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Abstract. In this article we propose a probabilistic framework in order to
study the fair division of a divisible good, e.g. a cake, between n players.

Our framework contains two situations. The first corresponds to the “Full

independence model” used in the study of fair division of indivisible goods. The
second is in the spirit of smoothed analysis. We show that, in this framework,

there exists an envy-free division algorithm satisfying the following probability

estimate:

P
(
C(µ1, . . . , µn) ≥ n7+b

)
= O

(
n−

b−1
3

+1+o(1)
)
,

where µ1, . . . , µn correspond to the preferences of the n players, C(µ1, . . . , µn)
is the number of queries used by the algorithm and b > 4. In particular, this

gives

lim
n→+∞

P
(
C(µ1, . . . , µn) ≥ n12

)
= 0.

It must be noticed that nowadays few things are known about the complexity

of envy-free division algorithms. Indeed, Procaccia has given a lower bound in

Ω(n2) and Aziz and Mackenzie have given an upper bound in nnnnnn

. As our

estimate means that we have C(µ1, . . . , µn) < n12 with a high probability, this

gives a new insight on the complexity of envy-free cake cutting algorithms.
Our result follows from a study of Webb’s algorithm and a theorem of Tao and

Vu about the smallest singular value of a random matrix.

Keywords: computational fair division, cake cutting, probability, random
matrices, singular values, smoothed analysis.

Introduction

In this article we study the problem of fair resource allocation. The goal in this
problem is to share a heterogeneous good between different players or agents. This
good can be for example: a cake, land, time or computer memory. This problem
is old. For example, the Rhind mathematical papyrus contains problems about the
division of loaves of bread and about the partition of plots of land. In the Bible
we find the famous “Cut and Choose” algorithm between Abraham and Lot, and
in the greek mythology we find the trick at Mecone. More recently, the “Cut and
Choose” protocol has been used in the United Nations Convention on the Law of
the Sea (December 1982, Annex III, article 8).
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The problem of fair division has been formulated in a scientific way by Steinhaus
in 1948, see [34]. Nowadays, there exist several papers, see e.g. [1, 6, 7, 20, 21, 22,
26, 28, 31, 40], and books about this topic, see e.g. [4, 8, 29, 32]. These results
appear in the mathematics, economics, political science, artificial intelligence and
computer science literature. Recently, the cake cutting problem has been studied
intensively by computer scientists for solving resource allocation problems in multi
agents systems, see e.g. [9, 13, 14, 25, 37].

Throughout this article, the cake will be a heterogeneous good represented by
the interval C = [0, 1]. This assumption is classical and not restrictive for our study.
We also consider n players and we associate to each player a non-atomic probability
measure µi on the interval C = [0, 1]. More precisely, we suppose that the measures
µi are absolutely continuous with respect to the Lebesgue measure. These measures
represent the preferences, the utility functions of the players. We have µi(C) = 1
for all i.
The problem in this situation is to get a fair division of C = C1 t . . . t Cn, where
the i-th player gets Ci.

When we study fair divisions, we have to define “fair” precisely. Indeed, several
notions exist.

• We say that a division is proportional when for all i, we have

µi(Ci) ≥ 1/n.

• We say that a division is equitable when for all i 6= j, we have

µi(Ci) = µj(Cj).

• We say that a division is exact in the ratios (α1, α2, . . . , αn), where αi ≥ 0
and α1 + α2 + · · ·+ αn = 1, when for all i and j we have

µi(Cj) = αj .

• We say that a division is envy-free when for all i 6= j, we have

µi(Ci) ≥ µi(Cj).

There also exist several classical properties to study a fair division: Pareto opti-
mality, monotonicity and contiguity, see e.g. [2, 33].
Our paper deals with a practical problem: the computation of envy-free fair divi-
sions.

In order to describe algorithms we need a model of computation. There exist
two main classes of cake cutting algorithms: discrete and continuous protocols (also
called moving knife methods). Here, we study discrete algorithms. These kinds of
algorithms can be described thanks to the classical model introduced by Robertson
and Webb and formalized by Woeginger and Sgall in [42]. In this model we suppose
that a mediator interacts with the agents. The mediator asks two type of queries:
either cutting a piece with a given value, or evaluating a given piece. More precisely,
the two type of queries allowed are:

(1) evali(x, y): Ask agent i to evaluate the interval [x, y]. This means return
µi([x, y]).
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(2) cuti(x, a): Ask agent i to cut a piece of cake [x, y] such that µi([x, y]) = a.
This means: for given x and a, return y such that µi([x, y]) = a.

In the Robertson-Webb model the mediator can adapt the queries based on the
previous answers given by the players. In this model, the complexity counts the
number of queries necessary to get a fair division. For a rigorous description of this
model we can consult: [10, 42].
We can remark that this model of computation does not take into account the nature
and the number of operations performed by the mediator. The Blum-Shub-Smale-
Robertson-Webb model of computation introduced in [16] avoids these drawbacks.

The first studied notion of fair division has been proportional division, [34]. Pro-
portional division is a simple and well understood notion. In [34] Steinhaus explains
the Banach-Knaster algorithm which gives a proportional division. There also exists
an optimal algorithm to compute a proportional division in the Robertson-Webb
model, see [21, 22]. The complexity of this algorithm is in O

(
n log(n)

)
. Further-

more, the portion Ci given to the i-th player in this algorithm is an interval.

Exact divisions in the ratios (α1, . . . , αn) exist for all ratios (α1, . . . , αn). The
existence of this kind of fair division follows from a convexity theorem given by
Lyapounov, see e.g. [20]. When we have αi = 1/n, for all i, we just say that
the division is exact. Unfortunately, there exists no algorithm to compute exact
divisions, see [32].
Equitable fair division is of the same kind. Indeed, there exist equitable fair di-
visions where each Ci is an interval, see [11, 15, 33]. However, there do not exist
discrete protocols computing an equitable fair division, see [12, 16, 30].

Envy-free fair division is difficult to obtain in practice. Indeed, whereas envy-free
fair divisions where each Ci is an interval exist, there does not exist an algorithm
in the Robertson-Webb model computing such divisions. These results have been
proved by Stromquist in [35, 36].
The first envy-free algorithm for n players has been given by Brams and Taylor in
[7]. This algorithm was discovered approximatively 50 years after the first algo-
rithm computing a proportional fair division. The Brams-Taylor algorithm has an
unbounded complexity in the Robertson-Webb model. This means that we cannot
bound the complexity of this algorithm in terms of the number of players only. A
complexity study with ordinal numbers of these algorithms has been done in [23].
It is only recently that a finite and bounded algorithm has been given to solve this

problem, see [1]. The complexity of this algorithm is in O
(
nn

nnnn )
. When n = 2,

nn
nnnn

is bigger than the number of atoms in the universe. . . A lower bound for
envy-free division algorithm has been given by Procaccia in [27]. This lower bound
is in Ω(n2).

We can remark that there is a huge difference between the complexity in the

worst case O
(
nn

nnnn )
and the lower bound Ω(n2). Therefore a natural question

arises:
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Can we design an envy-free algorithm such that in practice the number of queries
is smaller than nd, where d is a given degree, with a high probability ?

In order to answer this question we have to define a probabilistc framework.
When we consider indivisible goods there exist two probabilistic models, see e.g. [5].

The first model is the Full correlation model. In this model we suppose that
all agents have the same preference and all preferences are equiprobable. When
we want to share several indivisible goods, this case corresponds to the worst case.
However, in the cake cutting situation, if we suppose that µ1 = . . . = µn then we
can easily obtain an envy-free division. Indeed, we ask the first player to cut the
cake in n equals portions. Thus the full correlation model is not an interesting
model in the cake cutting situation.

The second model in the indivisible goods setting is the Full independence model.
In this model we suppose that all preferences are equiprobable and that all agents
have independent preferences. In the cake cutting setting, in order to obtain a
similar situation we consider the following construction:

First, we divide the interval [0, 1] into n witness intervals

Wj =
[j − 1

n
,
j

n

]
, where j = 1, . . . , n.

Second, we remark that for all probabilistic measures µi on [0, 1], the vector(
µi(W1), . . . , µi(Wn)

)
belongs to the standard (n − 1)-simplex. Indeed, as µi is a

probabilistic measure we have for all j = 1, . . . , n, µi(Wj) ≥ 0, and

µi(W1) + · · ·+ µi(Wn) = µi(W1 t . . . tWn) = µi([0, 1]) = 1.

When we consider a random measure µi, it is natural to suppose that all witness
intervals play the same role. For example, there is no reason to suppose that the
players usually prefer the first part W1 of the cake.

Our first probabilistic situation is thus the following:

We suppose that the distribution of
(
µi(W1), . . . , µi(Wn)

)
follows a uniform dis-

tribution over the standard (n− 1)-simplex.

A classical way to obtain a uniform distribution on the standard (n−1)-simplex
is the following, see [19, Theorem 4.1]: Consider n independent random variables
Xi with probability density function fi(x) = e−x. Set S =

∑n
i=1Xi and Yi = Xi/S,

then (Y1, . . . , Yn) follows the uniform distribution on the standard (n− 1)-simplex.

Furthermore, in this first setting we are going to suppose that agents have inde-
pendent preferences. This means for example that µ1(Wj) is independent of µ2(Wj).

Thus, in the cake cutting situation the Full independence model means that we
suppose that the following hypothesis holds:
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H1: Taking randomly a matrixM =
(
µi(Wj)

)
means that we consider a random

matrix M = (mij) where

mij =
Xij∑n
k=1Xik

and Xij are independent exponential random variables, i.e. with a probability den-
sity function fij(x) = e−x defined over [0,+∞[.

Our second probabilistic situation is in the spirit of smoothed analysis. Indeed,
we are going to study the worst case complexity of an algorithm under slight ran-
dom perturbations. More precisely, we consider this kind of situation:

There is a partition [0, 1] = tni=1Wj , but Wj are not necessarily equal to
[j − 1

n
,
j

n

]
.

Each agent evaluate all Wj and then send these informations to the mediator. How-
ever, these values are transmitted over a communication channel in the presence of
noise.

Therefore, the idea is to consider a matrix M = (mij) where

• mij = aij + εij ,
• aij ∈ R+ correspond to µi(Wj) without perturbation, thus

∑n
j=1 aij = 1,

• εij are independent and identically distributed random variables with mean
zero. They correspond to perturbations.

However, we cannot consider directly these kinds of matrices in our study for
two reasons.
First, if the pertubation εij satisfies εij < −aij then we get mij = aij + εij < 0.
Thus we cannot interpreted mij as a measure of Wj . Therefore, we are going to
suppose that there exists ε > 0 such that ai,j > ε, for all i, j, and |εij | < ε. With
this assumption we have aij + εij > 0. We remark that this means that all players
are hungry: each interval Wj have a positive value for all players.
Second, even if

∑n
j=1 aij = 1, we do not necessarily have

∑n
j=1 aij + εij = 1. Then,

the matrix M is not stochastic. This problem can be avoided if we consider the

matrix with coefficients mij =
aij + εij∑n

k=1(aik + εik)
.

Thus, in this second situation, we consider the following hypothesis parametrized
by ε ∈ ]0, 1[.

H2(ε): Taking randomly a matrix M =
(
µi(Wj)

)
means that we consider a

matrix M = (mij) where

mij =
aij + εij∑n

k=1(aik + εik)

aij > ε,

n∑
j=1

aij = 1.

and εij are independent and identically distributed random variables with mean zero
such that −ε < εij < ε.
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In this second setting, we do not suppose that agents have independent pref-
erences, we suppose that the noise correspond to independent and identically dis-
tributed random variables.

We remark that in the two situations we have defined what is a random matrix
M =

(
µi(Wj)

)
and that we do not have defined what is a random measure. In-

deed, instead of taking random measures and then constructing the matrix M, we
have directly defined the probability distribution for the matrixM. This approach
allows to obtain a simple and explicit probabilistic framework.

In this article, we study the complexity of an envy-free fair division algorithm.
We will denote by C(µ1, . . . , µn) the number of queries used by this algorithm when
the inputs are µ1, µ2, . . . , µn.

Theorem 1. If we suppose that the hypothesis H1 or H2(ε) is satisfied, then we
have the following result:
There exists a protocol in the Robertson-Webb model of computation giving an envy-
free fair division and such that for all b > 4 we have the following probability
estimate

P
(
C(µ1, . . . , µn) ≥ n7+b

)
= O

(
n−

b−1
3 +1+o(1)

)
.

This theorem says: the bigger the number of queries, the smaller the probability.

We recall that f(n) = O
(
g(n)

)
means that there exists a constant C and an

integer n0 such that for all n ≥ n0, we have |f(n)| ≤ Cg(n).
The notation o(1) refers to a function f(n) such that limn→+∞ f(n) = 0.

Examples:
• If we choose b = 5 then

−b− 1

3
+ 1 + o(1) = −1

3
+ o(1).

When n is big enough we can suppose o(1) < 1/6 and then in this case

O
(
n−

b−1
3 +1+o(1)

)
= O

(
n−1/6

)
.

This gives

lim
n→+∞

P
(
C(µ1, . . . , µn) ≥ n12

)
= 0.

• If we choose b = 11 then

−b− 1

3
+ 1 + o(1) = −7

3
+ o(1).

When n is big enough we can suppose o(1) < 1/3 and then in this case

O
(
n−

b−1
3 +1+o(1)

)
= O

(
n−2

)
.

Thus Theorem 1 gives

P
(
C(µ1, . . . , µn) ≥ n18

)
= O

( 1

n2

)
.



ENVY-FREE CAKE CUTTING 7

These bounds are not very sharp but they give a precise statement of the fol-
lowing idea: when n is big the probability that the algorithm uses more than n12

(or n18) queries is very small.
At last, we remark that this theorem does not give the expected numbers of queries
used by the algorithm.

Strategy of the algorithm and structure of the paper
The algorithm proposed in this article is just a slight modification of Webb’s super
envy-free division algorithm. Webb’s algorithm constructs an envy-free division
from the matrixM =

(
µi(Wj)

)
when det(M) 6= 0. The algorithm that we propose

works as follows: if det(M) 6= 0 then use Webb’s algorithm else use another envy-
free algorithm.
When the hypothesis H1 or H2(ε) is satisfied the probability that det(M) = 0 is
equal to zero. Thus, in practice our algorithm almost always corresponds to Webb’s
algorithm. As the number of queries needed in Webb’s algorithm can be written in
terms of the smallest singular value of M, the strategy to prove Theorem 1 relies
on a probabilistic study of the smallest singular value of M.

The structure of this article in thus the following:
In the first section, we recall what is a super envy-free fair division and we also recall
Webb’s super envy-free algorithm. Then, we give our algorithm. In Section 2, we
study the number of queries used by this algorithm. This leads us to recall some
standard results on singular values of a matrix and to write the complexity of the
algorithm in terms of the smallest singular value of the matrixM. In Section 3, we
use a theorem of Tao and Vu, see [38], about the probability that M has a small
singular value. This theorem will be the key point in the proof of Theorem 1.

1. The algorithm

1.1. Super envy-free algorithm. Super envy-free fair division is a strong kind
of envy-free division. This notion has been introduced and studied by Barbanel,
see [3, 4].

Definition 2. We say that a division is super envy-free when for all i 6= j, we have

µi(Ci) >
1

n
> µi(Cj).

This definition says that this division is proportional and all players think to
have stricly more than other players. Of course, this kind of fair division is not
always possible. For example, if µ1 = µ2 = · · · = µn, then the previous inequality
is not possible. Indeed, we cannot have µ1(C1) > 1/n > µ2(C1) = µ1(C1).
However, a super envy-free fair division exists when the measures µi are linearly
independent.

Definition 3. Let µ1, . . . , µn be n measures on a measurable set (C,B), where B
is the Borel σ-algebra. We say that these measures are linearly independent when
they are linearly independent as functions from B to [0, 1].

Theorem 4 (Barbanel’s theorem). A super envy-free division exists if and only if
the measures µ1, . . . , µn are linearly independent.

In the following we are going to use a witness matrix in order to know if the
measures are linearly independent.
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Definition 5. The witness matrix associated to the partition C = W1 t . . . tWn

and the measures µ1, . . . , µn is the matrix M =
(
µi(Wj)

)
.

Remark 6. If det(M) 6= 0 then the measures µ1, . . . , µn are linearly independent.

In [41], Webb gives a strategy to compute a super envy-free fair division. In
order to recall this strategy, we recall what is an ε near-exact fair division.

Definition 7. Let A be a measurable subset of C.
We say that a division ofA = A1t. . .tAn is ε near-exact in the ratios (α1, α2, . . . , αn),
where αi ≥ 0 and α1 + α2 + · · ·+ αn = 1, when for all i and j we have

|µi(Aj)− αj × µi(A)| < ε× µi(A).

Now, we can describe Webb’s algorithm.

Super Envy-free fair division algorithm

Inputs: A partition C = W1t. . .tWn, a matrixM0 = (mij) where mij = µi(Wj),
M0 is non-singular.
Outputs: A super envy free division C = C1 t . . . t Cn.

(1) Compute M−1
0 = (m̃ij).

(2) Set δ :=
n− 1

n(1− tn)
where t = mini,j(m̃ij).

(3) Set N := (nij), where nii := 1/n+ δ and nij = 1/n− δ/(n− 1).

(4) Compute R = (rij) :=M−1
0 N .

(5) For j = 1, . . . , n do
Compute an ε = δ/n2 near-exact fair division of Wj in the ratios

(rj1, . . . , rjn),
this gives Wj = Wj1 t . . . tWjn.

(6) For all i = 1, . . . , n do
Ci := W1i tW2i t . . . tWni.

We remark that in Step 2, we have t ≤ 0. Indeed, if t > 0 then the equality
M0M−1

0 = I is impossible, because the coefficients mij are non-negative. There-
fore in Step 2, we have δ > 0. The formula used to define δ is constructed in such
a way that the coefficients rij of R are non-negative.
Furthermore, we have

∑n
j=1 rij = 1. Indeed, if we set e = t(1, . . . , 1) then asM0 is

a stochastic matrix, we haveM0 ·e = e andM−1
0 ·e = e. Moreover, by construction

N is also a stochastic matrix, then N · e = e. It follows R · e = M−1
0 N · e = e,

which gives the equality
∑n
j=1 rij = 1.

In order to explain this algorithm, suppose that in Step 5 we compute an exact
fair division in the ratios (rj1, . . . , rjn) instead of an ε near- exact fair division with
these ratios. Then, by construction the partition C = C1t . . .tCn has the following
property: µi(Cj) = nij . This gives µi(Ci) = 1/n+ δ and µi(Cj) = 1/n− δ/(n− 1).
Thus this partition gives a super envy-free division.
In practice, the computation of an exact fair division in the ratios (rj1, . . . , rjn)
is impossible, since it has been proved that such algorithms cannot exist, see [32].
That is the reason why an ε near-exact algorithm is used. Indeed, an ε near-exact
algorithm in the Robertson-Webb model exists, see [32, Theorem 10.2]. Therefore
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the idea is to choose a small enough ε in order to obtain a result very close to the
theoretical result where ε = 0. Thus, we obtain in practice a partition where µi(Cj)
are very close to nij and then the division is super envy-free.

The number of queries used by the ε near-exact division algorithm is at most
n× (2 + 2n3/2)/ε, see [32, Theorem 10.2]. As already remarked in [32], this bound
can be improved. However, we just want to get a bound on C(µ1, . . . , µn) in terms
of a polynomial in n, thus this estimate is sufficient.
Therefore, the number of queries used by Webb’s super envy-free algorithm is at
most n4 × (2 + 2n3/2)/δ, since ε = δ/n2 and in Step 5 we compute n ε-near-exact
fair divisions. Thanks to the definition of δ we get the following lemma.

Lemma 8. The number of queries used by the super envy-free division algorithm
in the Robertson-Webb model is bounded by

n5 × (2 + 2n3/2)× (1− tn)

n− 1
∈ O

(
max

(
1, |t|

)
n6.5

)
.

1.2. An envy-free algorithm.

Envy-free fair division algorithm

Inputs: A partition C = W1 t . . . tWn, n measures µ1, . . . , µn.
Outputs: An envy free division C = C1 t . . . t Cn.

(1) % Construct the matrix M = (mij) where mij = µi(Wj). %
For all i = 1, . . . , n, do

For all j = 1, . . . , n do
mij := evali(Wj).

(2) If det(M) = 0 then compute an envy-free fair division thanks to Aziz-
Mackenzie’s algorithm,
Else compute a super envy-free fair division thanks to Webb’s algorithm.

Remark 9. When det(M) = 0, we have to use an algorithm different from Webb’s
algorithm. Indeed, in this case Webb’s algorithm is not defined (we cannot compute
M−1). Furthermore, it is not necessary to use the Aziz-Mackenzie’s algorithm. The
bound given in Theorem 1 will not change if we use another envy-free algorithm
when det(M) = 0.

Remark 10. If det(M) = 0 then we can try another partition C = W ′1 t . . . tW ′n.
However, if the measures are linearly dependent then for all partitions we have
det(M) = 0.

2. Complexity analysis

The number of queries used by our envy-free division algorithm depends on |t|
when det(M) 6= 0. In the next subsection, we are going to bound |t| by σ−1

n where
σn is the smallest singular value of M. Then, in the second subsection, we use an
estimate on the probability P(σn ≤ n−b) in order to prove our theorem.

2.1. The smallest singular value. We recall here the definition and a simple
result about the singular values of a matrix.
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Definition 11. The singular values of a matrix M are the square roots of the
eigenvalues of MTM. They are denoted by σ1(M) ≥ · · · ≥ σn(M).

Remark 12. We have det(M) = 0 ⇐⇒ σn(M) = 0.

The smallest singular value allows to bound the coefficients of the inverse of a
matrix.

Proposition 13. Let M be a non-singular matrix, such that M−1 = (m̃ij).
Let σn(M) be the smallest singular value of M. We have

max
ij

(
|m̃ij |

)
≤ ‖M−1‖2 = σ−1

n (M).

Proof. This is a classical result, see [24, Formula 2.3.8 page 56] and [18, Theo-
rem 3.3]. �

The previous proposition allows us to obtain an upper bound on the complexity
of the super envy-free algorithm in terms of σn(M).

Corollary 14. When n ≥ 19, the number of queries used by the super envy-free
division algorithm in the Robertson-Webb model is bounded by

n7 ×max
(
1, σ−1

n (M)
)
.

Proof. We have already remarked that in Step 2 of the super envy-free algorithm
we have t = mini,j(m̃ij) ≤ 0. Then Proposition 13 gives

−t = |t| ≤ max
i,j
|m̃ij | ≤ σ−1

n (M).

Then Lemma 8 implies that the number of queries used by the super envy-free
division algorithm in the Robertson-Webb model is bounded by

n5 × (2 + 2n3/2)× (1 + nσ−1
n (M))

n− 1
.

As we have supposed that n ≥ 19, we get

2 + 2n3/2

n− 1
≤ n

2
.

Then, we have

n5 × (2 + 2n3/2)× (1 + nσ−1
n (M))

n− 1
≤ n6

2
× (1 + nσ−1

n (M))

≤ n7

2

(
1 + σ−1

n (M)
)

≤ n7 ×max
(
1, σ−1

n (M)
)
.

�

The singular value σn(M) measures how farM is from a singular matrix. There-
fore, if σn(M) is small then the measures µi are nearly linearly dependent and the
previous corollary shows that the number of queries is big. This result satisfies the
general result: if the agents have “very different” preferences it will be easier to get
an envy-free fair division. A precise statement of this result with an explicit bound
has been given in [17, Corollary 17].
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2.2. Proof of Theorem 1.
We consider the event C(µ1, . . . , µn) ≥ n7+b.
During the envy-free algorithm two situations appear:

First, det(M) 6= 0, then in this situation the algorithm uses the super envy-free
algorithm. Thanks to Corollary 14, the number of queries used in this situation
satisfies

n7+b ≤ C(µ1, . . . , µn) ≤ n7 ×max
(
1, σ−1

n (M)
)
.

As n > 1, it follows

nb ≤ σ−1
n (M).

This means that we have the following inclusion

(?) {det(M) 6= 0} ∩ {C(µ1, . . . , µn) ≥ n7+b} ⊂ {σn(M) ≤ n−b}.
The second situation corresponds to det(M) = 0. Thus the second situation

corresponds to σn(M) = 0 and obviously σn(M) ≤ n−b. This gives the following
inclusion

(??) {det(M) = 0} ⊂ {σn(M) ≤ n−b}.
Thanks to (?) and (??) we get

{C(µ1, . . . , µn) ≥ n7+b} ⊂ {σn(M) ≤ n−b}.
We deduce then the following inequality between probabilities

P
(
C(µ1, . . . , µn) ≥ n7+b

)
≤ P

(
σn(M) ≤ n−b

)
.

In the next section we are going to prove the following proposition.

Proposition 15. If we suppose that the hypothesis H1 or H2(ε) is satisfied then
the following holds:
Let b > 4 be a constant, then there exists a constant c > 0 depending on b such that

P
(
σn(M) ≤ n−b

)
≤ c
(
n−

b−1
3 +1+o(1) + ne−

√
n + n2e−

√
n−1
)
.

In order to finish the proof of Theorem 1, we remark that for all b > 4 we have

ne−
√
n + n2e−

√
n−1 = O(n−

b−1
3 +1). Therefore, we get

P
(
C(µ1, . . . , µn) ≥ n7+b

)
≤ P

(
σn(M) ≤ n−b

)
= O

(
n−

b−1
3 +1+o(1)

)
,

which gives the desired estimate.

3. An estimate for P(σn(M) ≤ n−b)

In this section we prove Proposition 15.
In order to bound P

(
σn(M) ≤ n−b

)
, we are going to introduce some notations.

As we suppose that the hypothesis H1 or H2(ε) is satisfied we have

M = DX ,
where D is a diagonal matrix. Indeed:

• If H1 is satisfied, D is the diagonal matrix with coefficient in the i-th row
equal to 1/(

∑n
j=1Xij), X is the matrix with coefficients Xij and Xij are

independent exponential random variables with probability density function
fij(x) = e−x.
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• If H2(ε) is satisfied, D is the diagonal matrix with coefficient in the i-th
row equal to 1/(

∑n
j=1 aij + εij), X is the matrix with coefficients aij + εij

and εij are independent and identically distributed random variables with
mean zero and such that −ε < εij < ε.

We also consider the two following events:

A = {σn(M) ≤ n−b} ∩ {σn(D) ≤ n−3/2}.

B = {σn(M) ≤ n−b} ∩ {σn(D) ≥ n−3/2}.

Obviously, we have

(]) {σn(M) ≤ n−b} = A ∪B.

Now, we are going to bound P(A) and P(B).

Lemma 16. If H1 is satisfied then we have

P(A) ≤ ne−
√
n.

Proof. We have A ⊂ {σn(D) ≤ n−3/2}. Thus

P(A) ≤ P
(
σn(D) ≤ n−3/2

)
.

As D is a diagonal matrix with coefficients 1/(
∑n
j=1Xij), we have

σn(D) ≤ n−3/2 ⇒ min
i

( 1

Xi1 + · · ·+Xin

)
≤ n−3/2

⇒ ∃i0, Xi01 + · · ·+Xi0n ≥ n3/2

⇒ ∃(i0, j0), Xi0j0 ≥
√
n.

We set Aj = {Xi0j ≥
√
n}, we have

A ⊂
n⋃
j=1

Aj .

Furthermore,

P(Aj) =

∫ +∞

√
n

e−xdx = e−
√
n.

Therefore, we get

P(A) ≤
n∑
j=1

P(Aj) = ne−
√
n.

�

Lemma 17. If H2(ε) is satisfied and n ≥ 3 then we have

P(A) = 0.
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Proof. We follow the same strategy as before.
We have P(A) ≤ P

(
σn(D) ≤ n−3/2

)
. As D is a diagonal matrix with coefficients

1/(
∑n
j=1 aij + εij), we deduce

σn(D) ≤ n−3/2 ⇒ ∃i0,
n∑
j=1

ai0j + εi0j ≥ n3/2

⇒ nε ≥ n3/2 − 1, since

n∑
j=1

aij = 1 and |εij | < ε

⇒ ε ≥
√
n− 1

n
.

As ε < 1 and n ≥ 3, the last inequality is impossible, thus P
(
σn(D) ≤ n−3/2

)
= 0

and this proves the desired result. �

In order to to give a bound on P(B) we are going to use the following theorem
due to Tao and Vu, see [38], and see also the erratum in [39].

Theorem 18. Let Y be a random variable with mean zero and bounded second
moment, and let γ ≥ 1/2, a ≥ 0 be constants. Then there is a constant c depending
on Y , γ, and a such that the following holds. Let Y be the random matrix of size
n× n whose entries are independent and identically distributed copies of Y , let M
be a deterministic matrix satisfying ‖M‖2 ≤ nγ . Then

P
(
σn(M + Y) ≤ n−(2a+2)γ+1/2

)
≤ c
(
n−a+o(1) + P

(
‖Y‖2 ≥ nγ

))
.

In order to bound P(B), we need the following lemma.

Lemma 19. Let A and B be two n× n matrices, we have

σn(A)× σn(B) ≤ σn(AB).

Proof. When A or B are singular then this lemma is trivial. Thus, it remains to
study the situation when A and B are non-singular.
When M is an n × n matrix we have ‖M−1‖−1

2 = σn(M), see [18, Theorem 3.3].
Thus

1

σn(AB)
= ‖(AB)−1‖2 = ‖B−1A−1‖2 ≤ ‖B−1‖2 × ‖A−1‖2.

Therefore σn(AB) ≥ ‖B−1‖−1
2 × ‖A−1‖−1

2 , which gives the desired result. �

The previous lemma allows to reduce our study to the singular value of X .

Lemma 20. We set C = {σn(X ) ≤ n−b+3/2}. We have B ⊂ C.

Proof. With our notations we have M = DX and by Lemma 19 we have

(?) σn(D)× σn(X ) ≤ σn(M).

If the event B is realized then by definition we have

σn(M) ≤ n−b and σn(D) ≥ n−3/2.

The inequality (?) implies

σn(X ) ≤ n−b+3/2.

This gives B ⊂ C.
�
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Proposition 21. If the hypothesis H1 is satisfied, there exists a constant c such
that the following holds

P(B) ≤ c
(
n−

b−1
3 +1+o(1) + n2e−

√
n−1
)
.

Proof. We are going to apply Theorem 18 to σn(X ).
We set Y = X − 1, where X is the exponential distribution with the probability
density function f(x) = e−x. Then Y is a random variable with mean zero and
bounded second moment.
Furthermore, we denote by M the n× n matrix with all its entries equal to 1. We
denote by Y = (Yij) the n×n matrix where its coeffcients Yij are independent and
identicaly distributed copies of Y . Therefore, the matrix M +Y corresponds to our
matrix X .
Furthermore, we remark easily that we have ‖M‖2 = n. Then we can set γ = 3/2,
and we have ‖M‖2 ≤ nγ .
Now, we are going to bound P

(
‖Y‖2 ≥ n3/2

)
. We recall the classical bound, see

[24],

‖Y‖2 ≤ nmax
i,j
|Yij |,

where Y = (Yij). Therefore, we have

‖Y‖2 ≥ n3/2 ⇒ max
i,j
|Yij | ≥

√
n.

We denote by Ci,j the following set

Ci,j = {|Yij | ≥
√
n}.

We deduce then the following inclusion

{‖Y‖2 ≥ n3/2} ⊂
n⋃

i,j=1

Ci,j .

By definition of Y, we have Yij = Xij − 1 where Xij follows the exponential distri-
bution. Therefore Xij ≥ 0 and

|Yij | ≥
√
n ⇐⇒ |Xij − 1| ≥

√
n ⇐⇒ Xij ≥

√
n+ 1.

This gives

P(Ci,j) = P
(
|Yij | ≥

√
n
)

= P(Xij ≥
√
n+ 1) =

∫ +∞

√
n+1

e−xdx = e−
√
n−1,

it follows

P
(
‖Y‖2 ≥ n3/2

)
≤

n∑
i,j=1

P(Ci,j) ≤ n2e−
√
n−1.

Then Theorem 18 gives

P
(
σn(M + Y) ≤ n−3(2a+2)/2+1/2

)
≤ c
(
n−a+o(1) + n2e−

√
n−1
)
.

By construction, we have M + Y = X , then if we set

−b+
3

2
= −(2a+ 2)× 3

2
+

1

2

then we have

a =
b− 1

3
− 1
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and

P
(
σn(X ) ≤ n−b+3/2

)
≤ c
(
n−

b−1
3 +1+o(1) + n2e−

√
n−1
)
.

We obtain the desired bound thanks to Lemma 20. �

Proposition 22. If the hypothesis H2(ε) is satisfied, there exists a constant c such
that the following holds

P(B) ≤ c
(
n−

b−1
3 +1+o(1)

)
.

Proof. As before we are going to apply Theorem 18 to σn(X ).
We set Y = ε11. As ε11 is a random variable with mean zero and |ε11| < ε, we
deduce that ε11 has a bounded second moment and thus satisfies the hypothesis of
Theorem 18.
Furthermore, we denote by M the n × n matrix with entries equal to aij . We
denote by Y = (Yij) the n × n matrix where its coeffcients Yij are independent
and identicaly distributed copies of Y . Therefore, our matrix X corresponds to the
matrix M + Y in Theorem 18.

Furthermore, we have ‖M‖2 ≤
(∑n

i=1

∑n
j=1 a

2
ij

)1/2

≤ n1/2, since
∑n
j=1 aij = 1.

Then we can set γ = 3/2, and we have ‖M‖2 ≤ nγ .

Moreover, we have ‖Y‖2 ≤
(∑n

i=1

∑n
j=1 ε

2
ij

)1/2

≤ nε < n, since |εij | < ε < 1.

Thus it is impossible to have ‖Y‖2 ≥ nγ and then P
(
‖Y‖2 ≥ nγ

)
= 0.

Theorem 18 gives

P
(
σn(M + Y) ≤ n−3(2a+2)/2+1/2

)
≤ c
(
n−a+o(1)

)
.

By construction, we have M + Y = X , then if we set as in Proposition 21

−b+
3

2
= −(2a+ 2)× 3

2
+

1

2
we have

a =
b− 1

3
− 1

and

P
(
σn(X ) ≤ n−b+3/2

)
≤ c
(
n−

b−1
3 +1+o(1)

)
.

We obtain the desired bound thanks to Lemma 20.
�

Now, we can prove Proposition 15.
Thanks to (]), we have P(σn(M) ≤ n−b) ≤ P(A) + P(B).
Furthermore, by Lemma 16, Lemma 17, Proposition 21 and Proposition 22 there
exists a constant c such that

P(σn(M) ≤ n−b) ≤ P(A) + P(B) ≤ c
(
n−

b−1
3 +1+o(1) + ne−

√
n + n2e−

√
n−1
)
,

which gives the desired result.

Conclusion

We have shown that, with high probability, the use of an unbounded algorithm
can be efficient. Indeed, in Webb’s algorithm we cannot bound the number of
queries in term of the number of players, but if we use this algorithm in our prob-
abilistic framework, then P

(
C(µ1, . . . , µn)

)
≥ n12

)
is small.
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