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Abstract. Consider the framework of topological aggregation introduced by

Chichilnisky (1980). We prove that in this framework the Twin Paradox and
the No Show Paradox cannot be avoided. Anonymity and unanimity are not

needed to obtain these results.

Introduction

The goal of this note is to show that we cannot avoid some paradoxes in the
topological social choice setting. Topological social choice has been introduced by
Chichilnisky (1980). Nowadays, there exists different surveys and collections of
papers about this topic, e.g. (Baigent 2011, Heal 1997, Lauwers 2000, 2009, Mehta
1997) and roughly speaking it is the study of continuous aggregation rules.

In the topological social choice framework, an aggregation rule between k agents
is a function from Xk to X, where X is a topological space. Chichilnisky has shown
an impossibility result: there exists no continuous aggregation rule defined on the
sphere Sn satisfying anonymity and unanimity. This result has been proved inde-
pendently by Eckmann (1954, 2004).

In this note we study the Twin Condition (roughly, identical twins have more
power) and the Participation Condition (voting does not harm). With an homo-
logical approach, we prove that on the sphere Sn neither the Twin Condition nor
the Participation Condition can be satisfied by a continuous aggregation rule. As
the Twin Condition (respectively the Participation Condition) is not satisfied for
continuous aggregation rule on the sphere we say that we have a Twin Paradox
(respectively a No Show Paradox).

When we study the Twin Condition, two players have exactly the same prefer-
ence. We can think about this situation in the following way: one player moves
his/her preference to a new preference x. Furthermore, this new preference x was
already the preference of another player. Thus x is now the choice of more players.
Therefore, we hope that the new social preference will reflect this situation and will
be closer to x.
There already exists papers studying the behavior of aggregation rules when players
preferences move closer to the preference of another player.
Macintyre (1998) has used a convexity condition and a monotonicity condition in
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order to study this kind of situations for the circle S1. For two players with differ-
ent preferences the convexity condition used by Macintyre is roughly the following:
the social outcome must be contained in the small semicircle with end-points the
preference of these two players. The monotonicity condition means that if the first
player moves his/her preference closer to the preference of the second player then
the social outcome must not penalize the second player. With elementary methods
and no algebraic topology Macintyre has shown that the only possible continuous
aggregation rules with domain S1 satisfying his convexity condition and the mono-
tonicity condition are dictatorial. This result is given for two players with preference
in S1. In the same article Macintyre has also studied the situation with k players
with preferences in S1. In this case the convexity condition becomes: the social
outcome must be contained in a semicircle containing a majority of players with
end-points the preference of at least two of the players. Macintyre has then shown
that there exists no continuous aggregation rule satisfying the convexity condition
for k ≥ 2 players. This result is still proved with elementary methods and only for
the circle S1.
Duddy and Piggins (2012) have studied the role of what they called a proximity
condition for merging function. A merging function is a function f : Rk → R, where
R denotes the real line. The role of a merging function is to aggregate real numbers
x1, . . . , xk given by the players to a single value f(x1, . . . , xk). For example, the
arithmetic mean is a merging function. The authors have studied merging function
satisfying the following proximity condition: suppose that every xj moves strictly
closer to some individual’s number xi then the merging function does not change
or move closer to the individual’s number xi. In this context, closer means closer
relatively to the usual distance on real numbers. Duddy and Piggins have shown
that scale invariant functions satisfying their proximity condition are dictatorial.

Here we study functions with domain Sn, with n ≥ 1. Our Twin Condition
is in the same vein than the conditions given by Macintyre, Duddy and Piggins.
However we prove that there exists no aggregation rule satisfying our condition.
Furthermore, contrarily to Macintyre, Duddy and Piggins we do not need to con-
sider moves for every players or for a majority of voters, a condition about two
players is sufficient to get our impossibility result.

In the discrete setting, the No Show Paradox has been introduced by Fishburn
and Brams (1983). This paradox means that there exists a player who would rather
not vote. Sometimes, this paradox is also called the Abstention Paradox.
Moulin (1988) has proved that if a voting function chooses the Condorcet winner
when it exists, then this voting rule generates a No Show Paradox whenever there
are at least 4 alternatives and 25 voters. We recall that outcomes of voting func-
tions are singleton sets.
Pérez (2001) has studied a stronger version of the No Show paradox. This stronger
version says that there exists a player whose favorite candidate loses the election
if he/she votes honestly, but gets elected if he/she abstains. Perez has shown that
almost all known voting rules suffer from this paradox.
Jimeno et al. (2009) has extended Moulin’s result to Condorcet voting correspon-
dences. In this case, outcomes for the voting rule are nonempty sets and not
singleton sets.
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Recently, Brandt et al. (2016) has shown that Moulin’s result is still valid if there
are at least 12 voters. Furthermore, this bound is optimal since the authors have
given an example of a voting rule satisfying the Condorcet criterion and avoiding
the No Show Paradox for up to 11 voters.

To the author’s knowledge, the No Show paradox has not been studied in the
topological social choice framework. However, we can mention that there exists re-
lations between the ”classical” social choice setting and the topological social choice
setting. What we call ”classical” social choice is the study of aggregation rules in a
discrete setting (with the discrete topology). The relation between this two setting
has been given by Baryshnikov (1997). Baryshnikov and then Tanaka (2009) have
given a proof of Arrow’s theorem using an homological strategy closed to the one
given by Chichilnisky in her study of continuous aggregation rule over the sphere
Sn. In this paper, we will also used an homological approach to prove our theorems.

The structure of this note is the following: In the first section we study the Twin
Paradox, in the second section we study the No Show Paradox, and in an appendix
we recall all the basic notions of algebraic topology used during our proofs.

1. The twin paradox

In this section we define and study the Twin Paradox.
Suppose that an aggregation rule in a topological space X takes individual pref-
erences x1, . . . , xk and gives the social preference x. Then, suppose that the j-th
player changes his point of view and decide to modify his choice from xj to xi.
Then the i-th player and the j-th player have exactly the same preference and we
can consider the j-th player as a twin of the i-th player. With this new situation,
we can hope that the aggregation rule will give a new social preference closer to xi,
if it is not the case we have a Twin paradox. Indeed, xi is now the choice of more
players and then we hope that the new social preference will reflect this situation
and will be closer to xi.
Here closer means that we consider xi in a metric space. We now define the Twin
Condition which corresponds to the situation explained above.

Definition 1. Consider a metric space (X, d) where d is the metric on X. We say
that f : Xk → X satisfies the Twin Condition if for all i 6= j and all x1, . . . , xk ∈ X
with xi 6= xj we have:

d
(
f(x1, . . . , xi, . . . , xj−1, xi, xj+1, . . . , xk), xi

)
≤ d
(
f(x1, . . . , xk), xi

)
,

and the inequality is strict for xi 6= f(x1, . . . , xk).

The Twin Paradox is a situation where the Twin Condition is not satisfied.

In the following, we study the Twin Condition on the sphere Sn. The distance
between two points on the sphere is the length of a great circle joining these two
points. If x, y ∈ Sn then we denote by dSn(x, y) the distance on the sphere between
these two points. We have dSn(x, y) = arccos(x · y), where x · y is the usual scalar
product of x, y ∈ Rn+1. We can already remark that dSn(x, y) ≤ π for all x, y ∈ Sn
and dSn(x, y) = π means x = −y.
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The main result of this section is the following:

Theorem 2. For k ≥ 3 players, there exists no continuous aggregation rule
f : (Sn)k → Sn which satisfies the Twin Condition.

We remark that a dictatorship do not satisfy the Twin Condition, but the non-
existence of an aggregation rule satisfying the Twin Condition is not straightfor-
ward.

In order to prove this theorem we first prove that the Twin Condition on the
sphere entails the following condition:

Definition 3. We say that f : Xk → X satisfies the Nowhere Anti-Unanimity
Condition if for all x ∈ X we have f(x, x, . . . , x) 6= −x.

Remark that this definition is still valid when k = 1. This just means that the
function satisfies f(x) 6= −x. Thus in the following we still use the term Nowhere
Anti-Unanimity Condition even if k = 1.

When the space X is the sphere Sn with the distance dSn , we have:

Lemma 4. Suppose that f : (Sn)k → Sn satisfies the Twin condition then f
satisfies the Nowhere Anti-Unaninimity Condition.

Proof. By contradiction. Assume the existence of a point x0 ∈ Sn such that
f(x0, . . . , x0) = −x0. As f satisfies the Twin Condition we have for all y ∈ Sn

such that y 6= x0:

π = dSn(−x0, x0) = dSn

(
f(x0, . . . , x0), x0

)
≤ dSn

(
f(x0, . . . , x0, y, x0, . . . , x0), x0

)
.

Then f(x0, . . . , x0, y, x0, . . . , x0

)
= −x0, thus x0 6= f(x0, . . . , x0, y, x0, . . . , x0

)
. In

this situation the Twin Condition implies that the previous inequality is strict.
As the distance between two points on the sphere is never strictly bigger than
than π, we get a contradiction and then we deduce that for all x ∈ Sn we have
f(x, . . . , x) 6= −x. �

Now, we introduce some notations.

Definition 5. We denote by δ
(k)
i,j the following function:

δ
(k)
i,j : Sn −→ (Sn)k

x 7−→ (e1, . . . , e1, x, e1, . . . , e1, x, e1, . . . , e1)

where i 6= j, e1 = (1, 0, . . . , 0) ∈ Sn ⊂ Rn+1 and x appears in δ
(k)
i,j (x) in the i-th

and j-th coordinate.

Let f : (Sn)k → Sn be a function, we denote by fi,j the function f ◦ δ(k)
i,j .

With these notations we deduce the following lemma:

Lemma 6. If f : (Sn)k → Sn satisfies the Twin Condition then fi,j satisfies the
Nowhere Anti-Unanimity Condition.

Proof. We consider the following functions

f̃i,j : (Sn)2 → Sn

(x, y) 7→ f(e1, . . . , x, e1, . . . , e1, y, e1, . . . , e1)
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where i 6= j, e1 = (1, 0, . . . , 0) ∈ Sn ⊂ Rn+1 and x appears in fi,j(x) in the i-th
coordinate and y in the j-th coordinate.
As f satisfies the Twin Condition then f̃i,j satisfies also the Twin Condition. Thus

by Lemma 4, f̃i,j satisfies the Nowhere Anti-Unanimity Condition. Then for all

x ∈ Sn we have fi,j(x) = f̃i,j(x, x) 6= −x. �

The following lemma will be used to show that fi,j is homotopic to the identity
function on the sphere idSn .

Lemma 7. If a continuous function g : Sn → Sn satisfies the Nowhere Anti-
Unanimity Condition then g is homotopic to idSn .

Proof. We consider

h(t, x) =
t.g(x) + (1− t).x
‖t.g(x) + (1− t).x‖

.

The function h is well defined and continuous because g satisfies the Nowhere Anti-
Unanimous Condition and then the denominator do not vanish. Furthermore, we
have h(0, x) = x = idSn(x) and h(1, x) = g(x). Then h is an homotopy between g
and idSn . �

The last ingredient for the proof of Theorem 2 is the following:

Lemma 8. If k ≥ 3 then there exists no continuous functions f : (Sn)k → Sn such
that for all i 6= j, fi,j is homotopic to idSn .

The proof of this lemma uses classical homological properties. All these proper-
ties are recall in the appendix and are denoted by (P1), (P2), (P3) and (P4).

Proof. By contradiction. Suppose that there exists a continuous function f such
that fi,j is homotopic to idSn , for all i 6= j. The singular homology gives a functor
Hn which entails the following group homomorphism:

Hn(f) : Zk −→ Z

(z1, . . . , zk) 7−→
k∑

α=1

dα × zα

where dα ∈ Z.

As fi,j = f ◦ δ(k)
i,j , by (P1) we have

Hn(fi,j) = Hn(f) ◦Hn(δ
(k)
i,j ).

By (P2) we deduce that

Hn(fi,j) : Z −→ Z
z 7−→ (di + dj)× z

Thus
deg(fi,j) = di + dj ,

where deg denotes the degree of a continuous function from Sn to Sn.
Furthermore, fi,j is homotopic to idSn then by (P3), and (P4) we have

deg(fi,j) = 1.

It follows
di + dj = 1 for all i 6= j.
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As k ≥ 3 this gives: d1 + d2 = d1 + d3 = d2 + d3 = 1, and we deduce d1 = 1/2. As
d1 must be an integer we get a contradiction and this proves the desired result. �

Now, we can prove Theorem 2.

Proof of Theorem 2. By contradiction. Suppose that there exists a continuous
function f satisfying the Twin Condition. By Lemma 6 and Lemma 7, for all i 6= j
we have fi,j homotopic to idSn . Then Lemma 8 gives the desired contradiction. �

2. The No Show Paradox

In this section we describe the No-Show Paradox in the topological social choice
setting. In this situation we study the behavior of a family of aggregation rules.
Indeed, in this situation the number of agents will change. Thus we study a family of
aggregation rules (f (k))k where the exponent k corresponds to the number of agents.
We would like to have an aggregation rule for which each player has an incentive
to give his preference. This means it is always better for players to give their
preferences and to participate to the vote. This leads to the following definition:

Definition 9. Let (X, d) be a metric space and (f (k))k be a family of functions
from Xk to X.
We say that the family of functions (f (k))k satisfies the Participation Condition if
for all k ≥ 2 and for all x1, . . . , xk+1 ∈ X we have:

d
(
f (k+1)(x1, . . . , xi, . . . , xk+1), xi

)
≤ d
(
f (k)(x1, . . . , x̂i, . . . , xk+1), xi

)
,

and the inequality is strict for xi 6= f (k)(x1, . . . , x̂i, . . . , xk+1).

The notation x̂i means that we omit xi.

We remark that the Participation Condition implies

f (k+1)(x1, . . . , xi−1, f
(k)(x1, . . . , x̂i, . . . , xk+1), xi+1, . . . , xk+1) = f (k)(x1, . . . , x̂i, . . . , xk+1).

This means that the Participation Condition entails that the vote of an outsider
who agrees with the outcome will not change the outcome.
If a family of aggregation rule do not satisfies the Participation Condition then we
say that we have a No Show Paradox.

In this section we prove that we cannot avoid the No Show Paradox:

Theorem 10. There exists no family f
(k)
k of continuous aggregation rules

f (k) : (Sn)k → Sn which satisfies the Participation Condition.

The proof of this theorem is similar to the one given for the Twin Paradox. We

need to introduce the functions f
(k)
i,j defined by f

(k)
i,j = f (k) ◦ δ(k)

i,j .

Lemma 11. If the family of functions f (k) : (Sn)k → Sn satisfies the Participation

Condition then f
(k+1)
i,j satisfies the Nowhere Anti-Unanimity Condition.

Proof. By contradiction. If there exists x0 ∈ Sn such that f
(k+1)
i,j (x0) = −x0 then

dSn

(
f

(k+1)
i,j (x0), x0

)
= dSn(−x0, x0) = π
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and the Participation Condition gives

dSn(f
(k+1)
i,j (x0), x0) = dSn

(
f (k+1)(e1, . . . , e1, x0, e1, . . . , e1, x0, e1 . . . , e1), x0

)
≤ dSn

(
f (k)(e1, . . . , e1, x0, e1, . . . , e1), x0

)
.

This implies f (k)(e1, . . . , e1, x0, e1, . . . , e1) = −x0.
Thus x0 6= f (k)(e1, . . . , e1, x0, e1, . . . , e1) and in this situation the Participation
Condition says that the previous inequality must be strict. Therefore,

π < dSn

(
f (k)(e1, . . . , e1, x0, e1, . . . , e1), x0

)
.

This gives a contradiction and thus proves f
(k+1)
i,j (x) 6= −x, for all x ∈ Sn. �

Proof of Theorem 10. By contradiction. Suppose that there exists a family of con-
tinuous function satisfying the Participation Condition. By Lemma 11 and Lemma
7, for all i 6= j we have f (k+1) homotopic to idSn . Then Lemma 8 gives the desired
contradiction. �

Appendix: An algebraic topology toolkit

Our main tool is singular homology, see e.g. (Hatcher 2002, Rotman 1988). We
recall briefly in this section some results from algebraic topology:

Singular homology gives a functor Hn such that for a topological space X, Hn(X)
is an abelian group. Classical examples are Hn(Sn) = Z and Hn

(
(Sn)k

)
= Zk.

Furthermore for a continuous function f : X → Y , the functor Hn gives a group
homorphism Hn(f) : Hn(X)→ Hn(Y ) and if g : Y → Z is a continous function we
have the following property:

(P1) : Hn(f ◦ g) = Hn(f) ◦Hn(g).

During our proofs we have used the continuous function δ
(k)
i,j . The group homor-

phism Hn(δ
(k)
i,j ) associated to this continuous function is

(P2) : Hn(δ
(k)
i,j ) : Z −→ Zk

z 7−→ (0, . . . , 0, z, 0, . . . , 0, z, 0, . . . , 0)

where z appears in Hn(δ
(k)
i,j )(z) in the i-th and j-th coordinate.

Furthermore, if two continuous functions f and g are homotopic then we have:

(P3) : Hn(f) = Hn(g).

A classical situation appears when we study a continuous function f : Sn → Sn.
We recall that in this situation Hn(f) is characterized by an integer called the
degree of f and denoted by deg(f). The group homomorphism Hn(f) : Z → Z is
then given by z 7→ deg(f) × z. The degree of the identity function on the sphere
Sn is equal to 1. We have then the property:

(P4) : deg(idSn) = 1.

In this note, we consider continuous aggregation rules on the sphere Sn. If
one single point is removed from the domain Sn, i.e. the domain of individual
preferences is reduced to Sn \ {x} with x in Sn, then our proof collapse. Indeed,
we have Hn(Sn \ {x}) = 0.
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