only on the velocity variable leads to a degeneracy in
the x-variable, making it very hard to estimate the speed of spatial homogenization.
There will be a huge family of local Maxwellians, making the entropy vanish, such that
the usual H-theorem will no more give the necessary information about the long-time
asymptotics, in particular it gives no indication about how to pass from a local towards
the global equilibrium. Both effects, collisions and transport have to be considered in a
combined manner.

Theorem 2.4.2 [25] Let the initial distribution function f0 be such that there exist
some constants γ,Γ > 0 so that we have

γ f∞(x, v) ≤ f0(x, v) ≤ Γ f∞(x, v) , ∀(x, v) ∈ R
d × R

d ,

and let f be the unique solution to (2.10). Then for every ε > 0 there exists a constant
Cε(f0) depending on ε, f0 and ϑ such that

||f(t)− f∞||L1(Rd
x×Rd

v)
≤ Cε(f0) t

−1/ε , ∀t ≥ 0 .
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Proof: The starting point of our proof will be the H-theorem. For this, let us define
the relative entropy

H [f |f∞] :=

∫

Rd
x×Rd

v

f log

(

f

f∞

)

dxdv ,

and show that it is indeed a Lyapunov functional along the trajectories of (2.10). Indeed,
we remark that

dH

dt
[f |f∞] = −

∫

Rd
x×Rd

v

f

∣

∣

∣

∣

∇v log

(

f

f∞

)
∣

∣

∣

∣

2

dxdv = −
∫

Rd
x×Rd

v

f

∣

∣

∣

∣

∇v log

(

f

M

)
∣

∣

∣

∣

2

dxdv ≤ 0 .

The entropy-dissipation vanishes only for functions of the form f = ρ(t, x)M, with
ρ(t, x) arbitrary, satisfying only

ρ(t, x) =

∫

Rd
v

f(t, x, v) dv , ∀x ∈ R
d .

In other words, ρ(t, x) is the macroscopic density associated to the distribution function
f . The functions ρ(t, x)M are the so-called local equilibria of (2.10), which make the
right-hand side (the collision operator) of the Fokker-Planck equation vanish.

The logarithmic/convex Sobolev inequality (4.2) permits now to relate the entropy
dissipation D(t) := −dH

dt
to the entropy H . Indeed, one has for the so-called Fisher

information Iv[f |ρM]

Iv[f |ρM] :=

∫

Rd
x×Rd

v

f

∣

∣

∣

∣

∇v log

(

f

ρM

)
∣

∣

∣

∣

2

dxdv

=

∫

Rd
x

ρ(x)

(

∫

Rd
v

f

ρ(x)

∣

∣

∣

∣

∇v log

(

f

ρM

)
∣

∣

∣

∣

2

dv

)

dx

≥ 2

∫

Rd
x

ρ(x)

(
∫

Rd
v

f

ρ(x)
log

(

f

ρM

)

dv

)

dx = 2H [f |ρM] .

Thus, we have

−dH
dt

[f |f∞] ≥ 2H [f |ρM] , ∀t ≥ 0 .

The crucial point is that we have on the right hand side H [f |ρM] and not H [f |f∞]
as in the coercive case, which would conclude the proof via Gronwall’s inequality. In
the present case, the last inequality permits only to show that in the long-time limit
t → ∞ the distribution function f will look more and more like a local Maxwellian
ρ∞M, however nothing is known on the shape of ρ∞(x). The difference between the
two relative entropies, corresponding to the global as well as the local equilibria is given
by

H [f |f∞]−H [f |ρM] = Hx[ρ|e−ϑ] , Hx[ρ|e−ϑ] :=
∫

Rd
x

ρ log
( ρ

e−ϑ

)

dx ,

which is nothing but the relative entropy of ρ with respect to e−ϑ.
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To prove the convergence of f towards the global equilibrium f∞ one has to use more
information coming from f , namely that f is the unique solution to the Fokker-Planck
equation (2.10), and that f does not get stuck too close to a local Maxwellian. Let
us remark here that among all local equilibria ρM, only one satisfies equation (2.10).
Indeed, a solution ρ(t, x)M(v) must verify

∂tρ+ v · [∇xρ+ ρ∇xϑ] = 0 ,

so that separately ∂tρ = 0 and ∇xρ = −ρ∇xϑ, which finally yields f = f∞ in the
long-time limit. The trend towards the global equilibrium is a struggle between the col-
lision operator (dissipation) and the anti-symmetric transport operator. The collisions
push the system towards a local equilibrium ρ(t, x)M(v), the transport part will drive
it out of this local equilibrium, if it is not the “right” one, namely the global Maxwellian.

To finish the proof, let us define now the quantities

x(t) := H [f(t)|f∞] , y(t) := H [f(t)|ρ(t)M] , ∀t ≥ 0 .

One can show (rather lengthy and tricky computations) that for some ε ∈ (0, 1) these
positive quantities are solutions of the following system of differential equations, with
some constants A1, A2, A3 > 0 dependent only on ε, f0 and ϑ

{ −x′(t) ≥ A1 y(t)

y
′′

(t) + A2 y
1−ε(t) ≥ A3 x(t)

, ∀t ≥ 0 .

Then, it can be shown that there exists a constant Cε(f0) such that

x(t) = H [f(t)|f∞] ≤ Cε(f0) t
−1/ε , ∀t ≥ 0 .

The Csiszár-Kullback inequality permits finally the conclude the proof.

Remark 2.4.3 This entropy method seems to fail to give the optimal rate of conver-
gence, in particular to give exponential rate of convergence towards the equilibrium. Its
advantage however, as compared to the energy-methods, is that it is rather robust and
the best approach to treat non-linear problems.

2.5 The three-zone model (hypocoercive case)

In this last part of the chapter, we shall prove Theorem 0.4.5 which gives the asymptotic
flocking result for the three-zone model















x′i(t) = vi(t) ,

v′i(t) =
1

N

N
∑

j=1

ψ(|xi − xj |) (vj − vi)−
1

N

N
∑

j=1,j 6=i
∇xi [ϕ(|xi − xj |)] ,

∀i = 1, . . . , N ,

(2.11)
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and we shall discuss in a second time the property of the exponential decay rate of the
solution towards the equilibrium configuration.

Proof: To prove Theorem 0.4.5, we recall firstly that we consider a bounded align-
ment potential ψb of type (7), an unbounded attraction/repulsion potential ϕ satisfying
(9) and that we translated the system, such that

xc(t) ≡ 0 , vc(t) ≡ 0 , ∀t ∈ R
+ .

The existence and uniqueness of a maximal solution of (2.11) is then a simple con-
sequence of the local Cauchy-Lipschitz theorem. To obtain a global solution, we need
to show that the solution is not “exploding” in finite time, which shall be done next.

The main quantity permitting to investigate the long-time behaviour of the particle
cloud is the total energy of the system, given by

E(t) := 1

2

N
∑

i=1

|vi(t)|2 +
1

2N

N
∑

i=1

N
∑

j=1,j 6=i
ϕ(rij) = K(t) + P(t) , (2.12)

where K(t) represents the kinetic energy and P(t) the potential energy of the whole
particle system. Simple computations permit to show that E(t) is a Lyapunov functional
along the trajectories of (2.11). Indeed, one gets

dE
dt

(t) = − 1

2N

N
∑

i=1

N
∑

j=1,j 6=i
ψb(rij) |vj(t)− vi(t)|2 ≤ 0 , (2.13)

thus E is decaying along the solutions of (2.11). The attraction-repulsion term describes
a Hamiltonian dynamics and therefore preserves the total energy. The alignment term
causes the decay of the total energy with respect to time. It plays the role of friction,
making the system dissipative.

Hence, the total energy is bounded by the initial energy of the system 0 ≤ E(t) ≤ E0
for all t ≥ 0. This fact together with the property that limr→0,∞ ϕ(r) = ∞ implies via
(2.12) the existence of two constants rm > 0 and 0 < rM < ∞, dependent on N , such
that

0 < rm ≤ |xi(t)− xj(t)| ≤ rM , ∀i, j ∈ {1, . . . , N}, ∀t ≥ 0 , (2.14)

which means we have aggregation and absence of collisions. The globality of the solution
is then a simple consequence.

Finally, what remains to show is that limt→∞A(t) = 0. This shall be done by
showing that the kinetic energy satisfies K(t) →t→∞ 0, hence leading to vi(t) →t→∞ 0
for each i = 1, · · · , N and thus limt→∞A(t) = 0. The fact that ψb(r) > 0 and ψ′

b(r) < 0
for all r > 0 leads to

dE
dt

(t) ≤ −ψb(rM)

2N

N
∑

i=1

N
∑

j=1,j 6=i
|vj(t)− vi(t)|2 = −ψb(rM)

N
∑

i=1

|vi(t)|2 = −c⋆K(t) ,
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with c⋆ := 2ψb(rM), thus

c⋆

∫ ∞

0

K(s) ds ≤ E0 . (2.15)

This means the kinetic energy K(t) is integrable. To show that it converges towards
zero at infinity, one shows that it is uniformly continuous. Indeed, remark that

dK
dt

= − 1

2N

N
∑

i=1

N
∑

j=1,j 6=i
ψb(rij) |vj(t)−vi(t)|2−

1

2N

N
∑

i=1

N
∑

j=1,j 6=i

ϕ′
s(rij)

rij
(xi(t)−xj(t), vi(t)−vj(t)) ,

with the first term on the right hand side being integrable (see (2.13)) and the last term
bounded in time (see (2.14) and (2.12)). This permits via integration to show that K(t)
is uniformly continuous and we finished the proof.

We would like to conclude this chapter with some comments about the exponential de-
cay rate of the solution towards the equilibrium configuration. This property is very
useful in practical applications, as it permits to estimate (if the constants are known)
how far one is from the equilibrium, and in particular to estimate the convergence rate.

To investigate the exponential decay rate of the velocities towards zero, we need
to introduce some notation. The equilibrium solutions are denoted by (xeqi , v

eq
i )Ni=1 and

satisfy veqi = 0 as well as
∑N

j=1,j 6=i∇xi

[

ϕ(|xeqi − xeqj |)
]

= 0 for all i = 1, . . . , N ; the
equilibrium distances between the particles will be denoted by reqij := |xeqi − xeqj |, the
equilibrium energy Eeq is then given by

Eeq :=
1

2N

N
∑

i=1

N
∑

j=1,j 6=i
ϕ(reqij ) , 0 ≤ Eeq ≤ E0 ,

and finally let us introduce the quantity Ẽ := E − Eeq, which shall decrease towards
zero, when the equilibrium is approached. Furthermore, one needs to introduce a more
adequate Lyapunov functional, as for the standard energy one only has

dẼ
dt

(t) =
dE
dt

(t) ≤ −ψb(rM)

2N

N
∑

i=1

N
∑

j=1,j 6=i
|vj(t)− vi(t)|2 = −ψb(rM)

N
∑

i=1

|vi(t)|2 = −c⋆K(t) .

This inequality shows that the total energy stops decreasing for K(t) = 0, however it
does not show that the total energy tends towards zero. Ideally, in order to conclude
via Gronwall’s inequality, we would need an inequality of the type dẼ

dt
(t) ≤ −c Ẽ(t),

with some c > 0, however in our case the potential energy is missing on the right hand
side. We shall thus proceed with hypocoercivity arguments to restore the full Lyapunov
functional on the right hand side. For this one can consider the following new functional
G with corrector term χ

G(t) := E(t) + αχ(t) , χ(t) :=
1

N

N
∑

i=1

N
∑

j 6=i

ϕ′(rij)

rij
(xi(t)− xj(t), vi(t)− vj(t)) ,
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with a constant α > 0 to be chosen such that G is indeed a Lyapunov functional
corresponding to the system (2.11). The procedure is the following: show first that
there exist some constants cm, cM > 0 such that along the trajectories of system (2.11)
one has a sort of equivalence such as cm Ẽ(t) ≤ G̃(t) ≤ cM Ẽ(t), and then show that
dG̃
dt
(t) ≤ −c G̃(t). This would allow to prove the exponential decay rate in the G-entropy

sense, the full proof is however for the moment still an unsolved problem in the general
framework.

In the simplified case of two drones however, we were able to perform the above
mentioned steps, and to conclude the exponential decay rate proof. The following lemma
states this result.

Lemma 2.5.1 Let us consider the situation of 2 drones (N = 2) with position and
velocity (xi(t), vi(t))

2
i=1 ∈ Rd×Rd and denote the differences by x(t) := x1(t)−x2(t) and

v(t) := v1(t)− v2(t). The three zone model describing the dynamics of these two drones
writes under the form of the following ODE system

{

x′(t) = v(t)

v′(t) = −ψ v(t)− θ(|x(t)|) x(t)
, ∀t ∈ R

+ , (2.16)

where we denoted θ(r) := ϕ′(r)
r

for r > 0. To simplify we assumed that the alignment
strength ψ > 0 is a constant and the unbounded attraction/repulsion potential ϕ satisfies
besides (9) also the property

0 ≤ c1 ϕ(r) ≤ [ϕ′(r)]2 ≤ c2 ϕ(r) , ∀r ≥ rm > 0 , (2.17)

for some c1, c2 > 0, and where rm > 0 is the minimal distance between the particles
during the dynamics (see Thm. 0.4.5). Under these conditions the velocity v(t) decays
in the long time limit t→ ∞ exponentially fast towards vc ≡ 0.

Let us remark here that a potential ϕ satisfying (2.17) is for example

ϕ(r) :=
r2

2
+

1

r
− 3

2
, ∀r > 0 .

Proof: Firstly we observe that we are in the framework of Theorem 0.4.5, hence
there exist a unique global solution for our problem (2.16), with a flocking behaviour in
the long-time limit. The total energy of the system as well as the modified Lyapunov
functional are given by

E(t) := 1

2
|v(t)|2 + ϕ(r(t)) , G(t) := E(t) + αϕ′(r(t))

x(t) · v(t)
r(t)

, r(t) := |x(t)| ,

with the constant α > 0 to be adequately fixed. The equilibrium solutions to (2.16) are
given by (xeq, veq) such that veq ≡ 0 and θ(req) ≡ 0, with req := |xeq|, hence Eeq ≡ 0 in
this case (ϕ′(req) = ϕ(req) = 0).
We observe then that

dE
dt

(t) = −ψ |v(t)|2 ≤ 0 , (2.18)
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but this is not enough to get the exponential decay of E(t). However for the modified
functional G we have

dG
dt

(t) = −ψ |v(t)|2+α θ
′(r)

r(t)
(x(t)·v(t))2+α θ(r(t))|v(t)|2−αθ2(r) |x(t)|2−αψ θ x(t)·v(t) .

The equivalence between G(t) and E(t), meaning the existence of two constants cm, cM >
0 such that cm E(t) ≤ G(t) ≤ cM E(t), is a simple consequence of the assumption
(2.17) and the fact that we have flocking. The second inequality to be shown, namely
dG
dt
(t) ≤ −c⋆G(t), is a consequence of the flocking, meaning the swarm evolves in a

bounded region and in particular that one has 0 < rm ≤ r(t) ≤ rM , as well as of the
fact that the velocities tend towards vc in the long-time limit. However, to get this last
inequality of strictly decreasing entropy, the obtained constant c⋆ > 0 can be very small,
which yields a slow (pessimistic) exponential decay rate.

On Figure 2.1 we plotted, as an example, the corresponding evolutions of E(t) as
well as of G(t). One observes firstly that the energy E(t) is slightly oscillating, with
E ′(t) = 0 where the velocity v(t) is vanishing (see (2.18)), and E(t) seems to have in
“average” an exponential decay. To compare, we plotted in addition to this curve the
modified Lyapunov functional G(t), which shows a nicer exponential decay, however still
not a perfect one. Indeed, the oscillations are somehow damped a little bit, and more
importantly one can observe that G(t) is now strictly decreasing, its slope remaining far
from zero (in finite time), while E ′(t) vanishes. This is due to the additional correction
term, which continues to dissipate (the entropy) even if v(t) = 0.
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Figure 2.1: Time evolution of E(t) as well as of G(t) corresponding to system (2.16).



Chapter 3

Drone swarm modelling and
simulation

The aim of this chapter is to expose the first insights of the drone swarm modelling
and its specificities, as well as to present some first numerical simulations. Remark that
we are particularly interested in the long-time behaviour of a large swarm of drones
(N ≥ 1).

Let us fix now our three-zone model for the description of the dynamics of a swarm
of N drones. The evolution of each agent, with position and velocity (xi, vi) ∈ R

d×R
d,

is governed as usual by Newton’s laws of classical mechanics, which read for all t ≥ 0














x′i(t) = vi(t) ,

v′i(t) = γ
N
∑

j=1

ψ(|xi − xj |) (vj − vi)− γ
N
∑

j=1,j 6=i
∇xi [ϕ(|xi − xj |)] ,

∀i = 1, . . . , N ,

(3.1)
where γ is either 1 or 1/N . The scaling γ = 1/N of the force is only needed for the
large-swarm limit N → ∞, for getting a mesoscopic (kinetic) description. Otherwise
one can take γ = 1. The communication weight ψij := ψ(|xi − xj |) shall satisfy the
following assumptions

ψ ∈ C1(R+
∗ ) , ψ(r) > 0 and ψ′(r) ≤ 0 ∀r > 0 .

In particular we shall choose a singular communication weight in zero, namely

ψ(r) :=
α

rβ
, α > 0 , β ≥ 0 , ∀r ∈ R

+ .

Concerning the potential ϕ, it contains the repulsion and attraction part, and we shall
assume that ϕ ∈ C1(R+

∗ ) is of potential-well type, bounded from below. For instance,
one may take a quadratic potential (bounded repulsion)

ϕ(r) :=
1

2
(r − η)2 , η > 0 , ∀r ∈ R

+ ,

or a potential with singular repulsion as for example

ϕ(r) :=
r2

2
+

1

r
− 3

2
, ∀r ∈ R

+ ,
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or even decouple the attraction and repulsion forces as in the more general form

ϕ(r) :=
FA
q

(r − ηA)
q
− +

FR
p

(r − ηR)
p
+ ,

with positive constants p, q, FA, FR, ηA, ηR to be chosen in such a manner to get the
desired swarm configuration. To give only an example, we plotted in Fig. 3.1 a possible
potential choice.

One delicate task in drone swarm modelling is now the exploration of the differ-
ent stationary configurations one may obtain in the long-time limit t → ∞ for large
drone populations N ≫ 1, and this by varying the shapes of the attraction/repulsion
potentials. These investigations are of particular interest for the obtention of stable
and realistic swarm configurations. Later on we shall also introduce some other specific
physical effects, such as obstacles, a target, time-delays and self-propulsion.

Figure 3.1: Example of attraction, alignment and repulsion potentials (bounded in
r = 0) for the 3zone model.

3.1 Some equilibrium configurations

The main objective is now to understand which choice of the attraction/repulsion and
alignment kernels give rise to the desired drone configuration (for large N ≫ 1) in terms
of inter-drone spacings, realistic drone velocities and stable steady states. Let us remark,
that once the drones move with constant velocities, the shape of the pattern is given by
the balance of the repulsive resp. attractive forces acting on each drone, namely by the
formula

N
∑

j=1,j 6=i
∇xi [ϕ(|xi − xj |)] = 0 , ∀i = 1, . . . , N .

Note that these particular solutions are not equilibria in the classical sense, meaning
we do not necessarily have x′i(t) = v′i(t) ≡ 0 for all i. Here, we are dealing with
solutions with particular properties. For instance, flocking solutions describe configura-
tions with particles moving with uniform speeds vi(t) ≡ vc and corresponding positions
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xi(t) = x0i + vc t.

Many different types of pattern (asymptotic configurations) emerge in the long-time
limit t → ∞, regulated by the relative strength of the repulsion/attraction potentials,
some of them are stable, other unstable, and not all of them are of interest in our case.
To give only some examples, we plotted in Figures 3.2-3.4 annular formations, uniform
discs or ring-formations, and their corresponding potentials ϕann(r) := (r − 5)2 as well
as

ϕcris(r) :=















10 (r − 5)2 , 0 ≤ r ≤ 5

1
3
(r − 5)2 , 5 ≤ r ≤ 6

1− 2
3 (r−5)

, r ≥ 6

, ϕring(r) :=















1
10
(r − 5)2 , 0 ≤ r ≤ 5

1
3
(r − 5)2 , 5 ≤ r ≤ 6

1− 2
3 (r−5)

, r ≥ 6

.

Figure 3.2: Annular formation for a potential ϕann(r) := (r − 5)2.

Figure 3.3: Uniform disc formation for the potential ϕcris(r).

Properties like radius of the cloud, particle density and accumulation to the border
change with increasing N . What can be observed is that if one chooses stronger and
stronger repulsive potentials at the origin, the cloud of the particles gets larger and
larger with increasing N , whereas milder repulsive potentials lead to clustering when
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Figure 3.4: Ring formation for a potential ϕring(r).

increasing the number of drones N . The effect of strong attraction potentials is the
formation of a bounded cloud, leading to a ring with increasing number of particles.

To illustrate some effects, let us investigate what happens with the cloud when taking
the quadratic potential ϕ(r) = 1

2
(r − η)2, with η > 0. At equilibrium one has

0 =

N
∑

j=1,j 6=i

(rij − η)

rij
(xj − xi)

=

N
∑

j=1

(xj − xi)− η

N
∑

j=1,j 6=i

xj − xi
rij

= N(xmean − xi)− η
N
∑

j=1,j 6=i

xj − xi
rij

.

This yields

N |xi − xmean| = η

∣

∣

∣

∣

∣

N
∑

j=1,j 6=i

xj − xi
rij

∣

∣

∣

∣

∣

≤ Nη ,

implying
sup

i∈[[1,N ]]

|xi − xmean| ≤ η .

This means that at equilibrium all drones are contained in a sphere of radius η centered
in the center of mass of the fleet. Furthermore observe that this inequality does not
depend on the amount of drones N . As a consequence, if one adds more and more
drones with the same parameters, the drone swarm will not blow up, but the drones
will rather concentrate in that sphere, as illustrated on Fig. 3.5.

To study these different pattern formations, some characteristic properties to look
for are the time-evolution of the minimal resp. maximal inter-drones distances, and
their dependence on N , i.e.

dmin(t) := min
i 6=j

|xi(t)− xj(t)| , dmax(t) := max
i 6=j

|xi(t)− xj(t)| .
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Figure 3.5: Examples of swarm configurations for a quadratic potential
ϕ(r) = 1

2
(r − η)2 and different drone numbers N = 50, 100, 500.

3.2 Specificities of drone swarms and other physical

effects

When dealing with the modelling of drone swarms, one has to face particular problems,
as for example:

• Force/power constraints: Drones are powered by motors, which have their
own, particular characteristics, yielding a maximal force strength and a maximal
power, which cannot be surpassed;

• Reactivity constraints: Drones need time to receive and process the informa-
tion (like positions and velocities) from other drones, and to transmit their own
information. This necessarily leads to time delays in the reactivity of the drones;

• Energy constraints: Energy is a substantial and rare resource and thus its wise
employment is of paramount importance for the drone swarm lifetime and the
desired mission success;

• Connectivity: Maintaining stable connectivity within the drones while achieving
at the same time the best area-coverage is an essential request.

Furthermore, the main goal of drone studies is to provide a model of autonomously
evolving drones in a realistic setting. Thus, the model should contain as many as
possible system-specific features as can be taken into account, for example in addition
to the above mentioned constraints, we shall consider:

• Obstacle avoidance can be modelled via repulsive artificial forces, which push
the drone back and prevent it from colliding with the occurring obstacles, i.e.

F obs
i = −∇xi [ϕobs(|xi − xobs(t)|] , ϕobs(r) :=

1

rα
, α > 0 ;

• Destination point (target) can be modelled by an attraction force, which helps
the drone to reach the goal. Moving targets or leaders can be also modelled via
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attraction fields, i.e.

F tar
i = −∇xi [ϕtar(|xi − xtar(t)|] , ϕtar(r) := rα , α > 0 ;

• Friction with the environment is usually modelled by a force F fric
i = −µ(vi) vi.

One can choose either a simple linear drag force, i.e. µ(v) := ν with constant
ν > 0, or a nonlinear Rayleigh-Helmholtz drag, i.e. µ(v) := β |v|2 with β > 0.

• Self-propulsion of the agents can be modelled by adding a force of the form
F prop
i = α vi, with α > 0 describing a constant acceleration of the particles. Nor-

mally self-propulsion and friction are modelled together via a force term F fp(vi) =
−(β |vi|2 − α) vi, leading to an asymptotic velocity of magnitude

√

α/β.

• Environmental disturbances, like for example unpredictable fluctuations in the
wind, can be modelled by introducing some random force field in the model F fluc

i ,
meaning noise terms representing the incessant impact of the environment on the
drones;

• Inner noise, meaning the inaccuracy of the sensors that measure the positions and
velocities of the drones, can also be characterized by the introduction of stochastic
force fields.

So far we have treated the drones as responding to the environment they perceive, via
some simple mathematical rules, yielding thus an alternating sequence of perception and
action. However one can go one step further and treat the drone additionally as ”learn-
ing agents”, meaning between the perception of its surroundings and the action step,
the drone can study in detail the situation (deliberation step) and adapt its response by
considering the personal history of interactions and the feedback he got.

Combining several of the previously discussed effects leads to rich mathematical
behaviours. For instance the competition between the Rayleigh-Helmholtz friction and
the self-propulsion leads to an asymptotic velocity of magnitude

√

α/β in the long-time
limit. The nonlinearity leads also to very nice mathematical questions, as for example
the occurrence of phase-transitions if noise is added to the system. In some words,
phase-transition is a process during which a system, constituted of a large number
of particles, undergoes a transition between two different “phases” of the system, for
example from an ordered towards a disordered phase, defined by a specific parameter, as
for ex. an order parameter. Such phase-transitions are frequently observed for example
in bird-swarm dynamics, see Fig. 3.6.

The study of phase transitions is a very active research area. Let us cite a few exam-
ples of phase transition phenomena, occurring in collective models for various reasons.

Firstly, in continuous versions of the Vicsek model with noise, the behaviour of the
system is locally related to the density of the agents. More specifically, in regions where
the spatial density of the agents is high enough (higher than a given explicit threshold),
meaning the agents are able to communicate, their velocity align and the dynamics of
their spatial density is accurately described by a fluid system of equations. In regions
where the distribution of agents is lower than that threshold, however, these agents are
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Figure 3.6: Examples of phase-transition in a bird swarm [47].

unable to efficiently communicate, their velocity becomes uniformly distributed on the
sphere, and their spatial density follows a diffusion-type equation. Such a discussion
can be found in [20].

Another example of phase-transition occurs in the Kuramoto model, given in (11),
whose solutions change their behaviour when varying the strength of the communication
rate K. There exists a threshold Kc such that, if K < Kc one gets in the long-time
asymptotics a uniform distribution of oscillators. However, when K > Kc the oscillators
begin to automatically synchronise over time. This is called ”phase-locking”. One can
refer to [26] for more detailed discussions on the subject.

Let us finish this discussion by presenting some simulations in Figure 3.7 correspond-
ing to a swarm of N = 20 drones, whose dynamics is governed by a three-zone model
with additional terms representing noise, friction, some obstacles and a target (see model
(3.2)). The parameters and functions chosen for this simulations are

ϕ(r) :=
(r − 1)2

2
, ψ(r) :=

1

r
, γ = 1 .

The numerical simulations have been performed with a forth-order Runge-Kutta scheme
(RK4). One observes very nicely on these figures the different repulsion and attraction
forces. Noise can be also discerned by the fact that the drone density does not form a
homogeneous cloud.

3.3 Mesoscopic and macroscopic descriptions

Several numerical difficulties arise when trying to solve (3.1), related for example to
long-time studies, nonlinearities, delicate competition between rather different terms,
multi-scale nature of the problem etc. One of these difficulties is linked to the large
number of drones N ≫ 1 one is simulating, leading to very large coupled systems. Some-
times to get a rapid first insight of how a drone swarm evolves in time, given an initial
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drone distribution, one can move towards mesoscopic or even macroscopic approaches,
which are numerically more attractive but poorer from a physical point of view. Indeed,
these meso/macroscopic models do not follow the precise trajectories of each agent, but
deal with averaged distribution quantities, like drone space-velocity distribution func-
tions f(t, x, v) or even more macroscopically like drone densities n(t, x), drone mean
velocities u(t, x), total energy densities E(t, x) etc. To recover these meso/macroscopic
models from the underlying particle models, asymptotic limits have to be considered,
letting the number of drones N tend towards infinity.

3.3.1 Kinetic descriptions

On the way towards a macroscopic drone model, one departs from a mesoscopic descrip-
tion of a drone swarm, which provides the evolution of the particle distribution function
f(t, x, v) in the phase space Rd×Rd. Such a mesoscopic description is obtained starting
for example from the following, underlying particle model, including apart of the usual
alignment, repulsion and attraction terms, also other specific features such as a target
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Figure 3.7: Time evolution of a swarm of N = 50 drones starting on the left of the
simulation domain and converging towards a target (red point), by avoiding obstacles

on their way.

for the swarm (destination point), friction as well as noise, i.e.














x′i(t) = vi(t) ,

v′i(t) = −γ vi(t)− (∇xV )(xi(t)) +
1

N

N
∑

j=1

ψij (vj − vi)−
1

N

N
∑

j=1,j 6=i
(∇xϕ)(xi − xj) + η(t) .

(3.2)
A mean-field limit permits then to obtain the corresponding kinetic model

∂tf + v · ∇xf −∇v · [(γ v +∇xV +∇xϕ ⋆ n)f ] +∇v · [Fa(f) f ] = σ∆vf , (3.3)

where f(t, x, v) dxdv represents the probability to find at instant t a drone in the volume
dxdv around the phase-space point (x, v). Here we denoted the drone density as well as
the averaged velocity alignment force by

n(t, x) :=

∫

Rd

f(t, x, v) dv , Fa(f)(t, x, v) :=

∫

Rd

∫

Rd

ψ(x−y) (w−v) f(t, y, w) dy dw .

Furthermore η(t) is a Gaussian white noise with σ > 0 the noise strength, γ > 0 is here
the friction coefficient and the potential V is modelling an exteriour attraction force
towards a given target. Let us observe that the collision operator of the RHS conserves
the mass, but neither the momentum nor the energy.

The formal passage from the particle model (3.2) towards the kinetic model (3.3) can
be understood (as nicely explained in [15]) via the introduction of an empirical measure

µNt (x, v) :=
1

N

N
∑

i=1

δ(xi(t),vi(t)) , (3.4)

which makes the link between the two descriptions. Indeed, under suitable assumptions
one can show that (3.2) admits a global-in-time smooth solution, and that under these
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conditions the measure (3.4) satisfies the kinetic equation (3.3) in a distributional sense.

To give only an idea of this formal proof, take θ ∈ C1
c (R

d × Rd) and compute

d

dt

∫

Rd×Rd

θ(x, v)µNt (dxdv) =
d

dt

(

1

N

N
∑

i=1

θ(xi(t), vi(t))

)

=
1

N

N
∑

i=1

[∇xθ(xi(t), vi(t)) · vi(t) +∇vθ(xi(t), vi(t)) · v′i(t)] .

Remarking that (if one skips the noise here)

v′i(t) = −γ vi(t)−∇xV (xi(t))−
∫

Rd×Rd

ψ(xi(t)− y) (w − vi(t))µ
N
t (dydw)

−
∫

Rd×Rd

(∇xϕ)(xi(t)− y)µNt (dydw) .

and inserting this last equality in the above formula, permits to prove that µNt is a distri-
butional solution of the kinetic equation (3.3). We refer the interested reader to [7,15,30]
for more rigorous mean-field limit studies.

Let us finally mention that, to be closer to reality one can couple the particle
or kinetic drone-model with a fluid model which describes the environment in which
the agents evolve. The coupling is done by means of the so-called Stokes drag force
Fd(t, x, v) = ξ(t, x) − v. To be more precise, the drone evolution can be described via
the following kinetic equation

∂tf + v · ∇xf − [∇xV + (∇xϕ) ⋆ n] · ∇vf = ∇v · [(v − ξ) f − Fa(f) f + σ∇vf ] , (3.5)

coupled to a viscous, compressible Navier-Stokes fluid model for the description of the
environment variables (ρ, ξ)











∂tρ+∇x · (ρ ξ) = 0 ,

∂t(ρ ξ) +∇x · (ρ ξ ⊗ ξ) +∇xp(ρ) + L ξ =

∫

Rd

(v − ξ) fdv ,
(3.6)

with the pressure and the Lamé operator given by

p(ρ) := ρα , α > 1 ; L ξ := −µ∆xξ − µ′∇x[∇x · ξ] , µ > 0 , µ+ µ′ > 0 .

In some situations (for example when the fluid is a gas), one can consider the back-
ground density as constant, leading thus to the incompressible Navier-Stokes model.
Furthermore, one can assume that the fluid (ρ, ξ) interacts only with itself, and is hence
not affected by the kinetic part, as a consequence of a sparseness assumption on the
kinetic species.
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3.3.2 Fluid descriptions

The numerical simulation of a kinetic equation of the type (3.3) is very costly (6D in the
phase-space (x, v)), such that it could be interesting to derive the corresponding fluid
drone model in order to reduce complexity. Introducing now the macroscopic (mean)
velocity by

(nu)(t, x) :=

∫

Rd

v f(t, x, v) dv , (3.7)

as well as the energy and the temperature via

w(t, x) :=
1

2

∫

Rd

|v|2 f(t, x, v) dv = 1

2
n |u|2 + d

2
nT ,

d

2
nT :=

1

2

∫

Rd

|v − u|2 f dv ,

and taking the moments of the kinetic equation (3.2), yields the corresponding fluid
model


































































∂tn+∇x · (nu) = 0 ,

∂t(nu) +∇x · (nu⊗ u) + n [∇xV + (∇xϕ) ⋆ n] +∇x · P

= −γ n u−
∫

Rd

ψ(x− y)n(t, y)n(t, x) [u(t, x)− u(t, y)] dy

∂tw +∇x · (w u+ P u+ q) + nu [∇xV + (∇xϕ) ⋆ n]

= −2γ w + σ n− d nT (ψ ⋆ n)− n [ψ ⋆ (nu)]

−
∫

Rd

ψ(x− y)n(t, y)n(t, x)[u(t, x)− u(t, y)]2 dy ,

(3.8)

where we denoted by P and q the pressure tensor and the heat flux, given by

P(t, x) :=

∫

Rd

(v − u)⊗ (v − u) f(t, x, v) dv , q(t, x) :=
1

2

∫

Rd

(v − u) |v − u|2f dv .

This fluid model is not closed. To get a self-consistent model one needs to express
the pressure tensor P and the heat flux q by means of the unknowns (n, u, w). This
can be done either via empirical laws or by performing a physical scaling of the kinetic
model (3.3), identifying a small parameter ε ∈ (0, 1), which represents the regime of
interest, and performing then an asymptotic (hydrodynamic) study, which leads finally
to the corresponding (closed) fluid model for vanishing ε. The parameter ε serves as
connection between the kinetic and the fluid world.

This classical (rigorous) procedure is still an open research topic in the model-case
we are studying in this work. Formally the fluid limit can be obtained by assuming a
mono-kinetic form of the distribution function

fM(t, x, v) := n(t, x) δu(t,x)(v) , (3.9)

where the particle density n(t, x) and the average velocity u(t, x) are now solutions of
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the pressureless Euler equations






















∂tn+∇x · (nu) = 0 ,

∂t(nu) +∇x · (nu⊗ u) + n [∇xV + (∇xϕ) ⋆ n]

= −γ n u−
∫

Rd

ψ(x− y)n(t, y)n(t, x) [u(t, x)− u(t, y)] dy .

(3.10)

As for the particle-kinetic passage, one can show formally that the measure valued func-
tion fM defined in (3.9) solves the kinetic equation (3.3) in a distributional sense, as long
as (n, u) satisfy the the pressureless Euler equations (3.10). This formal mono-kinetic
closure leads to a vanishing pressure tensor P and a vanishing heat flux q, decoupling
also the energy equation from the rest part of the model. More rigorous studies can be
found in [1, 22, 23].

The mono-kinetic Ansatz is physically not justified, however it permits to obtain
a fluid model, whose solution shows to have a rather similar behaviour as the particle
model solution. To illustrate this, we present some first numerical results of a compari-
son between a particle drone model and the corresponding pressureless Euler model in
Figures 3.9-3.10. These are preliminary results, plotted here only in order to give the
reader an idea about what we are interested in, a detailed comparison is at the moment
in study. The aim was to show that with lesser complexity (lower computational times
and memory requirements) we can achieve with fluid simulations sufficiently satisfactory
results, permitting thus to avoid the precise but time-consuming particle simulations in
cases where rapid answers are needed for the coordination of drone swarms (practical
aim). Naturally, if one wants to investigate more detailed physical or mathematical
phenomena (fundamental aim), like instabilities, phase-transitions and so on, kinetic
simulations shall be employed, and this is another subject.
The model at the basis of these simulations is the 3zone model (3.2) and the corre-
sponding fluid model (3.8). The particle model was simulated via the standard RK4
scheme, whereas the fluid model was simulated with a standard second-order finite vol-
ume method in space and a RK2 scheme in time (see [9] for the numerical scheme). The
mesh in space for the fluid simulations is rather rough (Nx ×Nx = 50× 50) to keep the
complexity low and investigate the power of the fluid simulations. The time-step follows
the CFL-condition. Initially all N = 500 drones are homogeneously distributed in a
square and have all the common velocity of v∗ = (0.02, 0.02). What happens in time,
is that the repulsion, attraction and alignment forces start to act, such that the drone
swarm evolves as observed from the figures, coming nearer and nearer to an equilibrium
configuration.

3.3.3 Long-time asymptotics

To complete the study of the drone-swarm modelling one interesting question is to
investigate the long-time asymptotic flocking behaviour of the kinetic model (3.3) or
of the corresponding fluid model (3.8), similarly to the exponential decay studies we
presented for the particle model. For this, let us briefly sketch some ideas, starting from
the following slightly changed kinetic equation



3.3 Mesoscopic and macroscopic descriptions 57

0 2 4 6 8 10
X

0

2

4

6

8

10

Y

Positions at time 0.00

0 2 4 6 8 10
X

0

2

4

6

8

10

Y

Density at time 0.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.8: Drone swarm particle (left, N = 500) and fluid (right) simulations at
t = 0s.

{

∂tf + v · ∇xf − [∇xV + (∇xU) ⋆ n] · ∇vf = ∇v · [γ vf −Ga(f) f + σ∇vf ] ,

f(0, x, v) = fin(x, v) .
(3.11)

with the normalized alignment term given by

Ga(f)(t, x, v) :=

∫

Rd

∫

Rd ψ(x− y) (w − v) f(t, y, w) dy dw
∫

Rd

∫

Rd ψ(x− y) f(t, y, w) dy dw
=
ψ ⋆ (nu)

ψ ⋆ n
− v =: ũ− v .

Remark that choosing ψ ≡ δ0 in this last formula leads to the local alignment force
Ga(f)(t, x, v) := u(t, x)− v, where u is this time the mean velocity defined in (3.7).

Rescaling the two quantities ũ and σ as

û :=
ũ

γ + 1
, σ̂ :=

σ

γ + 1
,

permits to rewrite the Fokker-Planck collision operator on the RHS of (3.11) in the more
usual form

Q(f) := (γ + 1)∇v · [(v − û) f + σ̂∇vf ] = (γ + 1)∇v ·
[

σ̂M̂û∇v

(

f

M̂û

)]

,

where we denote

M̂0(v) :=
1

(2πσ̂)d/2
e−

|v|2

2 σ̂ , M̂û(t, x, v) :=
1

(2πσ̂)d/2
e

−|v−û(t,x)|2

2 σ̂ .

As usually, let us introduce some physical quantities corresponding to the model,
like the associated free energy

G(f)(t) := σ

γ + 1

∫

Rd

∫

Rd

f ln(f) dxdv+
1

2

∫

Rd

∫

Rd

f |v|2 dxdv+
∫

Rd

[

V (x) +
1

2
(U ⋆ n)

]

n dx ,

(3.12)
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Figure 3.9: Drone swarm particle (left, N = 500) and fluid (right) simulations at
t = 2.5s.

which is the sum of the entropy S(t) (first term) and the total energy E(t) (last two
terms). Furthermore, the dissipation term is given by

D(f)(t) := (γ+1)

∫

Rd

∫

Rd

1

f
[(v − û)f + σ̂∇vf ]

2 dxdv =
σ2

γ + 1

∫

Rd

∫

Rd

M̂2
û

f

[

∇v

(

f

M̂û

)]2

dxdv .

In order to get some information about the long-time asymptotics of the distribution

function f , the classical procedure is to multiply the kinetic equation (3.11) by ln
(

f

M̂0

)

and to integrate in the phase-space dxdv, obtaining the following evolution equation for
the free energy

d

dt
G(t) +D(f)(t) = −

∫

Rd

n(t, x) u(t, x) ũ(t, x)dx+
1

γ + 1

∫

Rd

n(t, x) |ũ(t, x)|2 dx ,

which rewrites

d

dt
G(t) +D(f)(t) +

γ

γ + 1

∫

Rd

n(t, x) |ũ(t, x)|2 dx = −
∫

Rd

n(t, x) ũ(u− ũ) dx . (3.13)

Let us make here two observations. Firstly, in the case one has u = ũ, which arises for
example if ψ = δ0, thus for very concentrated alignment functions, the right hand side of
(3.13) vanishes. This implies then that in the long-time limit the distribution function f
tends towards some function of the form f∞ = n∞(x)M̂0(v), with zero average velocity.
The zero average velocity is obtained for γ > 0. The limiting density function n∞ is
solution of the following nonlinear elliptic problem, called sometimes Poisson-Boltzmann
equation

σ

γ + 1
∇xn

∞ = − [∇xV + (∇xU) ⋆ n
∞] n∞ , ∀x ∈ T .

The second observation concerns the case with no friction, namely for γ ≡ 0. Even in
this case one gets the same limit distributional function f∞ = n∞(x)M̂0(v), with zero
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Figure 3.10: Drone swarm particle (left, N = 500) and fluid (right) simulations at
t = 7.6s.

average velocity. Indeed this comes from the interplay between the transport and the
collision operator.
All this analysis is done in the simplified case of u = ũ. In more general cases, with
a communication weight which is concentrated around r ∼ 0, one has to try to show
the smallness of the term u − ũ and to include the RHS into the LHS. Applying then
standard Sobolev inequalities on (3.13) shall permit to obtain the exponential decay of f
(in the entropy sense) towards the equilibrium. This problem is for the moment in study.





Chapter 4

Some fundamental inequalities

In this chapter we shall compact some classical theorems and inequalities often used
in entropy methods.

4.1 Gronwall lemma

Lemma 4.1.1 (Bellman-Gronwall lemma, integral version)
Let u, ϕ, ψ : [a, b) → R be three continuous functions on [a, b) ⊂ R. Let us furthermore
suppose that ϕ is positive on [a, b) and that u satisfies the following inequality

u(t) ≤ ψ(s) +

∫ t

a

ϕ(s) u(s) ds , ∀t ∈ [a, b) .

Then one has the estimate

u(t) ≤ ψ(t) +

∫ t

a

ψ(s)ϕ(s) e
∫ t
s ϕ(τ) dτ ds , ∀t ∈ [a, b) .

Lemma 4.1.2 (Gronwall lemma, integral version)
Let u, ϕ : [a, b) → R be two continuous functions on [a, b) ⊂ R. Let us furthermore
suppose that ϕ ≥ 0 on [a, b) and that u satisfies the following inequality, with some
constant u0 ∈ R

u(t) ≤ u0 +

∫ t

a

ϕ(s) u(s) ds , ∀t ∈ [a, b) .

Then one has the estimate

u(t) ≤ u0 e
∫ t
a ϕ(s) ds , ∀t ∈ [a, b) .

Lemma 4.1.3 (Gronwall lemma, classical version)
Let ϕ, ψ : [a, b) → R be two continuous functions on [a, b) ⊂ R and u ∈ C1([a, b)). Let
u satisfy moreover the following inequality

u′(t) ≤ ψ(t) + ϕ(t) u(t) , ∀t ∈ [a, b) .
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Then one has the estimate

u(t) ≤ u(0) e
∫ t
a ϕ(s) ds +

∫ t

a

ψ(s)e
∫ t
s ϕ(τ) dτ ds .

4.2 Poincaré inequality

Lemma 4.2.1 (Generalized Poincaré inequality) [24]
Let Ω ⊂ R

d be an open, bounded domain with Lipschitz boundary. Furthermore, let us
consider a continuous semi-norm

N : W 1,p(Ω) → R , p ∈ [1,∞).

Then, there exists a constant C > 0, depending only on Ω, n, p such that

||u||W 1,p(Ω) ≤ C
[

||∇u||Lp(Ω) +N (u)
]

.

Remark 4.2.2 Some examples of continuous semi-norms are:

• N (u) :=
∫

Γ
|u(x)| dσ with Ω of classe C1 and Γ ⊂ ∂Ω with |Γ| > 0;

• N (u) := 〈u〉 with 〈u〉 := 1
|Ω|
∫

Ω
u dx.

Lemma 4.2.3 (Poincaré-Wirtinger inequality) [10,29]
Let Ω ⊂ Rd be a connected open and bounded set of Lipschitz regularity and let p ∈ [1,∞].
Then there exists a constant C > 0 depending only on Ω, n, p such that

||u− 〈u〉||Lp(Ω) ≤ C ||∇u||Lp(Ω) , ∀u ∈ W 1,p(Ω) .

Lemma 4.2.4 (Inflow-Poincaré inequality) [10,29]
Let Ω ⊂ Rd be an open bounded set and let p ∈ [1,∞). Then there exists a constant
C > 0 depending only on Ω, n, p such that

||u||Lp(Ω) ≤ C ||∇u||Lp(Ω) , ∀u ∈ W 1,p
0 (Ω) .

Remark 4.2.5 This last Poincaré inequality remains valid for domains which are bounded
only in one direction (strip-like domains) or for functions which vanish only on part of
the boundary Γ ⊂ ∂Ω with non-zero measure.

Lemma 4.2.6 (Weighted Poincaré inequality) [3]
Let us fix a sufficiently regular potential V satisfying

V ∈ L∞
loc(R

d) ∩W 2,1
loc (R

d) , liminf|x|→∞V (x) = ∞ .

Then there exists some constant C > 0 such that
∫

Rd

|u|2 e−V dx ≤ C

∫

Rd

|∇u|2 e−V dx , ∀u ∈ H1(Rd) such that

∫

Rd

u e−V dx = 0 .

Lemma 4.2.7 (Inhomogeneous Poincaré inequality) [28]
Let Ω := T×R with T the periodic torus in x, and let us consider the weighted measure
dµ∞ := Mdxdv where M := 1√

2π
e−v

2/2. Then, there exists some constant C > 0

depending only on Ω, such that for each u ∈ H1(dµ∞) satisfying
∫

Ω
u dµ∞ = 0 one has

∫

Ω

|u|2 dµ∞ ≤ C

∫

Ω

|∇u|2 dµ∞ . (4.1)
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4.3 Logarithmic Sobolev inequalities

Lemma 4.3.1 (Gaussian and Euclidean logarithmic Sobolev inequalities)
Let dµ := M dx be the normalized Gaussian measure on Rd with d ≥ 1 and M(x) :=
(2 π)−d/2 e−|x|2/2. The Gaussian logarithmic inequality reads then

∫

Rd

|∇u|2 dµ ≥ 1

2

∫

Rd

|u|2 log(|u|2) dµ ,

for all u ∈ H1(Rd, dµ) satisfying
∫

Rd |u|2 dµ = 1.

For w := uM1/2 we get
∫

Rd |w|2 dx = 1,
∫

Rd |x|2 |w|2 dx = d and via an integration by
part we obtain the equivalent Euclidean logarithmic Sobolev inequality
∫

Rd

|∇w|2 dx ≥ 1

2

∫

Rd

|w|2 log(|w|2) dx+d
4
log(2π e2) , ∀w ∈ H1(Rd), w ≥ 0, ||w||L2 = 1 .

Lemma 4.3.2 [32] (Convex Sobolev inequalities)
Let φ : (0,∞) → [0,∞) be a smooth function, such that

φ(1) = 0 , φ
′′

(1) = 1 , φ
′′

> 0 , (1/φ
′′

)
′′ ≤ 0 on (0,∞) .

The convex Sobolev inequality relates a non-negative convex entropy function

Eφ(u|u∞) :=

∫

Rd

φ

(

u

u∞

)

u∞ dx ,

to an entropy-production function

Iφ(u|u∞) := −
∫

Rd

φ
′′

(

u

u∞

)
∣

∣

∣

∣

∇
(

u

u∞

)
∣

∣

∣

∣

2

u∞ dx ,

in particular one has

Eφ(u|u∞) ≤ 1

2
|Iφ(u|u∞)| ,

for all u : Rd → R+ such that u ∈ H1(Rd, dµ) satisfying
∫

Rd |u|2 dµ = 1 with dµ := u∞ dx

and u∞ := (2 π)−d/2 e−|x|2/2, as well as
∫

Rd u dx = 1.

By choosing φ in a suitable way, we can obtain specific inequalities. For example,
choosing the typical generating function φ(s) := s log(s)− s+ 1 one gets
∫

Rd

u log

(

u

u∞

)

dx ≤ 2

∫

Rd

∣

∣

∣

∣

∇
√

u

u∞

∣

∣

∣

∣

2

u∞ dx =
1

2

∫

Rd

u

∣

∣

∣

∣

∇ log

(

u

u∞

)
∣

∣

∣

∣

2

dx . (4.2)

As one has u∞ := (2 π)−d/2 e−|x|2/2, the convex Sobolev inequality can be rewritten in
the different form

∫

Rd

u log(u) dx+
d

2
log(2 π) + d ≤ 2

∫

Rd

∣

∣∇√
u
∣

∣

2
dx ,

which is nothing else than the Euclidean logarithmic Sobolev inequality.

Remark 4.3.3 In bounded domains Ω ⊂ Rd one has for some C > 0 (depending only on
Ω and d) the following estimate, obtained from Sobolev injection and Poincaré-Wirtinger
theorems

∫

Ω

u2 log

(

u2

||u||2L2(Ω)

)

dx ≤ C ||∇u||2L2(Ω) ∀u ∈ H1(Ω) .
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4.4 Csiszár-Kullback inequality

The following inequality shows that the L1-distance of two functions f and g is controlled
by the relative entropy

Eφ(f |g) :=
∫

Ω

φ(f/g) g dx .

Lemma 4.4.1 [32] (Classical Csiszár-Kullback inequality)
Let Ω ⊂ Rd be a domain and let f, g ∈ L1(Ω) satisfy f ≥ 0, g > 0 and

∫

Ω
fdx =

∫

Ω
gdx = 1. Let furthermore φ(s) := s log(s) − s + 1 for s > 0. Then, one has with

optimal constant
||f − g||2L1 ≤ 2 Eφ(f |g) .

Lemma 4.4.2 (General Csiszár-Kullback inequality)
Let Ω ⊂ R

d be a domain and let f, g ∈ L1(Ω) satisfy f ≥ 0, g > 0 and
∫

Ω
fdx =

∫

Ω
gdx = 1. Let furthermore φ ∈ C0([0,∞))∩C4(0,∞) be such that φ(1) = 0, φ

′′
(1) > 0,

φ
′′′
(1) > 0, φ is convex and 1/φ

′′
is concave in (0,∞). The, one has

||f − g||2L1 ≤ 2

φ′′(1)
Eφ(f |g) .



Summary

The mathematical modelling and analysis of the collective behaviour of a cloud of N
interacting particles or agents has attracted a lot of interest in the last years in several
communities, such as biologists, physicists, mathematicians, computer scientists etc.
This is motivated not only by fundamental reasons, such as the understanding of the
natural phenomena occurring around us, but also by the wide applications of this field
in several domains, such as collective robotics, unmanned areal vehicles, ...

Several mathematical models appeared in literature in the last years, such as for ex.
the Viscek model, the Kuramoto model, the Cucker-Smale model etc, each one being
specifically adapted for a particular situation, and several mathematical and numerical
studies have been performed, the literature being constantly growing. The basic models
have been fully understood today, what is still open in our opinion is the design of more
realistic models, permitting to get closer to reality, and the corresponding mathematical
and numerical analysis. In fact, a truly good model must on one hand recreate the
real-life behaviour one is investigating, and on the other hand it must be simple enough
to enable a detailed mathematical and numerical study. So in our particular case of a
drone swarm, all the specificities mentionned in Section 3.2 shall be step by step included
in a realistic drone model and efficient, multi-scale numerical schemes designed to be
proposed to the industrials.
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[28] G. Dujardin, F. Hérau, P. Lafitte Coercivity, hypocoercivity, exponential time decay
and simulations for discrete Fokker- Planck equations, Numerische Mathematik 144
(2020), 615–697.

[29] L.C. Evans, Partial Differential equations, American Mathematical Society, (2010).

[30] S.-Y. Ha, J.-G. Liu A simple proof of the Cucker-Smale flocking dynamics and
mean-field limit, CMS (Comm. in Math. Sci.) 7 (2009), no. 2, 297–325.
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