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Abstract

In this paper, we use results due to Dedieu et al. within the framework of the
approximate gcd problem. We obtain explicit and simple formulas for certifying
the convergence of Newton-Gauss�method.

1 Introduction

Approximate gcd is a di¢ cult problem of symbolic-numeric computation. It has been
widely studied in the recent years, leading to many theoretical results and algorithms.
We refer the reader to [5, 1, 7, 9, 10, 2, 6, 8] for an example of such algorithms and
references. The common idea of many algorithms is to guess an approximate solution
of the problem, and then to improve the accuracy and precision of the solution. In
this paper, we propose to study the second point. One way to improve the accuracy
of an approximate solution is indeed to use the Newton-Gauss method initialized with
this solution. The Newton-Gauss algorithm converges as soon as the �rst guess is
close enough to an attractor. The point is then to bound the distance between the
approximate and exact solutions, and to numerically measure it.
Smale�s �-theory answers these questions in the case of Newton�s method. In our

framework, the convergence for Newton-Gauss�method has been proved by Dedieu-
Shub [3] and Dedieu-Kim [4].
In this paper, we use the main results of [3] and [4] within the framework of the

approximate gcd problem. We obtain explicit and simple formulas for certifying the
convergence of Newton-Gauss�method.

2 Newton-Gauss Operator and Dedieu�s Theorem

In this section we recall the main results of [3] and [4].
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DEFINITION 1. Let E and F be two Hilbert spaces, and ' : E ! F an analytic
map. We suppose that Im(D'(x)) is closed in F. We de�ne the Newton-Gauss operator
by

N'(x) = x�D'(x)y'(x)
where D'(x)y denotes the Moore-Penrose pseudo inverse of D'(x).

DEFINITION 2. Let ' be an analytic map between two Hilbert spaces E and F,
such that the image of D'(x) is closed in F. Let x 2 E, we set:

� �('; x) = kD'(x)yk k'(x)k,

� ('; x) = supk�2
�
kD'(x)yk

Dk'(x)

k!

� 1
k�1
,

� �('; x) = �('; x) ('; x),

�  (�) = 1� 4�+ 2�2.

THEOREM 1. Let x and � 2 E such that D'(�)y'(�) = 0, D'(�) injective, and

v = kx� �k ('; �) < 1�
p
2

2
:

If
�('; �) <

1

2
p
2
;

then Newton-Gauss�sequence satis�es

kxk � �k � �kkx� �k

where

� =
v +

p
2 (2� v)�('; �)
 (v)

< 1:

This theorem certi�es the convergence of Newton-Gauss�algorithm inside a disk
of given radius. The following result gives a su¢ cient condition for convergence of
Newton-Gauss�method.

THEOREM 2. Let x 2 E such that D'(x) is injective. We set

� = kD'(x)k kD'(x)yk;

� =
1

8�+ 16
;

� = 4
1� �
 (�2)

� 1

16�+ 32
+

�2

1� � + ��
�
:

We have 0 � � < 1.
We suppose that

�('; x) � 1

16�+ 32
;

then
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1. there exists a unique � 2 E such that D'(�)y'(�) = 0 and

k� � xk < �

('; x)
;

2. Newton-Gauss�sequence xk = Nk
'(x) converges towards � and

kxk � �k � �kkx� �k:

3 Application to GCD Problem

Let f and g be two unitary polynomials in C[X]. We assume that an algorithm for
computing the approximate gcd returned p, f1, g1 such that

"2 := kf � pf1k22 + kg � pg1k22;

is small, and deg(p:f1) � deg(f) and deg(p:g1) � deg(g). We also assume that p is of
maximum degree, i.e. there does not exist any polynomials P , F1, and G1 such that
degP > deg p and kf � PF1k22 + kg � PG1k22 � kf � pf1k22 + kg � pg1k22.
Usually, one �rst sets f1 and g1, and solves a linear least square problem in order to

obtain a better solution for p. Then one sets p, and solves a linear least square problem
in order to improve f1 and g1. This process is then iteratively repeated.
We now propose a way to improve simultaneously p, f1 and g1 with a Newton-Gauss

method. We de�ne the following function:

'(p; f1; g1) = (f � p:f1; g � p:g1):

Our goal is to give a certi�ed condition on p, f1 and g1 for Newton-Gauss�convergence.
As we have

'(p+ ~p; f1 + ~f1; g1 + ~g1) = (f � p:f1 � p: ~f1 � f1:~p� ~p: ~f1;
g � p:g1 � p:~g1 � g1:~p� ~p:~g1);

then
D'(p; f1; g1)(~p; ~f1; ~g1) =

�
� Sylv(p; f1)(~p; ~f1);�Sylv(p; g1)(~p; ~g1)

�
, where Sylv(p; f1)

is the Sylvester matrix associated to p and f1, see [11, Chapter 6]. We set

V = f(p; f1; g1) j detSylv(p; f1) = 0 and detSylv(p; g1) = 0g :
V is a closed Zariski set, thus a set with measure zero for the Lebesgue measure. Thus
we can assume that in numerical experiments (p; f1; g1) does not belong to this variety
V. Then we now assume D'(p; f1; g1) to be injective.
On the other side,

1

2
D2'(p; f1; g1)(~p; ~f1; ~g1) = (�~p: ~f1;�~p:~g1). Moreover, we have

the following result:

PROPOSITION 1. Let Cinf =
p
2�2 deg f + 2�2 deg g, and

Csup =
p
(deg f + 1)3 + (deg g + 1)3. Then Csup �

1

2
kD2'(p; f1; g1)k2 � Cinf .
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PROOF. We have the following bounds (corollary 6.33 in [11]):p
degF + degG+ 1kF:Gk1 � kF:Gk2 � 2�degF�degGkFk2kGk2:

We apply this formulae with F = ~p and G = ~f1 (resp. G = ~g1), assuming that k~pk2 � 1,
k ~f1k2 � 1 and k~g1k2 � 1.
For the upper bound, k~p: ~f1k1 = maxk

���Pi+j=k ~pi
~f1;j

��� � deg(~p: ~f1)+1 � deg f +1,
as j~pij � 1 and j ~f1;j j � 1 for all i; j.
Then, we take the supremum over all ~p and ~f1 of norm smaller than 1, and the

lower bound becomes 2� deg ~p�deg ~f1 � 2� deg f .
We denote by D Dedieu�s constant:

D :=
�Sylv(p; f1);Sylv(p; g1)�y :

We have then the following bounds for the gcd:

THEOREM 3. With the previous notations we have:

�(p; f1; g1) = D " ;

CsupD � (p; f1; g1) � Cinf D ;
�(p; f1; g1) � CsupD2 "; :

In conclusion, we get an easy test to check the convergence of Newton-Gauss�
method for the approximate gcd problem.

4 Numerical Example

In this section, we compute the corresponding bounds on a toy example. We set

f = (x� 1)(x� 2)(x� 3) = x3 � 6x2 + 11� 6;

g = (x� 1:00001)(x+ 3)(x+ 2) = x3 + 3:99999x2 + 0:99995x� 6:00006:
An approximate gcd is given by

p = x� 1:000005;

f1 = (x� 2)(x� 3) + 10�6 = x2 � 5x+ 6:000001;
g1 = (x+ 3)(x+ 2) + 10

�6 = x2 + 5x+ 6:000001:

Then D = 1:298105, " = 5:660389 � 10�5, Csup = 11:31371. Theorem 3 gives the
following bound on �(p; f1; g1):

CsupD2 " = 1:079122� 10�3:

The bound given in theorem 2 is

1

16�+ 32
= 3:779289� 10�3:
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Then, as the bound of Theorem 3 is smaller than the bound of Theorem 2, we can
certify the convergence of Newton-Gauss�method in this case.
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