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Institut de Mathématiques de Toulouse
UMR CNRS 5219
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Abstract

Darboux’s theorem and Jouanolou’s theorem deal with the existence of first
integrals and rational first integrals of a polynomial vector field. These results
are given in terms of the degree of the polynomial vector field. Here we show
that we can get the same kind of results if we consider the size of a Newton
polytope associated to the vector field. Furthermore, we show that in this
context the bound is optimal.
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Introduction

In this paper we study the following polynomial differential system in Cn:

dX1

dt
= A1(X1, . . . , Xn), . . . ,

dXn

dt
= An(X1, . . . , Xn),

where Ai ∈ C[X1, . . . , Xn] and degAi ≤ d. We associate to this polynomial
differential system the polynomial derivation D =

∑n
i=1Ai(X1, . . . , Xn)∂Xi

.

The computation of first integrals of such polynomial differential systems
is an old and classical problem. The situation is the following: we want to
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Preprint submitted to Journal of Differential Equations August 15, 2013



compute a function F such that the hypersurfaces F(X1, . . . , Xn) = c, where
c are constants, give orbits of the differential system. Thus we want to find
a function F such that D(F) = 0.

In 1878, G. Darboux [5] has given a strategy to find first integrals. One
of the tools developed by G. Darboux is now called Darboux polynomials.
A polynomial f is said to be a Darboux polynomial, if D(f) = g.f , where g is
a polynomial. The polynomial g is called the cofactor. A lot of properties of
a polynomial differential system are related to Darboux polynomials of the
corresponding derivation D, see e.g.[8, 6].
There exists a lot of different names in the literature for Darboux polynomi-
als, for example we can find: special integrals, eigenpolynomials, algebraic
invariant hypersurfaces, special polynomials or second integrals.

G. Darboux shows in [4] that if the derivation D has at least
(
n+d−1
n

)
+ 1

irreducible Darboux polynomials then D has a first integral which can be ex-
pressed by means of these polynomials. More precisely the first integral has
the following form:

∏
i f

λi
i where fi are Darboux polynomials and λi are com-

plex numbers. This kind of integral is called today a Darboux first integral.

In 1979, J.-P. Jouanolou shows in his book [9], that if a derivation has at
least

(
n+d−1
n

)
+ n irreducible Darboux polynomials then the derivation has a

rational first integral. We recall that a rational first integral is a first integral
which belongs to C(X1, . . . , Xn). As in Darboux’s theorem, the rational first
integral F can be expressed by means of these irreducible Darboux polyno-
mials. We have F =

∏
i f

ei
i , where now ei ∈ Z.

Several authors have given simplified proof for this result. M. Singer proves
this result in C2, see [19]. This approach is based on a work of Rosenlicht
[17]. J.-A. Weil generalizes this strategy and gives a proof for derivations in
Cn, see [21]. J. Llibre and X. Zhang gives a direct proof of Jouanolou’s result
in [14].

Darboux and Jouanolou’s theorem are improved in [12, 13]. The authors
show that we get the same kind of result if we take into account the multi-
plicity of Darboux polynomials. The multiplicity of a Darboux polynomial
is defined and studied in [3].

The Darboux theory of integrability has been successfully used in the
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study of some physical problems, see e.g. [20, 11], and in the study of limit
cycles and centers, see e.g. [1, 18, 10]. Unfortunately, to the author knowl-
edge, there do not exist example showing if these bounds are optimal. In
this note we are going to study the situation in the sparse case. This means
that we are going to consider polynomials Ai with some coefficients equals to
zero. In this situation, the size of the polynomials Ai is not measured by the
degree but by the size of its Newton polytope. We recall that the Newton
polytope of a Laurent polynomial f(X) =

∑
α cαX

α, where X = X1, . . . , Xn

and α is a multi-index (α1, . . . , αn) ∈ Zn, is the convex hull in Rn of the
exponent α of all nonzero terms of f . We denote this polytope by N (f).

In this note we prove a result improving Darboux and Jouanolou theo-
rem. Our result depends on the size of a Newton polytope associated to the
derivation and not on the degree d. Furthermore, in this context we can give
example showing that the bound is optimal. This is our result:

Theorem 1. Let D =
∑n

i=1Ai(X1, . . . , Xn)∂Xi
be a derivation. Consider

generic values (x1, . . . , xn) in Cn and the polytope ND = N
(∑n

i=1 xi
Ai
Xi

)
.

Let B be the number of integer points in ND ∩ Nn, then

1. if D has at least B + 1 irreducible Darboux polynomials then D has a
Darboux first integral,

2. if D has at least B + n irreducible Darboux polynomials then D has a
rational first integral.

Furthermore, these bounds are optimal.

We can remark that if we consider dense polynomials Ai with degree d,
that is to say each coefficient of Ai is nonzero, then B =

(
n+d−1
n

)
. Thus

Theorem 1 gives the classical bounds in the dense case.

Now, we illustrate why these bounds can be better than the classical ones.
We give an example with n = 2 in order to give a picture. If Ai has the fol-
lowing form: Ai(X1, X2) = ce,eX

e
1X

e
2 + ce−1,eX

e−1
1 Xe

2 + ce,e−1X
e
1X

e−1
2 + c0,0,

then B = 3e + 2, and d = deg(Ai) = 2e. In this situation we have(
n+d−1

2

)
= 2e(2e + 1)/2. Thus for such examples Theorem 1 gives a lin-

ear bound in e instead of a quadratic bound.
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Figure 1 shows the Newton polygon of Ai(X1, X2), when e = 3. The
triangle corresponds to the Newton polygon of dense polynomials with total
degree 6. In this situation, Jouanolou’s theorem says that if we have 23
Darboux polynomials then we have a rational first integral. Here, our bound
improves this result and means that 13 Darboux polynomials are sufficient
to construct a rational first integral.
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Figure 1: Newton polygon N
(
Ai(X1, X2)

)
.

The Newton polygon of
Ai(X1, X2)

X1

corresponds to a translation of the

Newton polygon of Ai(X1, X2). In Figure 2 we show N
(Ai(X1, X2)

X1

)
.

0
-

6X2

X1
pq

q pq
pp ppp

pp
p

pq
p

p
q p pp p ppppp

p p
pp

q






�
�
��

Figure 2: Newton polygon N
(Ai(X1, X2)

X1

)
.

Figure 3 shows the part of the Newton polygon of x1
A1(X1, X2)

X1

+x2
A2(X1, X2)

X2

in N2, when x1, x2 are generic.
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Figure 3: Newton polygon N
(
x1

A1(X1, X2)

X1
+ x2

A2(X1, X2)

X2

)
∩ N2.

Structure of the paper

In Section 1 we give some results about Newton polytopes and weighted
degree. In Section 2 we prove Theorem 1 and we show with examples that
our bounds are optimal.

1. ToolBox

In this section we introduce some notations and results that will be use-
ful in Section 2. These kinds of tools are already present in the work of
Ostrowski, see [16]. For more results about sparse polynomials, see e.g.
[7, 2].

Definition 2. Let P be a polytope, then H is a supporting hyperplane of P
if

1. H ∩ P 6= ∅,
2. P is fully contained in one of the two halfspaces defined by H.

In our situation, as we consider Newton polytopes, the equation of H has
integer coefficients. More precisely, the equation of H is ν.m = a, where ”.”
denotes the usual scalar product, ν is a vector with integer coefficients, and
a is an integer.

We can represent a Newton polytope with the equations of its supporting
hyperplanes:

N (f) = {m ∈ Zn | νj.m ≤ aj, for j = 1, . . . , k},
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where k is the number of supporting hyperplanes.
Now we define a degree related to a vector ν ∈ Zn.

Definition 3. Let ν ∈ Zn, we set degν(f) = maxm∈N (f) ν.m.

Now, we explain why we can call degν(f) a degree.

Proposition 4. Let f and g be two polynomials in C[X1, . . . , Xn],
ν = (ν1, . . . , νn) in Zn and x1, x2 two generic elements in C2.

1. degν(f + g) ≤ max
(

degν(f), degν(g)
)
,

2. degν(x1f + x2g) = max
(

degν(f), degν(g)
)
,

3. degν(f.g) = degν(f) + degν(g),

4. degν(∂Xi
f) ≤ degν(f)− νi = degν(f/Xi).

Proof. 1. As N (f + g) is included in the convex hull of N (f) ∪N (g), we
have

degν(f + g) = max
m∈N (f+g)

ν.m ≤ max
m∈Conv(N (f)∪N (g))

ν.m,

where Conv(.) denotes the convex hull.
Furthemore, as we consider a convex set, we deduce that this maximum
is reached on a point in N (f) ∪N (g). Thus

degν(f + g) ≤ max
m∈N (f)∪N (g)

ν.m

≤ max
(

max
m∈N (f)

ν.m, max
m∈N (g)

ν.m
)

≤ max
(

degν(f), degν(g)
)
.

2. As x1, x2 are generic then N (x1f + x2g) is equal to the convex hull of
N (f) ∪ N (g). Indeed, with generic x1 and x2 we avoid simplifications
in the sum x1f + x2g. Then the proof in this case proceeds as before.

3. This result comes from the well-known result by Ostrowski, [16], which
gives: N (f.g) = N (f)+N (g), where + in this situation is the Minkowski
sum.

4. Let ei be the i-th vector of the canonical basis of Rn, then we have

max
m∈N (∂Xi

f)
ν.m ≤ max

m∈N (f)
ν.(m− ei) = max

m∈N (f)
ν.m− νi = degν(f)− νi.

We also have
max
m∈N (f)

ν.(m− ei) = max
m∈N (f/Xi)

ν.m
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this completes the proof.

Newton polytopes and degree degν are related by the following proposi-
tion.

Proposition 5. Let f ∈ C[X±11 , . . . , X±1n ] be a Laurent polynomial with cor-
responding Newton polytope:

N (f) = {m ∈ Zn | νj.m ≤ aj, for j = 1, . . . , k},

where νj.m = aj, whith aj ∈ Z and νj ∈ Zn, are the equations of the k
supporting hyperplanes of N (f).
Let g ∈ C[X±11 , . . . , X±1n ] such that for j = 1, . . . , k, degνj(g) ≤ degνj(f) then
N (g) is included in N (f).

Proof. We just have to remark that

max
n∈N (g)

νj.n = degνj(g) ≤ degνj(f) = max
m∈N (f)

νj.m = aj.

Thus each element in N (g) satisfies the equations of N (f).

2. Proof of Theorem 1

2.1. Newton polytope and cofactors

We are going to show that if Ai are sparse then the cofactors are sparse.
This property will be the main tool of the proof of Theorem 1.

Proposition 6. Let D =
∑n

i=1Ai(X1, . . . , Xn)∂Xi
be a derivation. Let f be

a Darboux polynomial with corresponding cofactor g.
Consider generic values (x1, . . . , xn) in Cn and let ND be the convex set

N
(∑n

i=1 xi
Ai
Xi

)
then

N (g) ⊂ ND ∩ Nn.

Proof. First, obviously N (g) ∈ Nn since g is a polynomial.
Second, we have g.f =

∑n
i=1Ai∂Xi

f , thus for all ν ∈ Zn we have degν(g.f) =
degν(

∑n
i=1Ai∂Xi

f). Thanks to Proposition 4, we deduce these inequalities

degν(g) + degν(f) ≤ max
i

(degν(Ai)∂Xi
f)

≤ max
i

(degν(Ai) + degν ∂Xi
f)

≤ max
i

(degν(Ai) + degν(f)− νi).
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Thus we have

degν(g) ≤ max
i

(degν(Ai)− νi)

degν(g) ≤ max
i

(
degν(

Ai
Xi

)
)

degν(g) ≤ degν

( n∑
i=1

xi.
Ai
Xi

)
.

Now, we apply Proposition 5 with ν ∈ Zn corresponding to supporting hy-

perplanes of N
(∑n

i=1 xi.
Ai
Xi

)
and we get the desired result.

We can now prove easily Theorem 1. Indeed, we use the classical strategy
to prove Darboux Theorem in our situation.
As for all cofactors gfi associated to a Darboux polynomial fi, we have, by
Proposition 6,

N (gfi) ⊂ ND ∩ Nn,

then all cofactors belong to a C-vector space of dimension B, where B is the
number of integer points in ND ∩Nn. Thus if we have B + 1 cofactors, then
there exists a relation between them:

(?)
∑
i∈I

λigfi = 0,

where λi are complex numbers. Now, we recall a fundamental and straight-
forward result on Darboux polynomials: gf1.f2 = gf1 + gf2 . Thus relation
(?) gives the Darboux first integral

∏
i∈I f

λi
i . This proves the first part of

Theorem 1.

Now, in order to prove the second part of our theorem, we can use the
strategy proposed in [14]. In [14] the authors show that if we have n relations
of the type (?) then we can deduce a relation with integer coefficients, i.e.
λi ∈ Z. This gives a first integral of this kind:

∏
i∈I f

λi
i with λi ∈ Z, thus this

first integral belongs to C(X1, . . . , Xn) and we have a rational first integral.
In the sparse case as the cofactors belong to a C-vector space of dimension
B, if we have B + n irreducible Darboux polynomials then we have B + n
cofactors and then we deduce n relations between the cofactors. With the
strategy used in [14] we obtain that the derivation has a rational first integral.
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2.2. Optimality

2.2.1. Darboux first integrals

We are going to prove that the bound B + 1 is optimal if we are looking
for a Darboux first integral:

Consider the XiXi+1-derivation, i.e.

D =
( n−1∑
i=1

XiXi+1∂Xi

)
+XnX1∂Xn .

It is proved in [15] that D has no Darboux first integrals. Indeed, it is
proved that the only irreducible Darboux polynomials are: X1, X2, . . . , Xn.
Thus, if we have a Darboux first integral then it must be of the follow-
ing form: F = c

∏n
i=1X

λi
i , where c, λi ∈ C. Then D(F) = 0 implies

λnX1 +
∑n−1

i=1 λiXi+1 = 0, and it follows: D has no non-trivial Darboux first
integrals.
For this derivation, we getAi/Xi = Xi+1, for i = 1, . . . , n−1, andAn/Xn = X1.
Thus B = n. This implies: D has B irreducible Darboux polynomials but
no Darboux first integrals.

From this example we deduce that we cannot improve the sparse bound
B + 1 given in Theorem 1, since there exists a derivation without Darboux
first integrals which has B irreducible Darboux polynomials.

2.2.2. Rational first integrals

Now, we are going to show that the bound B + n is optimal if we are
looking for a rational first integral.

Consider a squarefree polynomial p(X1) ∈ C[X1] with degree d. Let α be a
root of p and ξ2, . . . , ξn be distinct complex numbers such that p′(α), ξ2, . . . , ξn
are Z-independent. We denote by D the following derivation:

D = p(X1)∂X1 + ξ2X2∂X2 + · · ·+ ξnXn∂Xn .

This derivation has no non-trivial rational first integrals, by Corollary 5.3
in [8]. Indeed, (α, 0, . . . , 0) is a fixed point of the polynomial vector field, and
the corresponding eigenvalues are distinct and Z independent.

9



By Proposition 6, if g is a cofactor then N (g) ⊂ ND ∩Nn. Here, ND ∩Nn

is the set of univariate polynomials in X1 with degree smaller than d − 1.
Thus B = d.

Furthermore, (X1− α), (X1− α2), . . . , (X1− αd) where αi are roots of p,
and X2, . . . , Xn are Darboux polynomials. Thus we have d+ n− 1 Darboux
polynomials.

In conclusion, we cannot improve the sparse bound B + n given in The-
orem 1, since there exists a derivation without rational first integrals which
has B + n− 1 irreducible Darboux polynomials.

Final remarks

The bound B is dependent of the coordinates. Indeed, after a generic
linear change of coordinates a sparse derivation becomes a dense one.

In the family of examples used to show the optimality, the success comes
from the fact that for these derivations the set of exponents of the cofactors
is exactly the set of integer points in ND ∩ Nn. Thus in these cases, the
dimension of the vector space generated by the cofactors is equal to B.

It is not possible to get the same kind of results for a lacunary derivation.
That is to say, it is not possible to have a bound in term of the number of
non-zero coefficients in the derivations.
For example: D = (Xd

1−1)∂X1−(dXd−1
1 X2+1)∂X2 has 4 non-zero coefficients

and D has the following rational first integral f(X1, X2) = X2(X
d
1 − 1) +X1.

However, if we just consider the following d irreducible Darboux polynomials
X1 − ω, where ωd = 1, then we cannot reconstruct f . Thus we cannot
get a result like Jouanolou’s theorem if we just use the number of non-zero
coefficients in the derivation.
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[10] J. Llibre and G. Rodŕıguez. Configurations of limit cycles and pla-
nar polynomial vector fields. J. Differential Equations, 198(2):374–380,
2004.

[11] J. Llibre and C. Valls. Darboux integrability and algebraic invariant
surfaces for the Rikitake system. J. Math. Phys., 49(3):032702, 17, 2008.

11



[12] J. Llibre and X. Zhang. Darboux theory of integrability for polynomial
vector fields in Rn taking into account the multiplicity at infinity. Bull.
Sci. Math., 133(7):765–778, 2009.

[13] J. Llibre and X. Zhang. Darboux theory of integrability in Cn taking
into account the multiplicity. J. Differential Equations, 246(2):541–551,
2009.

[14] J. Llibre and X. Zhang. Rational first integrals in the Darboux theory
of integrability in Cn. Bull. Sci. Math., 134(2):189–195, 2010.

[15] J. Moulin Ollagnier, and A. Nowicki, A. and J.-M. Strelcyn. On the
non-existence of constants of derivations: the proof of a theorem of
Jouanolou and its development. Bull. Sci. Math., 119(3)195–233, 1995.

[16] A. M. Ostrowski. On multiplication and factorization of polynomials. I.
Lexicographic orderings and extreme aggregates of terms. Aequationes
Math., 13(3):201–228, 1975.

[17] Maxwell Rosenlicht. On Liouville’s theory of elementary functions. Pa-
cific J. Math., 65(2):485–492, 1976.

[18] Dana Schlomiuk. Algebraic particular integrals, integrability and the
problem of the center. Trans. Amer. Math. Soc., 338(2):799–841, 1993.

[19] Michael F. Singer. Liouvillian first integrals of differential equations.
Trans. Amer. Math. Soc., 333(2):673–688, 1992.

[20] Claudia Valls. Rikitake system: analytic and Darbouxian integrals.
Proc. Roy. Soc. Edinburgh Sect. A, 135(6):1309–1326, 2005.
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