We tested on several examples the efficiency of our algorithm, using Maple 10. We construct the examples in the following way.

We consider random polynomials $g_{1} \in \mathbb{Q}[x, y, z]$ monic in y and $g_{2} \in \mathbb{Q}[z]$ monic, of degrees d_{1} and d_{2} resp. We compute $f=\operatorname{Res}_{z}\left(g_{1}, g_{2}\right)$. In this way we obtain an irreducible polynomial $f \in \mathbb{Q}[x, y]$, monic in y, of degree $d_{1} \cdot d_{2}$ with d_{2} absolute irreducible factors each of degree d_{1}.

The polynomials g_{1} and g_{2} used are listed in the file "ExamplesData.mws".
Here we summarize the time needed to obtain $q(Z)$, the minimal rational polynomial of α, such that the absolute factors of f are in $\mathbb{K}[x, y], \mathbb{K}=\mathbb{Q}(\alpha)=$ $\mathbb{Q}[Z] / q(Z)$.

Example 1. f rational irreducible polynomial of degree 60 with 6 absolute factors of degree 10.

We choose $p=269$.

- Time to factor fmodp: 0.210 sec .
- Time to lift the factorization $f(0, Y)=g_{1}(0, Y) g_{2}(0, Y) \bmod p$ to a factorization mod p^{256}, using Quadratic Hensel Lifting: 4.020 sec.
- Time to find the minimal polynomial of α through its approximation $\bmod p^{256}$ using LLL: 0.981 sec.

Example 2. f rational irreducible polynomial of degree 120 with 6 absolute factors of degree 20.

We choose $p=65479$.

- Time to factor fmod p: 15.260 sec.
- Time to lift the factorization $f(0, Y)=g_{1}(0, Y) g_{2}(0, Y) \bmod p$ to a factorization mod p^{128}, using Quadratic Hensel Lifting: 31.919 sec.
- Time to find the minimal polynomial of α through its approximation mod p^{128} using LLL: 0.960 sec.

Example 3. f rational irreducible polynomial of degree 200 with 10 absolute factors of degree 20.

We choose $p=103$.

- Time to factor fmodp: 6.891 sec .
- Time to lift the factorization $f(0, Y)=g_{1}(0, Y) g_{2}(0, Y) \bmod p$ to a factorization mod p^{256}, using Quadratic Hensel Lifting: 129.649 sec.
- Time to find the minimal polynomial of α through its approximation $\bmod p^{256}$ using LLL: 2.970 sec.

Example 4. f rational irreducible polynomial of degree 300 with 10 absolute factors of degree 30.

We choose $p=1201$.

- Time to factor fmod p: 37.260 sec.
- Time to lift the factorization $f(0, Y)=g_{1}(0, Y) g_{2}(0, Y) \bmod p$ to a factorization mod p^{256}, using Quadratic Hensel Lifting: 807.830 sec.
- Time to find the minimal polynomial of α through its approximation $\bmod p^{256}$ using LLL: 7.059 sec.

Example 5. f rational irreducible polynomial of degree 400 with 10 absolute factors of degree 40.

We choose $p=131$.

- Time to factor fmod p: 84.621 sec.
- Time to lift the factorization $f(0, Y)=g_{1}(0, Y) g_{2}(0, Y) \bmod p$ to a factorization mod p^{512}, using Quadratic Hensel Lifting: 3086.65 sec.
- Time to find the minimal polynomial of α through its approximation $\bmod p^{512}$ using LLL: 18.06 sec.

Example 6. frational irreducible polynomial of degree 150 with 15 absolute factors of degree 10.

We choose $p=19$.

- Time to factor fmodp: 2.140 sec.
- Time to lift the factorization $f(0, Y)=g_{1}(0, Y) g_{2}(0, Y) \bmod p$ to a factorization mod p^{512}, using Quadratic Hensel Lifting: 73.521 sec.
- Time to find the minimal polynomial of α through its approximation $\bmod p^{512}$ using LLL: 9.739 sec.

