We tested on several examples the efficiency of our algorithm, using Maple 10. We construct the examples in the following way.

We consider random polynomials $g_1 \in \mathbb{Q}[x, y, z]$ monic in y and $g_2 \in \mathbb{Q}[z]$ monic, of degrees d_1 and d_2 resp. We compute $f = \operatorname{Res}_z(g_1, g_2)$. In this way we obtain an irreducible polynomial $f \in \mathbb{Q}[x, y]$, monic in y, of degree $d_1 \cdot d_2$ with d_2 absolute irreducible factors each of degree d_1 .

The polynomials g_1 and g_2 used are listed in the file "ExamplesData.mws".

Here we summarize the time needed to obtain q(Z), the minimal rational polynomial of α , such that the absolute factors of f are in $\mathbb{K}[x, y]$, $\mathbb{K} = \mathbb{Q}(\alpha) = \mathbb{Q}[Z]/q(Z)$.

Example 1. f rational irreducible polynomial of degree 60 with 6 absolute factors of degree 10.

We choose p = 269.

- Time to factor fmod p: 0.210 sec.
- Time to lift the factorization $f(0, Y) = g_1(0, Y)g_2(0, Y) \mod p$ to a factorization mod p^{256} , using Quadratic Hensel Lifting: 4.020 sec.
- Time to find the minimal polynomial of α through its approximation mod p²⁵⁶ using LLL: 0.981 sec.

Example 2. f rational irreducible polynomial of degree 120 with 6 absolute factors of degree 20.

We choose p = 65479.

- Time to factor fmod p: 15.260 sec.
- Time to lift the factorization $f(0, Y) = g_1(0, Y)g_2(0, Y) \mod p$ to a factorization mod p^{128} , using Quadratic Hensel Lifting: 31.919 sec.
- Time to find the minimal polynomial of α through its approximation mod p¹²⁸ using LLL: 0.960 sec.

Example 3. *f* rational irreducible polynomial of degree 200 with 10 absolute factors of degree 20.

We choose p = 103.

- Time to factor fmod p: 6.891 sec.
- Time to lift the factorization $f(0,Y) = g_1(0,Y)g_2(0,Y) \mod p$ to a factorization mod p^{256} , using Quadratic Hensel Lifting: 129.649 sec.
- Time to find the minimal polynomial of α through its approximation mod p²⁵⁶ using LLL: 2.970 sec.

Example 4. *f* rational irreducible polynomial of degree 300 with 10 absolute factors of degree 30.

We choose p = 1201.

• Time to factor fmod p: 37.260 sec.

- Time to lift the factorization $f(0, Y) = g_1(0, Y)g_2(0, Y) \mod p$ to a factorization mod p^{256} , using Quadratic Hensel Lifting: 807.830 sec.
- Time to find the minimal polynomial of α through its approximation mod p²⁵⁶ using LLL: 7.059 sec.

Example 5. *f* rational irreducible polynomial of degree 400 with 10 absolute factors of degree 40.

We choose p = 131.

- Time to factor fmod p: 84.621 sec.
- Time to lift the factorization $f(0, Y) = g_1(0, Y)g_2(0, Y) \mod p$ to a factorization mod p^{512} , using Quadratic Hensel Lifting: 3086.65 sec.
- Time to find the minimal polynomial of α through its approximation mod p⁵¹² using LLL: 18.06 sec.

Example 6. *f* rational irreducible polynomial of degree 150 with 15 absolute factors of degree 10.

We choose p = 19.

- Time to factor fmod p: 2.140 sec.
- Time to lift the factorization $f(0,Y) = g_1(0,Y)g_2(0,Y)mod p$ to a factorization mod p^{512} , using Quadratic Hensel Lifting: 73.521 sec.
- Time to find the minimal polynomial of α through its approximation mod p⁵¹² using LLL: 9.739 sec.