
LIFTING AND RECOMBINATION TECHNIQUES
FOR ABSOLUTE FACTORIZATION

GUILLAUME CHÈZE AND GRÉGOIRE LECERF

Abstract. In the vein of recent algorithmic advances in polynomial factor-
ization based on lifting and recombination techniques, we present new faster
algorithms for computing the absolute factorization of a bivariate polynomial.
The running time of our probabilistic algorithm is less than quadratic in the
dense size of the polynomial to be factored.

Introduction

Throughout this article, F denotes the polynomial we want to factor: it is a
squarefree polynomial in two variables x and y over a commutative field K; its
total degree is denoted by d and is assumed to be positive. Under

Hypothesis (C) K has characteristic 0 or at least d(d− 1) + 1,

we present new faster probabilistic and deterministic algorithms for computing the
absolute factorization of F , that is the irreducible factorization over the algebraic
closure K̄ of K. In order to avoid confusion we say rational factorization for the
factorization in K[x, y].

Efficient absolute factorization algorithms were first motivated in the eighties by
symbolic integration [Tra84], and by irreducible decomposition of closed algebraic
sets [GC84]. Nowadays absolute factorization is involved in more areas: kinemat-
ics [SVW04], resolution of linear differential equations [SU97, HRUW99, Bro01],
computation of the intersection matrix of the exceptional divisors arising in reso-
lution of singularities [FKG05], absolute primary decompositions of ideals (imple-
mented recently in the Singular computer algebra system [GPS05]). . .

We start this introduction with some prerequisites. Then we present our main
results and give an overview of the main steps of our algorithms. We conclude with
discussing the related works.

Notation. The algebra of the polynomials in two variables over K is denoted by
K[x, y]. The vector space of the polynomials of total degree at mostm is represented
by K[x, y]m. The field of fractions of K[y] is written K(y) and the power series
algebra over K is written K[[x]]. For any polynomial G ∈ K[x, y], deg(G) represents
the total degree of G, and degx(G) represents the degree of G in the variable x.

When defined, the greatest common divisor of f and g is denoted by gcd(f, g).
The remainder of f divided by g is written rem(f, g). The resultant of f and g in
K[y] is written Res(f, g). For multivariate polynomials, say G and H in K[x, y, z],
the resultant of G and H seen in K[x, z][y] is written Resy(G,H).

Date: Preliminary version of April 15, 2005. Revised version of March 22, 2007.
2000 Mathematics Subject Classification. Primary 12Y05, 68W30; Secondary 11Y16, 12D05,

13P05.
Key words and phrases. Absolute factorization, absolute primality, polynomial factorization.
This work was supported in part by the French Research Agency (ANR Gecko).

1

2 G. CHÈZE AND G. LECERF

We use the notation 〈µ1, . . . , µr〉 to represent the vector space generated by the
vectors µ1, . . . , µr. For a real number a, the smallest integer larger than or equal
to (resp. the greatest integer less than or equal to) a is denoted by dae (resp. bac).

In the pseudo-code, we use the function coeff in various contexts. For any ring R,
if G ∈ R[[x, y]] then coeff(G, xiyj) represents the coefficient of the monomial xiyj in
G. For a univariate polynomial f ∈ K[y] of degree d, if A represents the K-algebra
K[y]/(f(y)), and if ϕ denotes the residue class of y in A, then any b ∈ A can be
uniquely written as b = b0 + b1ϕ+ · · ·+ bd−1ϕ

d−1; we define coeff(b, ϕi) := bi. For
readability, we write coeff(G,ϕixjyk) instead of coeff(coeff(G, xjyk), ϕi) for any
G ∈ A[[x, y]].

Complexity Model. For our complexity analysis, we use the computation tree
model [BCS97, Chapter 4] with the total complexity point of view. This means
that complexity estimates charge a constant cost for each arithmetic operation (+,
−, ×, ÷) and the equality test. All the constants in the base fields (or rings) of the
trees are thought to be freely at our disposal.

We use the classical O and Õ (“soft Oh”) notation in the neighborhood of infinity
as defined in [GG03, Chapter 25.7]. Informally speaking, “soft Oh”s are used for
readability in order to hide logarithmic factors in cost estimates.

Polynomials and power series are represented by dense vectors of their coefficients
in the usual monomial basis. For each integer d, we assume that we are given
a computation tree that computes the product of two univariate polynomials of
degree at most d with at most M(d) operations, independently of the base ring.
As in [GG03, Chapter 8.3], for any positive integers d1 and d2, we assume that M
satisfies:

M(d1d2) ≤ d2
1M(d2) (1)

and

M(d1)/d1 ≤ M(d2)/d2 if d1 ≤ d2. (2)

In particular, the latter assumption implies the super-additivity of M, namely:

M(d1) + M(d2) ≤ M(d1 + d2). (3)

This way we can design algorithms that do not depend on the subroutine chosen
for polynomial multiplication (Karatsuba or fast Fourier transform, for instance).
The best function M known so far belongs to O(d log(d) log log(d)) ⊆ Õ(d) [GG03,
Theorem 8.23].

We recall that the computations of the resultant and the extended greatest
common divisor of two univariate polynomials of degree at most d over K take
O(M(d) log(d)) operations in K [GG03, Chapter 11]. In particular, if E is an alge-
braic extension of K of degree d then each field operation in E takes O(M(d) log(d))
operations in K.

We also recall that a polynomial in K[z] of degree at most d can be interpolated
from its values at d+ 1 pairwise distinct points with O(M(d) log(d)) operations in
K. A polynomial of degree at most d can also be evaluated at d + 1 points with
the same cost: this operation is often called multi-point evaluation. We refer the
reader to [GG03, Chapter 10] for these fast algorithms. Recent advances can be
found in [BLS03, BS05].

Lastly we use the constant ω to denote a feasible matrix multiplication exponent
as defined in [GG03, Chapter 12]: two n × n matrices over K can be multiplied
with O(nω) field operations. As in [Sto00] we require that 2 < ω ≤ 3. In contrast
to polynomials, we deal only with matrices over K.

ABSOLUTE FACTORIZATION 3

Representation of the Absolute Factorization. The absolutely irreducible
factors of F are written F1, . . . , Fr. In our algorithms, these factors are represented
by a set of pairs of polynomials {(q1,F1), . . . , (qs,Fs)} which satisfy the following
properties:

• For all i ∈ {1, . . . , s}, the polynomial qi belongs to K[z], is monic, squarefree
and deg(qi) ≥ 1.

• For all i ∈ {1, . . . , s}, the polynomial Fi belongs to K[x, y, z], and degz(Fi) ≤
deg(qi)− 1. The total degree of Fi(x, y, α) is constant when α runs over the
roots of qi.

•
∑s
i=1 deg(qi) = r and to each absolutely irreducible factor Fj there corre-

sponds a unique pair (i, α) ∈ {1, . . . , s} × K̄ such that qi(α) = 0 and Fj is
proportional to Fi(x, y, α).

This representation is not redundant. In particular, for each i, the polynomials
Fi(x, y, α) are pairwise distinct when α is taken over all the roots of qi. Of course,
this representation is not unique.

Example 1. If F depends on a single variable, say y, then we can take s := 1, q1(z)
as the monic part of F (0, z) and F1(x, y, z) := y−z. Here the absolute factorization
is the decomposition of F into linear factors.

Example 2. If K := Q and F := y2 − 2x2 then we can take s := 1, q1(z) := z2 − 2,
F1(x, y, z) := y − zx. Observe that F and q1 are irreducible over Q.

For any i ∈ {1, . . . , s}, the polynomial Pi := Resz(qi(z),Fi(x, y, z)) ∈ K[x, y]
is a factor of F , and its absolute factorization can be represented by (qi,Fi). In
addition, it is easy to see that Pi is irreducible if, and only if, qi is irreducible. The
rational factorization of F can thus be computed from the irreducible factors of
q1, . . . , qs by arithmetic operations in K alone.

Main Results. In this article we present new algorithms to test the absolute
irreducibility of F , and to compute the absolute factorization of F . We focus
on three kinds of algorithms whose costs are summarized below: deterministic,
probabilistic, and heuristic.

Deterministic Approach. The deterministic approach, provides us with a family of
computation trees that are always executable. Since we use the dense representation
for F , the size of F is of the order of magnitude of d2. The following statement
thus asserts that the absolute factorization of F can be computed in softly quadratic
time by a deterministic algorithm:

Theorem 1. Under Hypothesis (C), the absolute factorization of a squarefree bi-
variate polynomial over K of total degree d can be computed with O(d3M(d) log(d))
arithmetic operations in K.

The absolute irreducibility test can be performed faster:

Theorem 2. Under Hypothesis (C), the absolute irreducibility of a squarefree bi-
variate polynomial over K of total degree d can be tested with

O(dω+1 + d2M(d)(M(d)/d+ log(d)))

arithmetic operations in K.

When using fast polynomial multiplication, that is M(d) ∈ Õ(d), the cost of the
test drops to O(dω+1).

4 G. CHÈZE AND G. LECERF

Probabilistic Approach. Although we will formally not use any probabilistic or ran-
domized computational model, we will informally say probabilistic algorithm when
speaking about the computation trees occurring in the next theorem. For the
sake of precision, we prefer to express the probabilistic aspects in terms of families
of computation trees. Almost all the trees of a family are expected to be exe-
cutable on a given input (if the cardinality of K is infinite). For any polynomial
P ∈ K̄[x1, . . . , xn], we write U(P) := {a ∈ Kn | P (a) 6= 0}.

Theorem 3. For any positive integer d satisfying Hypothesis (C), there exists a
family of computation trees over K parametrized by

(u, v, a2, . . . , am, c1, . . . , cd) ∈ Kd+m+1,

with m := 2d2 − 1, such that, for any input squarefree polynomial F ∈ K[x, y] of
total degree d, we have:

• Any executable tree of the family returns the absolute factorization of F .
• There exists a nonzero polynomial P ∈ K[U] of degree at most d such that,

for any u ∈ U(P), there exists a nonzero polynomial Qu ∈ K[V] of degree at
most d(d−1) such that, for any v ∈ U(Qu), there exists a nonzero polynomial
Ru,v ∈ K[A2, . . . , Am] of degree at most d such that, for any (a2, . . . , am) ∈
U(Ru,v), there exists a nonzero polynomial Su,v,a ∈ K̄[C1, . . . , Cd] of total
degree at most d(d−1)/2 such that, for any (c1, . . . , cd) ∈ U(Su,v,a), the tree
corresponding to (u, v, a2, . . . , am, c1, . . . , cd) is executable on F .

The maximum of the costs of the trees of the family belongs to

O
(
dM(d2)(1 + M(d2)/M(d)2 + M(d)/d3/2)

)
.

When using fast polynomial multiplication, that is M(d) ∈ Õ(d), the preceding
cost drops to Õ(d3). This complexity result is very similar to [Lec07, Proposition 10]
for rational factorization.

By the classical Schwartz-Zippel lemma [Zip79, Sch80], for any finite subset Z
of K, a nonzero polynomial P in n variables has at most deg(P)|Z|n−1 roots in
Zn, where |Z| denotes the cardinality of Z. Therefore, Hypothesis (C) and the
degree bounds given in Theorem 3 guarantee the existence of at least one tree of
the family that is executable on F . In practice, this means that one can turn the
algorithm underlying Theorem 3 into to an algorithm that always return a correct
output with an average cost in Õ(d3).

At first sight, the cost estimates of the three preceding theorems only make sense
in characteristic 0: for a fixed field K of positive characteristic, Hypothesis (C)
implies that the possible values for d are bounded. However, the constants hidden
behind the O can be made independent of K if the costs of the linear algebra sub-
routines are themselves independent of K. For instance, this is possible with ω = 3.
We leave out these details in the sequel.

Heuristic Approach. One important ingredient in the algorithm underlying Theo-
rem 3 is a subroutine to test whether a candidate absolute factorization is correct
or not. This device (namely, Algorithm 9) is presented in Section 4.4 and is to
be compared to the same device for rational factorization given in [Lec07, Algo-
rithm 4]. On the contrary to rational factorization the cost of Algorithm 9 is not
softly optimal and is not deterministic. Roughly speaking, we can test whether a
candidate absolute factorization is correct or not in average time O(d(ω+3)/2) (see
Proposition 11). Therefore the cost of the test is not the bottleneck in Theorem 3,
which leaves us the opportunity to heuristics in order to find a candidate absolute
factorization faster. In Section 5.3, we adapt the heuristic for rational factorization
given in [Lec07, Appendix A.2] to our framework. This way we expect an average

ABSOLUTE FACTORIZATION 5

cost for absolute factorization in O(d(ω+3)/2). In practice the heuristic works very
well, but in theory we have no quantification of its probability of success yet.

Overview of the Algorithms. The deterministic, probabilistic and heuristic al-
gorithms share the same main ideas that are adapted from the rational factoriza-
tion algorithms of [Lec06, Lec07]. Our algorithms combine advantages of Gao’s
algorithm [Gao03] and the classical Hensel lifting and recombination scheme. This
scheme was popularized by Zassenhaus [Zas69, Zas78] and is nowadays a cornerstone
of the fastest rational factorization algorithms [Hoe02, BHKS04, Lec06, Lec07].

Now we sketch out the main stages of the algorithms. At the beginning, the
coordinates (x, y) are changed to sufficiently generic ones. The coordinates are
changed back in each absolutely irreducible factor at the end of the computations.
These operations are presented in Section 1. With suitable coordinates, the lifting
and recombination scheme proceeds as follows:

1. Lifting. We compute a certain power series φ(x) solution of F (x, φ) = 0
to a precision (xσ), where σ depends linearly on d. These operations are
described in Section 2.

2. Recombination. This stage divides into two main steps, namely:
a. Linear System Solving. From the previous series φ, we construct a lin-

ear system whose basis of solutions has rank r and contains sufficient
information to deduce the absolutely irreducible factors. This step is
presented in Section 3.

b. Absolute Partial Fraction Decomposition. From a basis of solutions of
the previous system, we construct a polynomial G ∈ K[x, y] such that
the absolutely irreducible factors of F can be easily deduced by comput-
ing the partial fraction decomposition of G/F in K(x)(y). This step is
detailed in Section 4.

This presentation privileges Zassenhaus’ point of view but we shall see later that
our algorithms are strongly related to Gao’s algorithm [Gao03]. The factorization
algorithms are completed in Section 5. In Section 6 we report on our implementation
in Magma [Mag]. Before entering the details, we briefly describe each stage so that
the skeleton of the algorithms becomes clear.

Change of Coordinates. The algorithms start with changing the coordinates (x, y)
in order to ensure the following Hypothesis (H):

Hypothesis (H)

{
(i) F is monic in y and degy(F) = deg(F) = d,

(ii) δ := Res
(
F (0, y), ∂F∂y (0, y)

)
6= 0.

Lifting. We introduce f(y) := F (0, y) and A := K[y]/(f(y)). Let ϕ denote the
residue class of y in A. Under Hypothesis (H), there exists a unique series φ ∈ A[[x]]
such that φ− ϕ ∈ (x) and F (x, φ) = 0. It is classical that φ can be approximated
to any precision (xσ) by means of Newton’s operator.

Linear System Solving. From φ computed to the precision (xσ), we construct a
linear system from the coefficients of F̂ := F/F ∈ A[[x]][y], where F := y − φ. The

6 G. CHÈZE AND G. LECERF

following definition constitutes the cornerstone of our algorithms:

Lσ :=
{

((`1, . . . , `d), G,H) ∈ Kd ×K[x, y]d−1 ×K[x, y]d−1 |

G−
d∑
i=1

`i coeff
(

F̂
∂F

∂y
, ϕi−1

)
∈ (x, y)σ, (4)

H −
d∑
i=1

`i coeff
(

F̂
∂F

∂x
, ϕi−1

)
∈ (x, y)σ + (xσ−1)

}
. (5)

Here coeff(B,ϕi) abusively represents Bi ∈ K[[x]][y] uniquely defined by B = B0 +
B1ϕ+· · ·+Bd−1ϕ

d−1. The ideal (x, y)σ denotes the σth power of the ideal generated
by x and y.

Although this construction does not look intuitive at first sight, we will see
that it is directly related to the recombination technique introduced in [Lec06]. In
addition, the notation is designed to be consistent with [Lec06] but observe that
∂F
∂y = 1 and ∂F

∂x = −φ′.
For any i ∈ {1, . . . , r}, we introduce the partial product F̂i :=

∏r
j=1,j 6=i Fj and

Trj(fi) :=
∑
fi(ψ)=0 ψ

j that denotes the sum of the jth powers of the roots of fi :=
Fi(0, y). Lastly, π (resp. πG) denotes the projection that maps ((`1, . . . , `d), G,H)
to (`1, . . . , `d) (resp. G). We naturally identify the extension K̄⊗Lσ with the space
of solutions ((`1, . . . , `d), G,H) ∈ K̄d × K̄[x, y]d−1 × K̄[x, y]d−1 of equations (4)
and (5). For sufficiently large precisions σ, the vector spaces Lσ contain all the
information about the absolute factorization of F . More precisely we have:

Theorem 4. Under Hypotheses (C) and (H), for any σ ≥ 2d, we have:

K̄⊗Lσ =
〈(

µi, F̂i
∂Fi
∂y

, F̂i
∂Fi
∂x

)
| i ∈ {1, . . . , r}

〉
,

where µi := (Tr0(fi), . . . ,Trd−1(fi)).

For the sake of convenience, we introduce L∞ := Lσ, for σ ≥ 2d.

Absolute Partial Fraction Decomposition. We shall see how the previous theorem
leads to a fast algorithm for computing a basis G1, . . . , Gr of πG(L∞). Then we
will prove that, for all G in a Zariski dense subset of πG(L∞), the monic squarefree
part q of

Q(z) := δ−1 Resy

(
F (0, y), z

∂F

∂y
(0, y)−G(0, y)

)
has degree r (recall that δ = Resy(F (0, y), ∂F∂y (0, y))). The roots of Q are the
residues of G/F and the absolutely irreducible factors of F will be obtained by
computing the following partial fraction decomposition in K(x)(y):

G

F
=

s∑
i=1

∑
qi(α)=0

α

∂Fi

∂y (x, y, α)

Fi(x, y, α)
,

where q1, . . . , qs denote the squarefree factors of Q. Finally, the absolute factoriza-
tion returned by our algorithms is (q1,F1), . . . , (qs,Fs).

Example 3. Before going further, we illustrate the computation of the absolute
factorization on two small examples. Let K := Q and F := y4 + (2x + 14)y2 −
7x2 + 6x + 47. Hypothesis (H) is satisfied, one has f := y4 + 14y2 + 47 and, with

ABSOLUTE FACTORIZATION 7

σ := 2 deg(F) = 8, we obtain:

φ = ϕ−
(

13
94
ϕ3 +

44
47
ϕ

)
x+

(
39

8836
ϕ3 +

199
17672

ϕ

)
x2

−
(

4745
1661168

ϕ3 +
15073
830584

ϕ

)
x3 +

(
67665

156149792
ϕ3 +

1231735
624599168

ϕ

)
x4

−
(

13201279
58712321792

ϕ3 +
19943203

14678080448
ϕ

)
x5

+
(

305810505
5518958248448

ϕ3 +
3137922039

11037916496896
ϕ

)
x6

−
(

26241896109
1037564150708224

ϕ3 +
76656876747

518782075354112
ϕ

)
x7 +O(x8).

A possible basis of π(L∞) is (1, 0, 0, 0), (0, 0, 1, 0). The corresponding basis of
πG(L∞) is given by G1 := y3 + (15x + 14)y and G2 := (2x + 1)y. When taking
G := G2, we obtain s = 1 and Q(z) = q21 , where q1 := z2 − 1/32. The absolute
partial fraction decomposition of G/F yields the absolute factorization (q1,F1),
where F1(x, y, z) := y2 +(1−16z)x−8z+7. Remark that q1 is irreducible, so is F .

Example 4. Let K := Q and F := y6 + (−2x2 + 2x + 14)y4 + (−4x3 − 35x2 +
6x + 47)y2 + 14x4 − 12x3 − 94x2. A possible basis of π(L∞) is (1, 0, 0, 0, 0, 0),
(0, 1, 0, 2, 0, 4) (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0). The corresponding basis of πG(L∞) is
given by G1, . . . , G4, where:

G1 := y5 +
(
−36

41
x2 +

172
123

x+ 14
)
y3 +

(
−500

123
x3 − 2935

123
x2 − 3956

123
x+ 14

)
y,

G2 := (x+ 1)y4 + (2x2 + 18x+ 16)y2 − 7x3 − 15x2 + 38x+ 46,

G3 :=
(

16
41
x2 +

14
41
x+ 1

)
y3 +

(
68
41
x3 +

286
41

x2 +
416
41

x+ 14
)
y,

G4 :=
(

1
41
x2 − 5

246
x

)
y3 +

(
23
123

x3 +
179
246

x2 +
119
123

x+ 1
)
y.

None of the absolute partial fraction decompositions of Gi/F , for i ∈ {1, . . . , 4},
yields the absolute factorization of F . With G := G1 + G2, we obtain Q := q1q

2
2 ,

where q1 := z2−23/41z−623/13448 and q2 := z2−9/41z−23/2952. The rest of the
computations yields F1 := (−4z + 46/41)x+ y and F2 := (−984/49z + 157/49)x+
y2− 492/49z+397/49. Remark that q1 and q2 are irreducible. We deduce that the
rational irreducible factors of F are y2 − 2x2 and y4 + 2xy2 + 14y2 − 7x2 + 6x+ 47.
The latter factor corresponds to the previous example. Notice that its absolute
factorization is represented differently here.

Related Work. Polynomial factorization is a central topic in computer algebra.
Classical results can be found in [Zip93, GG03]. For comprehensive surveys and
recent advances, we refer the reader to [Kal90b, Kal92, Kal95, Kal03, Gao03,
AGL04, Chè04b, Lec06, GKL04, Poh05, BLS+04, CG05, Lec07]. It is worth re-
calling that the multivariate factorization problem can be reduced to the bivariate
case: this probabilistic reduction originated in computer algebra in [HS81], and is
based on a quantitative version of Bertini’s irreducibility theorem. We refer the
reader to [Kal95, Gao03, CG05, Lec07] on this topic.

In the following paragraphs we compare our methods to other absolute factor-
ization algorithms. We start with the most related ones.

Comparison with Rational Factorization. The algorithms of this paper are adapted
from the ones for rational factorization given in [Lec06, Lec07]. The key ingredient

8 G. CHÈZE AND G. LECERF

deterministic probabilistic heuristic
rational O(dω+1) [Lec06, § 3] Õ(d3) [Lec07, § A.1] O(dω) [Lec07, § A.2]
absolute Õ(d4) (§ 5.1) Õ(d3) (§ 5.2) O(d(ω+3)/2) (§ 5.3)

Table 1. Comparison of factorization costs

is Theorem 4 that explains how the classical lifting and recombination technique
can be used efficiently for absolute factorization. In Table 1 we compare the costs
of the rational and absolute factorizations. Of course the costs for the rational
factorization algorithms given in the latter table discard one univariate polynomial
factorization in degree d.

Trager’s Reduction to Factoring over Algebraic Extensions. Rational factorization
algorithms can be directly applied to the absolute factorization problem as soon as
computations in K̄ or in a suitable splitting field are possible. For instance, when
K = Q, numerical computations in C are possible and specific algorithms have been
designed (for instances [SS93, Chè04a]). In general dynamic evaluation [Duv95,
Del01, Ste02] can be used to simulate computations in K̄ but this solution is very
expensive. On the other hand several algorithms exist for computing splitting fields
but their cost intrinsically overwhelms the one of the absolute factorization.

In [Tra84] Trager suggested the following efficient strategy: the absolute factor-
ization can be reduced to the rational factorization over a suitable algebraic exten-
sion that contains all the coefficients of a single absolutely irreducible factor. Such
an extension can be constructed as the minimal algebraic extension E that contains
the coordinates of a smooth point (α, β) ∈ K̄ of the curve defined by F (x, y) = 0.
Then, Trager’s algorithm [Tra76] can be used to compute the factorization of F in
E[x, y]. Further developments of this strategy can be found in [Tra85, DT89]. Such
an extension E is also used in [Kal85] for testing the absolute irreducibility.

In various situations the Trager strategy can be optimized. For example, Kal-
tofen’s algorithm [Kal95, Section 2] computes the minimal polynomial over E of the
power series expansion of the branch of the curve F (x, y) = 0 at (α, β). This way
the rational factorization in E[x, y] via [Tra76] is avoided.

Let us now compare briefly our new algorithms to a direct use of the Trager
strategy with [Lec06]. Here it is reasonable to consider that F is irreducible. An
optimized version of the Trager strategy adapted to the rational factorization al-
gorithm of [Lec06, Lec07] would proceed as follows. Let e(y) be an irreducible
factor of F (0, y), let E := K[y]/(e(y)), α := 0, and let β denote the residue class
of y in E. Thanks to Hypothesis (H), the point (α, β) is a smooth point of the
curve F (x, y) = 0. First we factor F (0, y) in E[y], and lift the resulting factors in
E[[x]][y] to a certain precision linear in d. Secondly the irreducible factors over E
are recombined from the lifted factors. The unique factor that vanishes at (α, β)
is an absolutely irreducible factor of F . This way, we obtain a representation
(q1 := e,F1) of the absolute factorization of F which is possibly redundant, i.e.
deg(q1) degy(F1) > d.

Roughly speaking (discarding the costs of rational univariate factorizations), and
considering the asymptotic costs of the heuristic approaches, the cost of the Trager
strategy leads to O(dω) operations in E. In the worst case, deg(e) can be close to
d, so that the latter cost is higher than our new absolute factorization algorithms
(see Table 1). In addition, the practical experiments reported in Section 6 confirm
this comparison.

ABSOLUTE FACTORIZATION 9

Notice that univariate rational factorization can be avoided in the Trager strategy
by means of dynamic evaluation [Duv91, Kal95], and that an irredundant represen-
tation can also be obtained [Kal90a, Duv91].

Duval’s and Ragot’s Algorithms. In Duval’s algorithm [Duv91], one first computes
a K-basis D1, . . . , Dr of the algebraic closure of K in K(x)[y]/(F (x, y)). Then,
from a smooth point (α, β) of the curve F (x, y) = 0, and by means of elemen-
tary linear algebra operations, one computes a K-basis D̃1, . . . , D̃r−1 of the ele-
ments of 〈D1, . . . , Dr〉 that vanish at (α, β). Lastly the greatest common divisor of
D̃1, . . . , D̃r−1 and F is the unique absolutely irreducible factor of F that vanishes
at (α, β). This comes from the fact that a K̄-basis of 〈D1, . . . , Dr〉 is given by
F̂1I1, . . . , F̂rIr, where Ii denotes the inverse of F̂i modulo Fi [Duv91, last remark
of Section 3]. As with Trager’s strategy, a post-treatment is necessary to remove
the casual redundancies [Duv91, end of Section 1].

Ragot’s algorithm [Rag97] computes the same basis D1, . . . , Dr. Then the ab-
solutely irreducible factors are recovered more efficiently by means of a variant of
the Rothstein-Trager absolute partial fraction decomposition algorithm (see Appen-
dix A). Let D be a polynomial in 〈D1, . . . , Dr〉 with coordinates ρ1, . . . , ρr in the
basis F̂1I1, . . . , F̂rIr, so that we have D = ρ1F̂1I1+ · · ·+ρrF̂rIr. Then the resultant
Resy(F (x, y), z −D(x, y)) belongs to K[z] and its set of roots equals {ρ1, . . . , ρr}.
If the ρi are pairwise distinct then the absolute factorization of F can be easily
deduced from the formulas Fi = gcd(F, ρi −D(x, y)) for i ∈ {1, . . . , r}. Therefore
Ragot’s algorithm directly produces the same representation as ours. The basis
D1, . . . , Dr plays exactly the same role as our basis G1, . . . , Gr.

Ragot’s method is probabilistic. It requires F to be irreducible and K perfect.
Instead of the Rothstein-Trager algorithm we use the Lazard-Rioboo-Trager al-
gorithm that avoids factorization in K[z]. This way we do not require F to be
irreducible and we only perform arithmetic operations in K. Although Duval’s and
Ragot’s algorithms have polynomial costs, the computation of D1, . . . , Dr is very
expensive since it requires to calculate the ring of integers of K(x)[y]/(F (x, y)).

Ruppert’s and Gao’s Algorithms. In characteristic zero, the absolute factorization
can be obtained via the first algebraic de Rham cohomology group of the com-
plementary of the curve F (x, y) = 0. The first algorithm based on this idea was
proposed by Ruppert for testing the absolute irreducibility [Rup86, Rup99]. In our
context this group can be computed as the space of the closed differential forms

H

F
dx+

G

F
dy,

where G and H belong to K[x, y]d−1 [Rup86, Satz 2]. In addition a K̄-basis of this
group is given by (

F̂i
∂Fi

∂x

F
dx+

F̂i
∂Fi

∂y

F
dy

)
i∈{1,...,r}

.

Ruppert’s absolute irreducibility test consists in computing the rank r of the linear
system

∂

∂x

(
G

F

)
=

∂

∂y

(
H

F

)
, (6)

where the unknowns are the coefficients of G and H. This system has about d2

unknowns and about d2 equations. Therefore a direct cost analysis of Ruppert’s
test yields O(d2ω). From this test, Ruppert deduced degree bounds on the Noether
irreducibility forms, and bounds on the height of the Ostrowski integers. A detailed
presentation of these results can be found in Schinzel’s book [Sch00, Chapter V].

10 G. CHÈZE AND G. LECERF

In [Gao03], Gao proposed a complete probabilistic factorization algorithm based
on these ideas, that works even for positive characteristics. Gao’s conditions on
the characteristic are mostly the same as in Hypothesis (C) (Gao deals with the
bi-degree instead of the total degree). His algorithm computes both rational and
absolute factorizations together with Õ(d5) operations in K plus a few factorizations
in K[z] (Õ(d4) is also hinted in [Gao03, Section 4, Additional Remarks]).

In our context Gao’s algorithm can be presented as follows. It divides into two
main stages:

1. Linear System Solving. One first computes a basis (G1,H1), . . . , (Gr,Hr) of
solutions of system (6). Gao showed that this system can be solved by the
black box approach with Õ(rd4) operations in K.

2. Absolute Partial Fraction Decomposition. If (G,H) is a solution of (6) then
there exist ρ1, . . . , ρr in K̄ such that

G = ρ1F̂1
∂F1

∂y
+ · · ·+ ρrF̂r

∂Fr
∂y

.

If the ρi are pairwise distinct then the absolute factorization of F can be
obtained from the absolute partial fraction decomposition of

G

F
= ρ1

∂F1
∂y

F1
+ · · ·+ ρr

∂Fr

∂y

Fr
.

Gao essentially follows the Rothstein-Trager algorithm (see [Gao03, Theo-
rem 2.8]).

The representation of the absolute factorization is the same as ours. Thus our
algorithms can be seen as an improvement of Gao’s algorithm. In particular the
lifting and recombination technique accelerates the resolution of (6).

The use of the absolute partial fraction decomposition was suggested in [Gao03,
Section 4, Additional Remarks]. One of our contributions here is a deterministic al-
gorithm for computing a suitable polynomial G in time Õ(d4) (namely Algorithm 7
in Section 4). Another contribution is a Hensel lifting device to compute the ab-
solute partial fraction decomposition from the one obtained with x = 0 (namely
Algorithm 6 in Section 4). Finally let us mention that a numerical version of Gao’s
algorithm has recently been designed in [GKM+04].

Duval’s, Ragot’s, Gao’s and our algorithms have the following point in common
with Berlekamp’s and Niederreiter’s algorithms [Nie93, GG94, MŞ99] (for factoring
univariate polynomials over finite fields): one first computes a basis of a certain
vector space whose dimension equals the number of factors, then the factors are
obtained by means of gcd or sub-resultants. In the next paragraphs, we mention
other factorization algorithms that are less related to our methods.

Other Algorithms. In [CSTU02, Section 4.2] an improvement of Duval’s and Ragot’s
algorithms is proposed: the expensive computation of the basis of D1, . . . , Dr is
replaced by the resolution of a system of linear differential equations. In [CSTU02,
Section 4.1] another factorization algorithm is investigated: the factorization is
computed from the minimal differential operator associated to F . Improvements of
these techniques are presented in [BT03]. The costs of these algorithms have not
been analyzed yet.

Several algorithms have been designed for the special case K = Q. The use of
the connectedness property of the irreducible components of the curve F (x, y) = 0
outside the singular locus is explored in [BCGW93]. Other strategies make use
of the monodromy theory: the algorithms of Galligo and his collaborators [GR02,
CGKW02, Rup04] perform mixed symbolic and numerical computations but the
final result is always exact. In [Chè04a], these algorithms are improved thanks to

ABSOLUTE FACTORIZATION 11

the lattice reduction algorithm. In [SVW02, SVW04], these ideas are turned into
a purely numerical algorithm that is well suited to homotopy continuation. These
numerical methods are rather efficient in practice. Furthermore the exact factor-
ization can always be recovered from a sufficiently accurate numerical one [CG06].

Lastly and less connected to our present concerns, let us mention recent abso-
lute irreducibility tests based on properties of Newton polytopes associated to F :
[Gao01, GL01, Rag02, GR03, GL04].

1. Change of Coordinates

In this section, we show that, under Hypothesis (C), Hypothesis (H) is not
restrictive. The results presented here are classical, we recall them briefly for com-
pleteness.

Let F ∈ K[x, y] be a squarefree polynomial of total degree d. We want to
characterize the values u and v in K such that the monic part in y of F (x+uy+v, y)
satisfies Hypothesis (H). Let F# denote the homogeneous component of F ∈ K[x, y]
of highest degree d.

Lemma 1. Under Hypothesis (C), for any u ∈ K such that F#(u, 1) 6= 0, the
polynomial Fu := F (x+ uy, y)/F#(u, 1) is monic in y and

∆u(x) := Resy

(
Fu(x, y),

∂Fu
∂y

(x, y)
)
6= 0.

For any v ∈ U(∆u), the monic part in y of F (x+uy+v, y) satisfies Hypothesis (H).

Proof. It is straightforward to check that F#(u, 1) is the coefficient of yd in Fu.
Therefore Fu is monic in y. If we had ∆u(x) = 0 then Fu and ∂Fu

∂y would share
a common irreducible factor H ∈ K[x, y] monic in y. Necessarily, one would have
∂H
∂y = 0, which would contradict Hypothesis (C). �

The cost of the substitution of x+uy+v for x is estimated in the following lemma,
which will be used twice: at the beginning and at the end of the factorization
algorithms. This is why we use a different notation.

Lemma 2. Let E be a commutative unit ring, let H be in E[x, y] of total degree n
and let u, v be in E. If n! is invertible in E, and if we are given its inverse, then
H(x+ uy + v, y) can be computed with O(nM(n)) operations in E.

Proof. First we prove that H(x + uy, y) can be computed with the claimed cost.
If H is homogeneous then H(x + uy, y) is also homogeneous, thus it suffices to
compute H(x + u, 1) and to homogenize the result. The cost of this operation is
dominated by the shift operation of the variable of a univariate polynomial, which
is in O(M(n)), according to [BP94, Chapter 1, Section 2] (here we need the inverse
of n!). If H is not homogeneous then we apply this process on its homogeneous
components, which yields a total cost in O(M(1) + M(2) + · · ·+ M(n)). The super-
additivity (3) of M implies M(i) ≤ M(n), for any i ≤ n, which concludes the case
v = 0.

If v 6= 0 then we first compute H(x+uy, y) and secondly H(x+uy+v, y). Thus
it remains to examine the case u = 0. This task corresponds to shifting the variable
x in each coefficient of H seen in E[x][y]. The total cost of these shifts is again in
O(nM(n)). �

By Lemma 1, the number of values for u (resp. v) in K such that F#(u, 1) = 0
(resp. ∆u(v) = 0) is at most d (resp. d(d−1)). Therefore, the existence of suitable
values for u and v is guaranteed by Hypothesis (C). In practice, it is interesting
to test values for u (resp. v) in increasing order in the range [0, . . . , d] (resp.

12 G. CHÈZE AND G. LECERF

[0, . . . , d(d − 1)]). Using fast multi-point evaluation, these tests can be performed
efficiently, as explained in the proof of the following proposition:

Proposition 1. For any squarefree polynomial F ∈ K[x, y] of total degree d such
that Hypothesis (C) holds, one can compute u and v in K such that the monic part
in y of F (x+ uy + v, y) satisfies Hypothesis (H) with O(d2M(d) log(d)) operations
in K.

Proof. First we compute u such that F#(u, 1) 6= 0: using a fast multi-point
evaluation algorithm, one can compute all the F#(i, 1), for i ∈ {0, . . . , d}, with
O(M(d) log(d)) operations in K. Necessarily, one of these values is nonzero, which
determines a suitable value for u.

In order to find a suitable value for v, we partition the set Z := {0, . . . , d(d−1)}
into the subsets Zj := {j(d + 1), . . . ,min((j + 1)(d + 1) − 1, d(d − 1))}, for j ∈
{0, . . . , d(d(d − 1) + 1)/(d + 1)e − 1}. This partition contains at most d subsets.
For each Zj , one can compute {Fu(i, y) | i ∈ Zj} with O(dM(d) log(d)) operations
in K. Then one can deduce {∆u(i) | i ∈ Zj} with O(dM(d) log(d)). Therefore, the
computation of {∆u(i) | i ∈ Z} costs O(d2M(d) log(d)). By Lemma 1, one of these
values must be nonzero, which leads to a suitable value for v. �

2. Lifting

From now on and until the absolute factorization of F is computed, we assume
that F satisfies Hypothesis (H). The absolutely irreducible factors F1, . . . , Fr of F
are assumed to be monic in y. This section is devoted to the computation of an
approximation of the series φ to a given precision (xσ).

It is classical that this computation can be handled by means of Newton’s op-
erator [GG03, Algorithm 9.22]. Since the inverse of ∂F

∂y (0, ϕ) can be computed
with O(M(d) log(d)) operations in K, and since each ring operation in A involves
O(M(d)) operations in K, we deduce from [GG03, Theorem 9.25] that the compu-
tation of φ to precision (xσ) takes O(dM(σ)M(d)) operations in K. In this section
we show that [GG03, Algorithm 9.22] can be accelerated if we replace Horner’s
rule by Paterson and Stockmeyer’s evaluation scheme [PS73]. This speedup is very
important for our heuristic factorization algorithm.

2.1. Polynomial Evaluation. Let R denote a commutative unit ring, and let E
be a ring extension of R which is a free R-module of dimension d. We assume that
we know a basis E1, . . . , Ed of E with E1 = 1, and we denote by E∗

1 , . . . , E
∗
d the

dual basis. From a computational point of view, we assume that the elements of E
are represented by their coordinate vectors in the basis E1, . . . , Ed.

In this situation, Paterson and Stockmeyer’s evaluation scheme is summarized
in the following algorithm. For the only computation of φ, we could have directly
used the version described in [GG03, Chapter 12.2] but for proving Corollary 2
below (that is used in Section 4.4), we need the following slightly stronger version:

Algorithm 1. Paterson and Stockmeyer’s evaluation scheme.
Input: P ∈ R[y] with deg(P) ≤ d, and e ∈ E.
Output: P (e) ∈ E.
1. Let k := b

√
d+ 1c and k′ := d(d+ 1)/ke.

2. Compute 1, e, . . . , ek−1.
3. Build the d× k matrix M with entries in R defined by Mi,j := E∗

i (e
j−1).

4. Build the k × k′ matrix N with entries in R defined by

Ni,j := coeff
(
P, yk(j−1)+i−1

)
.

5. Compute the d× k′ matrix C := MN .

ABSOLUTE FACTORIZATION 13

6. Let Di :=
∑d
j=1 Cj,iEj , for i ∈ {1, . . . , k′}.

7. Compute 1, ek, . . . , ek(k
′−1).

8. Return
∑k′

i=1Die
k(i−1).

In the following proposition we consider operations in E and matrix multipli-
cation over R as black box subroutines that will be specified later in each case of
use.

Proposition 2. Algorithm 1 is correct and takes O(
√
d) arithmetic operations in

E and one matrix multiplication in size d× k times k × k′ over R.

Proof. The correctness of the algorithm is a consequence of the following identities:

P (e) =
k′∑
i=1

Die
k(i−1) and Di =

k∑
j=1

coeff(P, yk(i−1)+j−1)ej−1 for i ∈ {1, . . . , k′}.

Since k and k′ are in O(
√
d), steps 2, 7 and 8 take O(

√
d) operations in E. The ma-

trix multiplication of the proposition is the one of step 5 and the other computations
are negligible. �

The following corollary is to be used in the next subsection. We carry on using
the notation of Algorithm 1.

Corollary 1. Let σ ∈ {1, . . . , d(d − 1)/2 + 1}, R := K[[x]]/(xσ), and E :=
R[y]/(f(y)) = A[[x]]/(xσ). Then, under Hypothesis (C), Algorithm 1 takes

O
(
σd(ω+1)/2 + d3/2M(σ)(M(d)/d+ log(d))

)
operations in K.

Proof. Since each ring operation in E takes O(M(σ)M(d)) operations in K, the
conclusion follows from the previous proposition and Lemma 3 below. �

When using σ ∈ O(d) and a fast polynomial multiplication, that is M(d) ∈ Õ(d),
the cost of Algorithm 1 drops to O(d(ω+3)/2) (recall that ω > 2). Therefore, even
with ω = 3, Algorithm 1 is faster than Horner’s rule by logarithmic factors. On
the other hand, when using slow polynomial multiplication, that is M(d) ∈ O(d2),
Algorithm 1 costs O(d4.5), whereas Horner’s rule costs O(d5).

The second corollary is used in Section 5.2, in order to test whether a candidate
absolutely irreducible factor actually divides F or not.

Corollary 2. Let σ ∈ {1, . . . , d(d − 1)/2 + 1}, R := K[[x]]/(xσ), q ∈ K[z], r :=
deg(q), F ∈ K[x, y, z] and assume: r divides d, degz(F) ≤ r − 1, degx(F) ≤ σ − 1,
degy(F) = d/r, and F is monic in y. Let E := R[y, z]/(q(z),F(x, y, z)) and let e
denote the residue class of y in E. Then, under Hypothesis (C), Algorithm 1 takes

O
(
σd(ω+1)/2 + d3/2M(σ)(M(r)M(d/r)/d+ log(d))

)
operations in K.

Proof. The basis E1, . . . , Ed we consider for E is composed of the monomials yizj

with 0 ≤ i ≤ d/r − 1 and 0 ≤ j ≤ r − 1. Each ring operation in E takes
O(M(σ)M(r)M(d/r)) operations in K. Again, the conclusion follows from the pre-
vious proposition and Lemma 3 below. �

The following lemma, which is used in the two previous corollaries, relies on
classical techniques.

14 G. CHÈZE AND G. LECERF

Lemma 3. Under Hypothesis (C), for any σ ∈ {1, . . . , d(d− 1)/2+1}, the product
of a d × k matrix by a k × k′ matrix with entries in K[[x]]/(xσ) can be computed
with O(σd(ω+1)/2 + d3/2M(σ) log(d)) operations in K.

Proof. According to the definitions of k and k′, this matrix multiplication reduces
to multiplying O(

√
d) matrices in sizes O(

√
d ×

√
d) with entries in K[[x]]/(xσ).

Using fast multi-point evaluation and interpolation algorithms, each of these matrix
products can be done with O(σdω/2 +dM(σ) log(σ)) operations in K this way: first
we evaluate the entries of the matrices on 2σ−1 points taken in K, then we perform
the multiplications of the evaluated matrices, and lastly we interpolate the result.
Thanks to Hypothesis (C) and since σ ≤ d(d − 1)/2 + 1, one can use the set
{0, . . . , 2(σ − 1)} for evaluation and interpolation. The claimed cost thus follows
by replacing log(σ) by log(d). �

In the factorization algorithms, we shall take σ ≤ 2d + 1, hence the algorithm
used in this proof applies as soon as d ≥ 5. The cost in Lemma 3 can be slightly
improved as explained in [GG03, Note 12.2].

2.2. Newton’s Operator. We are now ready to study the cost of Newton’s oper-
ator combined with Paterson and Stockmeyer’s evaluation scheme. Recall that our
goal is the computation of φ to a given precision (xσ). We closely follow [GG03,
Section 9.4].

Algorithm 2. Computation of φ.

Input: F ∈ K[x, y] satisfying Hypothesis (H), and σ ≥ 1.
Output: φ to precision (xσ).

1. Compute the inverse I of ∂F
∂y (0, ϕ) in A.

2. Let ψ := ϕ and κ := 1.
3. While κ < σ/2 do

a. Compute ψ := ψ−IF (x, ψ) to precision (xκ) (use Algorithm 1 to evaluate
F at (x, ψ)).

b. Compute I := I + I(1 − I ∂F∂y (x, ψ)) to precision (xκ) (use Algorithm 1
to evaluate ∂F

∂y at (x, ψ)).
c. κ := 2κ.

4. Let κ := σ and compute ψ := ψ−IF (x, ψ) to precision (xκ) (use Algorithm 1
to evaluate F at (x, ψ)).

5. Return ψ.

In the calls to Algorithm 1, the polynomials F and ∂F
∂y are seen in R[y] where

R := K[[x]]/(xκ), and E corresponds to R[y]/(f(y)) = A[[x]]/(xκ).

Proposition 3. Under Hypotheses (C) and (H), for any σ ∈ {1, . . . , d(d−1)/2+1},
Algorithm 2 is correct and takes

O
(
σd(ω+1)/2 + d3/2M(σ)(M(d)/d+ log(d))

)
operations in K.

Proof. The correctness directly follows from [GG03, Theorem 9.23]. Step 1 costs
O(M(d) log(d)). At each step of the loop, the calls to Algorithm 1 dominate the cost
with O(κd(ω+1)/2 + d3/2M(κ)(M(d)/d + log(d))) operations in K, by Corollary 1.
By property (2) of M, we have M(κ) ≤ M(σ)κ/σ. The conclusion thus follows by
adding these costs over the successive values taken by κ. �

ABSOLUTE FACTORIZATION 15

3. Linear System Solving

We still follow the notation of the introduction and we still assume that F satisfies
Hypothesis (H). In this section, we prove Theorem 4 and present algorithms for
computing bases of Lσ. The techniques presented here are adapted from [Lec06,
Lec07]: we will show that, up to a K̄-linear change of the variables `1, . . . , `d, the
system defining Lσ coincides with the one introduced in [Lec06].

3.1. Proof of Theorem 4. Let φ1, . . . , φd represent the roots of F in K̄[[x]], so
that F =

∏d
i=1(y − φi). In order to stay close to the notation of [Lec06], for

i ∈ {1, . . . , d}, we introduce Fi := y − φi and the partial product

F̂i :=
d∏

j=1,j 6=i

Fj .

To each i ∈ {1, . . . , r}, we associate the vector µ̄i ∈ {0, 1}d defined by

Fi =
d∏
j=1

F
µ̄i,j

j . (7)

If one knows all the φi to a sufficient precision, then the factorization of F reduces
to computing the µ̄i. This problem is efficiently solved in [Lec06] by means of the
following vector space:

L̄σ :=
{

((¯̀1, . . . , ¯̀d), Ḡ, H̄) ∈ K̄d × K̄[x, y]d−1 × K̄[x, y]d−1 |

Ḡ−
d∑
i=1

¯̀
iF̂i

∂Fi

∂y
∈ (x, y)σ,

H̄ −
d∑
i=1

¯̀
iF̂i

∂Fi

∂x
∈ (x, y)σ + (xσ−1)

}
.

Differentiating (7) with respect to x and y respectively gives:

F̂i
∂Fi
∂x

=
d∑
j=1

µ̄i,jF̂j
∂Fj

∂x
and F̂i

∂Fi
∂y

=
d∑
j=1

µ̄i,jF̂j
∂Fj

∂y
,

whence the inclusion 〈µ̄1, . . . , µ̄r〉 ⊆ π(L̄σ). If σ is sufficiently large then this
inclusion becomes an equality, as stated in:

Theorem 5. [Lec06, Theorem 1] Under Hypotheses (C) and (H), for any σ ≥ 2d
we have:

L̄σ =
〈(

µ̄i, F̂i
∂Fi
∂y

, F̂i
∂Fi
∂x

)
| i ∈ {1, . . . , r}

〉
.

For shortness, we write ϕi := φi(0) and we introduce the following isomorphism
that sends ϕ to (ϕ1, . . . , ϕd):

K̄⊗A → K̄d

b 7→ (b(ϕ1), . . . , b(ϕd)).

In the usual bases of K̄[y]/(f(y)) = K̄⊗A and K̄d, the matrix of this map is the
Vandermonde matrix V of (ϕ1, . . . , ϕd).

Proposition 4. Under Hypothesis (H), for any σ ≥ 1, the map

Σ : L̄σ → K̄⊗Lσ (8)
((¯̀1, . . . , ¯̀d), Ḡ, H̄) 7→ (V t(¯̀1, . . . , ¯̀d), Ḡ, H̄)

is an isomorphism.

16 G. CHÈZE AND G. LECERF

Proof. For any b ∈ K̄⊗A, (`1, . . . , `d) ∈ K̄d and (¯̀1, . . . , ¯̀d) ∈ K̄d such that
(`1, . . . , `d) = V t(¯̀1, . . . , ¯̀d), one has:

d∑
i=1

`i coeff(b, ϕi−1) =
d∑
i=1

coeff(b, ϕi−1)
d∑
j=1

¯̀
jϕ

i−1
j

=
d∑
j=1

¯̀
j

d∑
i=1

coeff(b, ϕi−1)ϕi−1
j =

d∑
j=1

¯̀
jb(ϕj).

On the other hand, it is straightforward to verify that substituting ϕi for ϕ in F
gives Fi. Therefore the map Σ is well-defined and is clearly an isomorphism. �

Since µi = V tµ̄i, the proof of Theorem 4 directly follows from combining this
proposition with Theorem 5.

In order to compute a basis of Lσ it suffices to compute a basis of π(Lσ), which
leads to consider a linear system in d unknowns. The rest of this section is devoted
to the cost analysis of the resolution of this linear system. We first detail the
natural deterministic method, and then we adapt the probabilistic and heuristic
speedups presented in [BLS+04, Lec06, Lec07], which gain in reducing the number
of equations.

3.2. Deterministic Linear Solving. From the approximation of φ to precision
(xσ), it is straightforward to compute a basis of π(Lσ). For this purpose, we
introduce the following linear system Dσ:

Dσ

d∑
i=1

`i coeff
(

F̂
∂F

∂y
, ϕi−1xjyk

)
= 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,

d∑
i=1

`i coeff
(

F̂
∂F

∂x
, ϕi−1xjyk

)
= 0, k ≤ d− 1, d ≤ j + k ≤ σ − 1,

j ≤ σ − 2.

Lemma 4. For all σ ≥ 1, we have π(Lσ) = {(`1, . . . , `d) ∈ Kd | Dσ}.

Proof. The proof is straightforward from the definition of π(Lσ). �

The deterministic algorithm for computing a basis of π(Lσ) proceeds as follows:

Algorithm 3. Deterministic computation of a basis of π(Lσ).

Input: F ∈ K[x, y] satisfying Hypothesis (H), and φ to precision (xσ).
Output: a basis of π(Lσ).

1. Compute F̂ = F/(y − φ), F̂∂F
∂y to precision (xσ), F̂∂F

∂x to precision (xσ−1),
and build the linear system Dσ.

2. Compute and return a basis of solutions of Dσ.

Let us recall here that the computation of a solution basis of a linear system
with m equations and d ≤ m unknowns over K takes

O(mdω−1) (9)

operations in K [BP94, Chapter 2] (see also [Sto00, Theorem 2.10]). We deduce the
following cost estimate:

Proposition 5. For any integer σ ≥ 1, Algorithm 3 is correct and takes O(σdω +
dM(σ)M(d)) operations in K.

ABSOLUTE FACTORIZATION 17

Proof. The computation of F̂ can be handled by means of the schoolbook division
algorithm [GG03, Algorithm 2.5], and takes O(d) ring operations in A[[x]]/(xσ),
hence O(dM(σ)M(d)) operations in K. The cost of the construction of Dσ is negli-
gible. The system Dσ has d unknowns and O(σd) equations. It can thus be solved
with O(σdω) operations in K. �

3.3. Probabilistic Linear Solving. By Theorem 4, we shall take σ = 2d in
the deterministic factorization algorithm. To this precision, Dσ involves about d2

equations. A classical trick for reducing the cost of the resolution of such an overde-
termined system consists in replacing the original set of equations by fewer random
linear combinations of them. In this subsection we adapt the fast probabilistic
strategy of [Lec07, Appendix A.1]. We let m := max(2d(σ − d) − 1, 0) represent
the number of equations of Dσ. For any (a2, . . . , am) ∈ Km−1 we introduce the
following upper triangular d×m Toepliz matrix:

T :=

1 a2 a3 · · · am−1 am

1 a2 a3 · · · am−1

.
...

1 . . . am−d+1

 .

Algorithm 4. Probabilistic computation of a basis of π(Lσ).
Input: F ∈ K[x, y] satisfying Hypothesis (H), φ to precision (xσ), (a2, . . . , am) ∈

Km−1.
Output: a basis of π(Lσ).

1. Compute F̂ = F/(y − φ), F̂∂F
∂y to precision (xσ), F̂∂F

∂x to precision (xσ−1),
and build the linear system Dσ.

2. Compute N := TM .
3. Compute and return a basis of the kernel of N .

Proposition 6. Assume that σ ≥ 1. Algorithm 4 takes O(d(M(σ)M(d)+M(σd))+
dω) operations in K. The space spanned by its output basis always contains π(Lσ).
For any F , there exists a nonzero polynomial R ∈ K[A2, . . . , Am] of total degree at
most d such that Algorithm 4 returns a correct answer whenever R(a2, . . . , am) 6= 0.

Proof. Since the rows of N are linear combinations of the equations of Dσ, it is
clear that π(Lσ) is a subspace of the one spanned by the output. Then the poly-
nomial R comes from [Lec07, Lemma 9] (recall that the latter lemma is borrowed
from [KS91, Theorem 2]). The cost of step 1 has already been analyzed in the proof
of Proposition 5 and belongs to O(dM(σ)M(d)). Since T is a Toepliz matrix, it is
classical that step 2 costs O(dM(m)). Finally the kernel of N amounts to O(dω)
operations. �

3.4. Heuristic Linear Solving. In this subsection we adapt the heuristic strategy
of [Lec07, Appendix A.2]. This strategy requires a slightly larger precision τ :=
σ + 1 in the computation of φ. For any a ∈ K, we introduce the following linear
system P aτ :

P aτ

d∑
i=1

`i coeff
(

F̂(x, ax)
∂F

∂x
(x, ax), ϕi−1xj

)
= 0, d ≤ j ≤ τ − 2,

d∑
i=1

`i coeff
(

F̂(x, ax)
∂F

∂y
(x, ax), ϕi−1xj

)
= 0, d ≤ j ≤ τ − 2.

Of course, one has ∂F
∂x (x, ax) = −φ′(x) and ∂F

∂y (x, ax) = 1. As in [Lec07, Appen-
dix A.2] we have the following property:

18 G. CHÈZE AND G. LECERF

Lemma 5. For any a, π(Lσ) is a subspace of the solutions of P aτ . If a1, . . . , ad
are pairwise distinct points in K, then the common solution set of P a1

τ , . . . , P ad
τ is

a subspace of the solutions of Dσ.

Proof. For any a, P aτ is composed of combinations of equations of Dτ , so that the
first assertion holds. On the other hand, if a is seen as a transcendental parameter
over K then Dσ is a subset of equations of P aτ . The second assertion thus follows
since the coefficients of the equations of P aτ are polynomial in a of degree at most
d− 1. �

If a1, . . . , ad are pairwise distinct points then the resolution ofDσ can be achieved
by computing the common solutions sets of P a1

τ , . . . , P ai
τ in sequence for i from 1

to d. We can stop this process as soon as the current solution set is proved to be
correct. This test will be studied in the next section. The advantage of this method
relies on the fact that each P ai

τ can be efficiently constructed, and on the following
heuristic: only a few subsystems are necessary. In practice we observe that only
one or two subsystems are necessary.

In the rest of this section we explain how to construct P aτ efficiently, for any
a ∈ K. We start with the same idea as in [Lec06, Lec07]: we attempt to compute
F̂(x, ax) without performing the division of F (x, y) by y − φ(x). We try to invert
ax − φ(x): if it is not invertible then we split the computation. For this purpose,
we introduce fy := gcd(f, y), f̂y := f/fy, Ay := K[y]/(fy), Ây := K[y]/(f̂y). Let A

denote the usual isomorphism A → Ay × Ây. If fy is constant then Ay = {0} and
A = Ây. This corresponds to the case when ϕ is invertible in A or, equivalently φ
invertible in A[[x]]. Otherwise fy = y and one has Ay = K.

For any β̄ ∈ A, the computation of A(β̄) takes O(M(d)) operations in K. For any
(β̄1, β̄2) ∈ Ay×Ây, the computation of A−1(β̄1, β̄2) takes O(M(d) log(d)) operations
in K, by [GG03, Corollary 10.23]. This cost can be slightly improved when taking
into account the specificity of the situation. Let β1 and β2 denote the respective
canonical preimages of β̄1 and β̄2 in K[y]. The preimage β ∈ K[y] of A−1(β̄1, β̄2)
is given by the following formulas: β = β1 + yβ3, where β3 is the preimage of
(β2 − β1)/y computed in Ây. The computation of the inverse of y in Ây only takes
O(d) operations in K. Finally, the computation of A−1(β̄1, β̄2) only costs O(M(d)).

With a slight abuse of notation, we still write A for the natural extension of A

to A[[x]] → Ay[[x]]× Ây[[x]] that maps A coefficient by coefficient. Lastly, we write
Ay (resp. (Ây)) for the first (resp. second) projection of A, so that A = (Ay, Ây).

Algorithm 5. Construction of P aτ .
Input: F ∈ K[x, y] satisfying Hypothesis (H), φ to precision (xτ), and a ∈ K.
Output: the matrix of P aτ .

1. In Ây[[x]] compute f̂y := F (x, ax)/Ây(ax− φ) to precision (xτ−1).
2. In Ay[[x]][y] compute the quotient T of F (x, y) by y − Ay(φ) to precision

(xτ−1) and let fy := T (x, ax).
3. Compute F̂(x, ax) as A−1(fy, f̂y) to precision (xτ−1).
4. Compute F̂(x, ax)φ′(x) to precision (xτ−1).
5. Construct and return the matrix of P aτ .

Proposition 7. For any τ ≥ d, Algorithm 5 is correct and takes O(M(τ)M(d))
operations in K.

Proof. Since F exactly divides F and since Ây(ux − φ) is invertible, f̂y equals
Ây(F̂(x, ux)) to precision (xτ−1). On the other hand, y−Ay(φ) divides F hence fy
equals Ay(F̂(x, ux)) to precision (xτ−1). Thus the algorithm works correctly.

ABSOLUTE FACTORIZATION 19

The computation of A(φ) takes O(τM(d)) operations in K. Thanks to Newton’s
iteration [GG03, Chapter 9.1], the series inversion in step 1 takes O(M(d)(log(d) +
M(τ))) operations in K. The cost of step 2 belongs to O(dM(τ)). Step 3 costs
O(τM(d)) and step 4 costs O(M(τ)M(d)). �

4. Absolute Partial Fraction Decomposition

In this section, we assume that we are given a candidate basis of π(L∞). We
explain how the absolutely irreducible factors can be constructed via a suitable
partial fraction decomposition. During the construction we will be able to test
whether the candidate basis is correct or not. Recall that this test is important for
the probabilistic and heuristic approaches. For the sake of completeness and be-
cause we also deal with positive characteristic, the classical absolute partial fraction
decomposition algorithms of Lazard, Rioboo, Rothstein and Trager are revisited in
Appendix A.

4.1. Existence of the Representation of the Absolute Factorization. Let
ν1, . . . , νr be a basis of π(L∞). For each νi, there exist unique polynomials Gi ∈
K[x, y]d−1 and Hi ∈ K[x, y]d−1 such that (νi, Gi,Hi) ∈ L∞. These polynomials
can be computed by means of the following formulas, in which the series can be
truncated to precision (xd+1):

Gi =
d∑
j=1

νi,j coeff
(

F̂
∂F

∂y
, ϕj−1

)
, (10)

Hi =
d∑
j=1

νi,j coeff
(

F̂
∂F

∂x
, ϕj−1

)
.

Since (ν1, G1,H1), . . . , (νr, Gr,Hr) is a basis of L∞, we deduce from Theorem 4
that their exists an invertible r × r matrix (ρi,j)(i,j) with entries in K̄ such that:

(νi, Gi,Hi) =
r∑
j=1

ρj,i

(
µj , F̂j

∂Fj
∂y

, F̂j
∂Fj
∂x

)
, for all i ∈ {1, . . . , r}. (11)

In particular, the set of row vectors {ρ1, . . . , ρr} has cardinality r. We say that
a point (c1, . . . , cr) in Kr separates ρ1, . . . , ρr when the dot products (c1, . . . , cr) ·
ρ1, . . . , (c1, . . . , cr) · ρr are pairwise distinct. The following lemma is going to lead
to an estimate of the density of such points.

Lemma 6. There exists a nonzero polynomial S ∈ K̄[C1, . . . , Cr] of total degree
r(r − 1)/2 such that any (c1, . . . , cr) ∈ U(S) separates ρ1, . . . , ρr.

Proof. The following polynomial clearly suits us:

S :=
∏

1≤i<j≤r

(
r∑

k=1

(ρi,k − ρj,k)Ck

)
. �

Under Hypothesis (C), the subset Z := {0, . . . , d(d − 1)} ⊆ K has cardinality
d(d − 1) + 1. By the Schwartz-Zippel lemma [Zip79, Sch80], the cardinality of
U(S) ∩ Zr is at most |Z|r−1r(r − 1)/2 < |Z|r/2 (since r ≤ d). In other words, the
proportion of points in Zr that separate ρ1, . . . , ρr is greater than 1/2.

Let (c1, . . . , cr) ∈ Kr and let G := c1G1+· · ·+crGr. The absolute partial fraction
decomposition of G/F seen in K(x)(y) can be written in the following form:

G

F
=

r∑
i=1

((c1, . . . , cr) · ρi)
∂Fi

∂y (x, y)

Fi(x, y)
.

20 G. CHÈZE AND G. LECERF

If (c1, . . . , cr) separate ρ1, . . . , ρr then we deduce that the Lazard-Rioboo-Trager
absolute partial fraction decomposition algorithm (Algorithm 14 of Appendix A)
called with input G/F returns (q1,F1), . . . , (qs,Fs) such that:

G

F
=

s∑
i=1

∑
qi(α)=0

α

∂Fi

∂y (x, y, α)

Fi(x, y, α)
, (12)

and
• qi is a monic squarefree polynomial in K[z] of degree ri ≥ 1;
• Fi belongs to K(x)[y, z], is monic in y, and satisfies degz(Fi) ≤ ri − 1;
• r1 + · · ·+ rs = r and {F1, . . . , Fr} =

⋃s
i=1{Fi(x, y, α) | qi(α) = 0}.

We deduce that Fi belongs to K[x, y, z]. Finally (q1,F1), . . . , (qs,Fs) represent the
absolute factorization of F .

For efficiency, we do not call the Lazard-Rioboo-Trager algorithm in K(x)[y].
Instead we compute the decomposition with x = 0 first and then we lift it. The
lifting device is presented in the following subsection.

4.2. Absolute Multi-factor Hensel Lifting. In this subsection we assume that
we are given a factorization (not necessarily irreducible) of f in K̄[y] and we wish to
lift it as a factorization of F in K̄[[x]][y] to a given precision. The input factorization
is assumed to be given in the following form:

f =
s∏
i=1

∏
qi(α)=0

fi(y, α),

where
• qi is a monic squarefree polynomial of K[z] of degree ri ≥ 1;
• fi belongs to K[y, z], is monic in y, and satisfies degz(fi) ≤ ri − 1;
• r1 + · · ·+ rs = r.

Because we are not explicitly given a common field for the coefficients of all the
factors fi(y, α), we can not directly apply the multi-factor Hensel lifting algorithm
given in [GG03, Algorithm 15.17]. For each i ∈ {1, . . . , s}, we introduce

pi(y) := Resz(qi(z), fi(y, z)) =
∏

qi(α)=0

fi(y, α) ∈ K[y]

and di := deg(pi) = ri degy(fi). Observe that d1 + · · · + ds = d. Let Ei :=
K[z]/(qi(z)) and let αi denote the residue class of z in Ei. The following lemma
serves us to define the objects we are to lift:

Lemma 7. Let η be an integer such that d+1 ≥ η ≥ max(di/ri | i ∈ {1, . . . , s})+1.
Assume that Hypothesis (H) holds.

a. There exist unique polynomials P̃1, . . . , P̃s in K[x, y] such that:
– P̃i is monic in y, degx(P̃i) ≤ η− 1, degy(P̃i) = di and P̃i − pi ∈ (x), for

each i ∈ {1, . . . , s};
– F − P̃1 · · · P̃s ∈ (xη).

b. There exist unique polynomials F̃1, . . . , F̃s in K[x, y, z] such that, for all i ∈
{1, . . . , s}:
– F̃i is monic in y, degx(F̃i) ≤ di/ri, degy(F̃i) = di/ri, degz(F̃i) ≤ ri − 1

and F̃i − fi ∈ (x);
– F̃i(x, y, αi) divides P̃i in Ei[[x]]/(xdi/ri+1)[y].

Proof. The proof relies on classical arguments (use [GG03, Theorem 15.14] for
instance). �

ABSOLUTE FACTORIZATION 21

The lifting algorithm starts with lifting all the pi before lifting each fi separately
with the help of P̃i. The computation of P̃1, . . . , P̃s is classical: it can be directly
handled by the multi-factor Hensel lifting algorithm [GG03, Algorithm 15.17]. How-
ever, the computation of F̃i requires more effort in order to avoid factoring qi: in
general, Ei is not a field.

Since fi(y, αi) is monic in y, the quotient pi(y)/fi(y, αi) is well-defined in Ei[y],
and we denote by f̂i(y, z) its canonical preimage in K[y, z], so that we have degz (̂fi) ≤
ri − 1 and pi(y) = fi(y, αi)̂fi(y, αi). Since fi(y, α) and f̂i(y, α) are coprime for
each root α ∈ K̄ of qi, there exist unique polynomials vi(y, z) and wi(y, z) in
K[y, z] such that degz(vi) ≤ ri − 1, degz(wi) ≤ ri − 1, degy(vi) ≤ degy (̂fi) − 1,
degy(wi) ≤ degy(fi)− 1, and

vi(y, αi)fi(y, αi) + wi(y, αi)̂fi(y, αi) = 1.

The polynomials vi and wi can be deduced from the Bézout identity between fi and
f̂i in K(z)[y] but it is faster to compute the Bézout identity between fi(y, αi) and
rem(̂fi(y, αi), fi(y, αi)). More precisely, we introduce the polynomials gi and hi in
K[y, z] respectively defined as the preimages of the quotient and the remainder of
f̂i(y, αi) divided by fi(y, αi), so that we have:

• degz(gi) ≤ ri − 1, degz(hi) ≤ ri − 1;
• degy(hi) ≤ di/ri − 1;
• f̂i(y, αi) = gi(y, αi)fi(y, αi) + hi(y, αi).

Since fi(y, α) and hi(y, α) are coprime for all root α of qi, the polynomials fi and hi
are coprime in K(z)[y]. Therefore there exist two polynomials ṽi(y, z) and w̃i(y, z)
in K(z)[y] such that ṽifi + w̃ihi = 1, degy(ṽi) ≤ degy(hi) − 1 and degy(w̃i) ≤
degy(fi)− 1.

By [GG03, Theorem 6.55], the denominators of ṽi and w̃i do not vanish at any
root α of qi. Therefore we obtain:

ṽi(y, αi)fi(y, αi) + w̃i(y, αi)hi(y, αi) = 1.

We deduce:

(ṽi(y, αi)− w̃i(y, αi)gi(y, αi))fi(y, αi) + w̃i(y, αi)̂fi(y, αi) = 1,

hence

vi(y, αi) = ṽi(y, αi)− w̃i(y, αi)gi(y, αi) and wi(y, αi) = w̃i(y, αi). (13)

These formulas lead to the following lifting algorithm:

Algorithm 6. Absolute multi-factor Hensel lifting.
Input: F ∈ K[x, y] such that Hypotheses (C) and (H) hold, and (q1, f1), . . . ,

(qs, fs), η as in Lemma 7.
Output: P̃1, . . . , P̃s and F̃1, . . . , F̃s as defined in Lemma 7.
1. For each i ∈ {1, . . . , s} compute pi(y) := Resz(qi(z), fi(y, z)).
2. Use the multi-factor Hensel lifting algorithm [GG03, Algorithm 15.17] with

input p1, . . . , ps, F , and required precision (xη) in order to obtain the poly-
nomials P̃1, . . . , P̃s.

3. For each i ∈ {1, . . . , s} do
a. Compute f̂i(y, αi) := pi(y)/fi(y, αi).
b. Compute the quotient gi(y, αi) and the remainder hi(y, αi) in the division

of f̂i(y, αi) by fi(y, αi).
c. Compute ṽi(y, z) and w̃i(y, z) by means of a fast extended Euclidean

algorithm with input fi(y, z) and hi(y, z) seen in K(z)[y].
d. Compute vi and wi by means of formulas (13).

22 G. CHÈZE AND G. LECERF

e. Use the multi-factor Hensel lifting algorithm [GG03, Algorithm 15.17]
with input fi(y, αi), f̂i(y, αi), P̃i, and required precision (xdi/ri+1) in
order to obtain the polynomial F̃i. From the knowledge of vi(y, αi) and
wi(y, αi), we can skip the computation of the Bézout identity in step 4
of [GG03, Algorithm 15.17].

4. Return P̃1, . . . , P̃s and F̃1, . . . , F̃s.

Proposition 8. Algorithm 6 is correct and takes O(M(d)2(M(d)/d + log(d))) op-
erations in K.

Proof. The correctness of steps 2 and 3e follows from [GG03, Theorem 15.18]. It
remains to analyze the cost.

Let i ∈ {1, . . . , s}. We start with the cost of the calculation of pi. Thanks to
Hypothesis (C), it suffices to interpolate pi from its values on Zi := {0, . . . , di}.
Using fast evaluation, all the values fi(j, z), for j ∈ Zi, can be computed with
O(r2iM(di/ri) log(di/ri)) operations in K. Then, each value Resz(qi(z), fi(j, z))
can be computed with O(M(ri) log(ri)) operations. The interpolation of pi costs
O(M(di) log(di)). Finally the cost of step 1 belongs to

O

(
s∑
i=1

r2iM(di/ri) log(di/ri) +
s∑
i=1

diM(ri) log(ri) +
s∑
i=1

M(di) log(di)

)

⊆ O

(
s∑
i=1

r2iM(di/ri) log(d) + dM(d) log(d)

)

⊆ O

(
s∑
i=1

riM(di) log(d) + dM(d) log(d)

)
(by assumption (2) on M)

⊆ O (dM(d) log(d)) .

By [GG03, Theorem 15.18], step 2 takes O(M(d)2 log(s)) operations in K (recall
that η ≤ d+ 1).

Steps 3a and 3b take O(M(ri)M(di)) operations in K. Except for a finite number
of values for d, Hypotheses (C) ensures that we can apply the fast modular Eu-
clidean algorithm [GG03, Corollary 11.9] in step 3c, whence O(di/riM(di) log(di))
operations in K.

By [GG03, Theorem 6.54], the coefficients of ṽi and w̃i have numerators and
denominators of degree in z at most 2di. Therefore the substitution of αi for z in ṽi
and w̃i costs O(di/riM(di)+di/riM(ri) log(ri)) operations in K. By assumption (2)
on M, this cost drops to O(di/riM(di) + M(di) log(ri)) ⊆ O(diM(di)). In order to
deduce vi, it then remains to multiply two polynomials in Ei[y] of degree bounded
by di, which takes O(M(ri)M(di)) operations in K. We deduce that the cost of
step 3d belongs to O(M(di)2).

In step 3e, the direct use of [GG03, Theorem 15.18] would yield a cost in
O(M(di/ri)M(di) + M(di) log(di)) in terms of operations in Ei. But, since we skip
step 4 of [GG03, Algorithm 15.17], we can discard the term M(di) log(di). There-
fore step 3e takes O(M(ri)M(di/ri)M(di)) ⊆ O(M(di)2M(d)/d) operations in K, by
assumption (2) on M.

We deduce that the total cost of step 3 belongs to

O

(
s∑
i=1

di/riM(di) log(di) +
s∑
i=1

M(di)2M(d)/d

)
⊆ O(dM(d) log(d) + M(d)3/d),

by the super-additivity (3) of M. The total cost of the algorithm easily follows. �

In replacement of [GG03, Algorithm 15.17], a slightly faster multi-factor Hensel
lifting can be found in [BLS03].

ABSOLUTE FACTORIZATION 23

4.3. Deterministic Decomposition. For each i ∈ {1, . . . , r}, we introduce gi :=
Gi(0, y) and f̂i := F̂i(0, y). Recall that fi := Fi(0, y) has already been defined.
Substituting 0 for x in equation (11), we obtain that

gi =
r∑
j=1

ρj,if̂jf
′
j .

Under Hypothesis (H), (f̂if ′i)i∈{1,...,r} is a free family, so is (gi)i∈{1,...,r}. In order to
complete the deterministic factorization algorithm we need a last device to compute
a point (c1, . . . , cr) ∈ Kr that separates ρ1, . . . , ρr. This is the aim of the following
procedure.

Algorithm 7. Separation of the residues.
Input: f ∈ K[y] and g1, . . . , gr as defined above.
Output: (c1, . . . , cr) ∈ Kr that separates ρ1, . . . , ρr.
1. Let c1 := 1 and g := g1.
2. For i from 2 to r do

a. Compute Q(w, z) := Resy(f(y), zf ′(y)− g(y)− wgi(y)).
b. For each j ∈ {0, . . . , d(d − 1)} compute the squarefree part qj(z) of

Q(z, j). Take ci ∈ {0, . . . , d(d−1)} such that qci(z) has maximum degree.
c. Let g := g + cigi.

3. Return (c1, . . . , cr).

Proposition 9. Under Hypotheses (C) and (H), Algorithm 7 is correct and takes
O(rd2M(d) log(d)) operations in K.

Proof. When entering the main loop in step 2, assume that (c1, . . . , ci−1) separates
the elements of {(ρ1,1, . . . , ρ1,i−1), . . . , (ρr,1, . . . , ρr,i−1)}, and that g = c1g1 + · · ·+
ci−1gi−1. These assumptions clearly hold when i = 2. Let q(w, z) denote the
squarefree part of Q. From Proposition 15 of Appendix A, we have that

Q(w, z) = δ

r∏
j=1

(z − c1ρj,1 − · · · − ci−1ρj,i−1 − wρj,i)di ,

hence q(j, z) is squarefree if, and only if, (c1, . . . , ci−1, j) separates the elements of
{(ρ1,1, . . . , ρ1,i), . . . , (ρr,1, . . . , ρr,i)}.

The discriminant of q seen in K[w][z] has a degree at most d(d − 1) in w. If j
annihilates this discriminant then deg(qj) < degz(q). Otherwise we have deg(qj) =
degz(q), hence qj = q(j, z). Thanks to Hypothesis (C) at least one value for j does
not annihilate this discriminant, hence q(ci, z) is squarefree. Of course g equals
c1g1 + · · ·+ cigi at the end of step 2c. The correctness of the algorithm thus follows
by induction.

Since Q has total degree d, it can be interpolated from O(d2) points with
O(dM(d) log(d)) operations in K. Therefore step 2a costs O(d2M(d) log(d)). By
using multi-point evaluation, all the values Q(z, 0), . . . , Q(z, d(d− 1)) can be com-
puted with O(d2M(d) log(d)) operations in K. Thanks to Hypothesis (C) again,
each squarefree part computation takes O(M(d) log(d)) operations in K by means
of [GG03, Algorithm 14.19] (when replacing the characteristic zero hypothesis by
Hypothesis (C), [GG03, Theorem 14.20] still holds). Finally the cost of step 2b
amounts to O(d2M(d) log(d)) operations. �

The computation of the absolute factorization of F from a basis of π(L∞) pro-
ceeds as follows.

Algorithm 8. Deterministic computation of the absolute factorization of F from
a basis of π(L∞).

24 G. CHÈZE AND G. LECERF

Input: F ∈ K[x, y] such that Hypotheses (C) and (H) hold, and a basis ν1, . . . ,
νr of π(L∞).

Output: the absolute factorization of F .
1. Let f(y) := y − ϕ. Compute f̂(y) as the quotient of f(y) by f(y) in A[y].
2. For each i ∈ {1, . . . , r} compute

gi =
d∑
j=1

νi,j coeff(̂ff′, ϕj−1).

3. Call Algorithm 7 with input f , g1, . . . , gr to compute a point (c1, . . . , cr)
that separates ρ1, . . . , ρr.

4. Let g := c1g1 + · · ·+ crgr and compute the absolute partial fraction decom-
position (q1, f1), . . . , (qs, fs) of g/f by means of the Lazard-Rioboo-Trager
algorithm (Algorithm 14 in Appendix A).

5. Let P̃1, . . . , P̃s, F̃1, . . . , F̃s be the output of Algorithm 6 called with input F ,
(q1, f1), . . . , (qs, fs) and η := max(degy(fi) | i ∈ {1, . . . , s}) + 1.

6. Return (q1, F̃1), . . . , (qs, F̃s).

Proposition 10. Algorithm 8 is correct and takes O(dM(d)(rd log(d)+M(d)2/d2))
operations in K.

Proof. The correctness of step 2 follows from substituting 0 for x in (10). The
correctness of steps 3, 4, and 5 respectively follows from Propositions 9, 18 and 8.
Finally, by Lemma 7 and since (c1, . . . , cr) separates ρ1, . . . , ρr, the output of the
algorithm is actually correct: we recover the absolute partial fraction decomposi-
tion (12) with F̃i = Fi for all i ∈ {1, . . . , s}.

Step 1 takes O(dM(d)) operations in K. Step 2 costs O(rd2). By Proposition 9,
step 3 costs O(rd2M(d) log(d)). By Proposition 18, except for a finite number
of values for d, step 4 costs O(dM(d) log(d)). Lastly, by Proposition 8, step 5
costs O(M(d)2(M(d)/d + log(d))). Since M is assumed to be at most quadratic
(from assumption (1)), the total cost of the algorithm drops to O(rd2M(d) log(d)+
M(d)3/d). �

4.4. Probabilistic Decomposition. In this subsection, we assume that we are
given a free family of vectors ν1, . . . , νr̃ of Kd such that π(L∞) ⊆ 〈ν1, . . . , νr̃〉,
hence r̃ ≥ r. When using the probabilistic algorithm of Sections 3.3 and 3.4 to
compute a basis of π(L∞), the strict inequality r̃ > r may hold. In contrast to
Algorithm 8, the lifted factorization may not equal the absolute factorization of F .
A trial division easily raises the doubt.

The following Algorithm generalizes the early exit criterion for rational factoriza-
tion of [Lec07, Appendix A.2]. It is parametrized by a candidate (c1, . . . , cr̃) ∈ Kr̃

for the separation of the residues.

Algorithm 9. Probabilistic computation of the absolute factorization of F from a
basis of π(L∞).

Input: F ∈ K[x, y] such that Hypotheses (C) and (H) hold, a free family
ν1, . . . , νr̃ of vectors of Kd such that π(L∞) ⊆ 〈ν1, . . . , νr̃〉, and (c1, . . . , cr̃) ∈
Kr̃.

Output: the absolute factorization of F .
1. Let f(y) := y − ϕ. Compute f̂(y) as the quotient of f(y) by f(y) in A[y].
2. Compute

g :=
d∑
i=1

 r̃∑
j=1

cjνj,i

 coeff(̂ff′, ϕi−1).

ABSOLUTE FACTORIZATION 25

3. Compute the absolute partial fraction decomposition (q1, f1), . . . , (qs, fs) of
g/f by means of the Lazard-Rioboo-Trager algorithm (Algorithm 14 in
Appendix A). If

∑s
i=1 deg(qi) 6= r̃ then stop the execution. Let Ei :=

K[z]/(qi(z)) and let αi denote the residue class of z in Ei.
4. For each i ∈ {1, . . . , s}, let ri := deg(qi) and di := ri degy(fi). Let P̃1, . . . , P̃r,

F̃1, . . . , F̃s be the result of Algorithm 6 called with input F , (q1, f1), . . . , (qs, fs)
and η := max(di | i ∈ {1, . . . , s}) + 1.

5. For each i ∈ {1, . . . , s} do: if P̃i 6∈ K[x, y]di then stop the execution. If∏s
i=1 P̃i 6= F then stop the execution.

6. For each i ∈ {1, . . . , s} do
a. If F̃i 6∈ K[z][x, y]di/ri

then stop the execution.
b. Let ψi denote the residue class of y in Ei[[x]]/(xdi+1)[y]/(F̃i(x, y, αi)) and

call Algorithm 1 to compute P̃i(x, ψi). Stop the execution if P̃i(x, ψi) is
nonzero.

7. Return (q1, F̃1), . . . , (qs, F̃s).

Proposition 11. Algorithm 9 either stops prematurely or returns a correct answer.
In both cases it takes O(d(ω+3)/2 + d3/2M(d)(M(d)2/d2 + log(d))) operations in
K. In addition, if r̃ = r then, for any valid input F and ν1, . . . , νr̃, there exists
a nonzero polynomial S ∈ K̄[C1, . . . , Cr̃] of total degree at most d(d − 1)/2 such
that Algorithm 9 returns a correct answer when called with input F , ν1, . . . , νr̃ and
(c1, . . . , cr̃) ∈ U(S).

Proof. In this paragraph we assume that r̃ = r. We are exactly in the situation of
Algorithm 8. Let S be the polynomial of Lemma 6, so that, if (c1, . . . , cr̃) ∈ U(S),
then (c1, . . . , cr̃) actually separates the residues. By applying the same arguments
as in the proof of Proposition 10, we deduce that (q1, F̃1), . . . , (qs, F̃s) computed
in step 4 actually represent the absolute factorization of F . Therefore we have
P̃i(x, y) = Resz(qi(z), F̃i(x, y, z)), hence

∏s
i=1 P̃i = F holds in step 5. The com-

putations done in step 6 correspond to testing if F̃i(x, y, αi) divides P̃i(x, y) in
Ei[[x]]/(xdi+1)[y]. In this case this division always holds, hence the algorithm re-
turns a correct result.

We do not assume now that r̃ = r. We wish to prove that the algorithm always
returns a correct output whenever it finishes normally. When entering step 6, we
are sure that P̃i divides F . If P̃i(x, ψi) = 0 then F̃i(x, y, αi) divides P̃i(x, y) in
Ei[[x]]/(xdi+1)[y]. Since the remainder of P̃i(x, y) divided by F̃i(x, y, αi) in Ei[x, y]
has degree at most di in x, we deduce that F̃i(x, y, αi) actually divides P̃i(x, y)
in Ei[x, y]. Therefore, if the algorithm reaches step 7 then we are sure that the
following factorization holds:

F =
r̃∏
i=1

∏
qi(α)=0

F̃i(x, y, α).

Since r̃ ≥ r, it follows that r̃ = r and that the output is correct.
The cost analysis of the first steps is straightforward: step 1 costs O(dM(d)),

step 2 costs O(d2). Step 3 costs O(dM(d) log(d)) by Proposition 18. By Proposi-
tion 8, step 4 costs O(M(d)2(M(d)/d+ log(d))).

Using the sub-product tree algorithm [GG03, Algorithm 10.3], the cost of step 5
amounts to O(M(d)2 log(s)) operations by [GG03, Lemma 10.4].

By Corollary 2, for each i ∈ {1, . . . , s}, the computation of P̃i(x, ψi) in step 6
costs O(d(ω+3)/2

i + d
3/2
i M(di)(M(ri)M(di/ri)/di + log(di))). From assumption (2),

we deduce that M(ri)M(di/ri)/di ≤ M(ri)/riM(di)/di ≤ M(d)2/d2. The total cost
of this step thus belongs to O(d(ω+3)/2 + d3/2M(d)(M(d)2/d2 + log(d))).

26 G. CHÈZE AND G. LECERF

From log(d) ∈ O(M(d)/
√
d), we deduce that M(d)2 log(d) ∈ O(d3/2M(d)3/d2),

which concludes the proof. �

Remark that the direct computation of the remainder of P̃i(x, y) divided by
F̃i(x, y, αi) in Ei[x][y] in step 6 takes O(M(ri)M(di)2) operations in K. If fast
multiplication is used, and if ω is close to 2, then this direct computation is slightly
slower than the method used in step 6 only when ri is big compared to

√
di.

5. Main Algorithms

We are now ready to present the main algorithms. In this section we do not
assume that F satisfies Hypothesis (H). We only require F to be squarefree.

5.1. Deterministic Absolute Factorization Algorithm. By putting together
the deterministic sub-algorithms presented in the previous sections, we obtain the
following top-level factorization procedure:

Algorithm 10. Deterministic absolute factorization.
Input: a squarefree polynomial F ∈ K[x, y] of total degree d satisfying Hypoth-

esis (C).
Output: the absolute factorization of F .
1. Find (u, v) ∈ K2 such that the monic part Fu,v in y of F (x + uy + v, y)

satisfies Hypothesis (H). Replace F by Fu,v.
2. Let σ := 2d and compute φ to precision (xσ) by means of Algorithm 2.
3. Call Algorithm 3 with input F and φ in order to obtain a basis ν1, . . . , νr of
π(L∞).

4. Let (q1,F1), . . . , (qs,Fs) be the absolute factorization of F returned by Al-
gorithm 8 called with input F and ν1, . . . , νr.

5. Return (q1,F1(x− uy − v, y, z)), . . . , (qs,Fs(x− uy − v, y, z)).

Proposition 12. Algorithm 10 is correct and takes O(dω+1 + dM(d)(rd log(d) +
M(d))) ⊆ O(d3M(d) log(d)) operations in K.

Proof. The first step makes sense thanks to Proposition 1. When entering step 2, F
satisfies Hypothesis (H). Therefore steps 2, 3 and 4 work correctly by Propositions 3,
5 and 10 respectively.

Let ri := deg(qi) and di := ri degy(Fi). In the last step, Fi(x− uy − v, y, z) can
be computed in K[z]/(qi(z)), hence it takes O(di/riM(di/ri)M(ri)) operations in K
by Lemma 2. Therefore the cost of the last step belongs to

O

(
s∑
i=1

di/riM(di/ri)M(ri)

)
⊆ O

(
s∑
i=1

di/riM(di)M(ri)/ri

)

⊆ O

(
s∑
i=1

di/riM(di)2/di

)
(by assumption (2) on M)

⊆ O

(
s∑
i=1

M(di)2
)
⊆ O(M(d)2) (by the super-additivity (3) of M).

By adding this cost to the ones of Propositions 1, 3, 5 and 10, we directly obtain
the following total cost for the whole algorithm:

O
(
dω+1 + dM(d)2 + dM(d)(rd log(d) + M(d)2/d2)

)
.

Since M is assumed to be at most quadratic from (1), we have M(d)2/d2 ∈ O(M(d)),
which concludes the proof. �

ABSOLUTE FACTORIZATION 27

Theorem 1 straightforwardly follows from this proposition. As a consequence
of the Lazard-Rioboo-Trager algorithm, it is worth noting that the degrees in y of
F1, . . . ,Fs are pairwise distinct.

In order to only test the absolute irreducibility of F , only steps 1 to 3 are
necessary. We can complete:

Proof of Theorem 2. By Propositions 1, 3, 5, the total cost of steps 1 to 3 in Algo-
rithm 10 amounts to O(dω+1 + dM(d)(M(d) + d log(d))) operations in K. �

5.2. Probabilistic Absolute Factorization Algorithm. The probabilistic fac-
torization algorithm is very similar to the deterministic one. Here we let m :=
2d2 − 1.

Algorithm 11. Probabilistic absolute factorization.

Input: a squarefree polynomial F ∈ K[x, y] of total degree d satisfying Hypoth-
esis (C), and (u, v, a2, . . . , am, c1, . . . , cd) ∈ Kd+m+1.

Output: the absolute factorization of F .

1. Replace F by the monic part in y of F (x + uy + v, y). If this new F does
not satisfy Hypothesis (H) then stop the execution.

2. Let σ := 2d and compute φ to precision (xσ) by means of Algorithm 2.
3. Call Algorithm 4 with input F , φ and (a2, . . . , am). Let ν1, . . . , νr̃ denote

the returned basis.
4. Let (q1,F1), . . . , (qs,Fs) be the factorization of F returned by Algorithm 9

called with input F , ν1, . . . , νr̃ and (c1, . . . , cr̃).
5. Return (q1,F1(x− uy − v, y, z)), . . . , (qs,Fs(x− uy − v, y, z)).

Proposition 13. Algorithm 11 either stops prematurely or returns a correct an-
swer. In both cases it takes O(dM(d)2(1 + M(d2)/M(d)2 + M(d)/d3/2)) operations
in K. In addition, for any input polynomial F , there exists a nonzero polyno-
mial P ∈ K[U] of degree at most d such that, for any u ∈ U(P), there exists
a nonzero polynomial Qu ∈ K[V] of degree at most d(d − 1) such that, for any
v ∈ U(Qu), there exists a nonzero polynomial Ru,v ∈ K[A2, . . . , Am] of degree at
most d such that, for any (a2, . . . , am) ∈ U(Ru,v), there exists a nonzero polyno-
mial Su,v,a ∈ K̄[C1, . . . , Cd] of total degree at most d(d − 1)/2 such that, for any
(c1, . . . , cd) ∈ U(Su,v,a), Algorithm 11 called with F and (u, v, a2, . . . , am, c1, . . . , cd)
returns a correct answer.

Proof. By Lemma 1, there exists a nonzero polynomial P ∈ K[U] of degree at most
d such that, for any u ∈ U(P), there exists a nonzero polynomial Qu ∈ K[V] of
degree at most d(d − 1) such that, for any v ∈ U(Qu), the monic part in y of
F (x + uy + v, y) satisfies Hypothesis (H). The change of the variables in the first
step costs O(dM(d)) by Lemma 2. The test of Hypothesis (H) costs O(M(d) log(d)),
hence the cost of the first step belongs to O(dM(d)).

When entering step 2, F satisfies Hypothesis (H). Therefore the correctness
of steps 2 and 3 follows from Propositions 3, 6 respectively. By Proposition 6,
there exists a nonzero polynomial Ru,v of degree at most d such that, for any
(a2, . . . , am) ∈ U(Ru,v), we have π(L∞) = 〈ν1, . . . , νr̃〉. By Proposition 11, there
exists a nonzero polynomial Su,v,a ∈ K̄[C1, . . . , Cd] such that, for any (c1, . . . , cd) ∈
U(Su,v,a), step 4 returns a correct answer. On the other hand, by Proposition 11
again we know that step 4 either returns a correct answer or stops prematurely.

We have seen in the proof of the preceding proposition that step 5 takesO(M(d)2)
operations in K. The total cost of the algorithm is directly obtained by adding this
cost with the ones given in Propositions 3, 6 and 11. �

28 G. CHÈZE AND G. LECERF

Theorem 3 straightforwardly follows from this proposition. For the only test of
the absolute irreducibility, Algorithm 11 can be simplified. Unfortunately, this does
not yield a smaller cost bound. In fact, when using fast polynomial multiplication,
that is M(d) ∈ Õ(d), the cost of Algorithm 11 drops to Õ(d3). Therefore the
bottleneck is the construction of the linear system Dσ to be solved.

5.3. Heuristic Absolute Factorization Algorithm. The following heuristic fac-
torization algorithm tends to avoid the bottleneck of the preceding probabilistic
algorithm, that is the construction of the system Dσ. We expect that only one or
two steps in the main loop are necessary.

Algorithm 12. Heuristic absolute factorization.

Input: a squarefree polynomial F ∈ K[x, y] of total degree d satisfying Hypoth-
esis (C), and (u, v, a1, . . . , ad, c1, . . . , cd) ∈ K2d+2.

Output: the absolute factorization of F .

1. Replace F by the monic part in y of F (x + uy + v, y). If this new F does
not satisfy Hypothesis (H) then stop the execution.

2. Let τ := 2d+ 1 and compute φ to precision (xτ) by means of Algorithm 2.
3. Initialize r̃ with d, and ν1, . . . , νr̃ with the canonical basis of Kd.
4. For a in {a1, . . . , ad} do:

a. Call Algorithm 5 in order to get the matrix M of P aτ .
b. Update ν1, . . . , νr̃ with a reduced echelon basis of the kernel of M re-

stricted to 〈ν1, . . . , νr̃〉.
c. Call Algorithm 9 with input F , ν1, . . . , νr̃ and (c1, . . . , cr̃). If it returns

(q1,F1), . . . , (qs,Fs) then return (q1,F1(x− uy − v, y, z)), . . . , (qs,Fs(x−
uy − v, y, z)).

5. Stop the execution.

Proposition 14. Algorithm 12 either stops prematurely or returns a correct an-
swer. Steps 1 to 3, and each step of the main loop 4 take

O(d(ω+3)/2 + d3/2M(d)(M(d)2/d2 + log(d)))

operations in K. In addition, for any input polynomial F , there exists a nonzero
polynomial P ∈ K[U] of degree at most d such that, for any u ∈ U(P), there exists
a nonzero polynomial Qu ∈ K[V] of degree at most d(d − 1) such that, for any
v ∈ U(Qu), there exists a nonzero polynomial Su,v ∈ K̄[C1, . . . , Cd] of total degree
at most d(d − 1)/2 such that, for any (c1, . . . , cd) ∈ U(Su,v) and for any pairwise
distinct points a1, . . . , ad, Algorithm 11 called with F and (u, v, a1, . . . , ad, c1, . . . , cd)
returns a correct answer.

Proof. Step 1 has already been discussed in the proof of the previous proposition.
When entering step 2, F satisfies Hypothesis (H). The result returned in step 4c
is always correct, by Proposition 11. The latter proposition also assert that there
exists a nonzero polynomial Su,v ∈ K̄[C1, . . . , Cd] such that, for any (c1, . . . , cd) ∈
U(Su,v), Algorithm 9 called with input F , (c1, . . . , cr), and the reduced echelon
basis of π(L∞) returns a correct results. By Lemma 5, reaching step 5 means that
(c1, . . . , cr) is not a separating form. This concludes the proof of the correctness.

The cost of step 2 is given in Proposition 3. The cost of step 4a comes from
Proposition 7. Step 4b can be done with O(dω) as explained in [Lec07, proof of
Proposition 12]. In step 4c the call to Algorithm 9 is given in Proposition 11,
and the change of the coordinates in has already been discussed in the proof of
Proposition 12. �

ABSOLUTE FACTORIZATION 29

d r = 1 r = 2 r = 2blog2(d)/2c r = d/2 r = d
8 0.08 s 0.04 s 0.03 s 0.04 s 0.03 s
16 0.41 s 0.2 s 0.18 s 0.18 s 0.12 s
32 2.4 s 1.6 s 1.4 s 1.5 s 0.82 s
64 18 s 21 s 21 s 21 s 16 s
128 147 s 167 s 166 s 181 s 123 s
256 1204 s 1384 s 1356 s 1488 s 1011 s

Table 2. Heuristic absolute factorization algorithm

6. Experiments

In this section we provide timings obtained with our Magma [Mag] implementa-
tion of the heuristic absolute factorization algorithm (namely, Algorithm 12). Our
package is freely available at http://www.math.uvsq.fr/~lecerf. Because no
absolute partial fraction decomposition algorithm is implemented in Magma, we
decided to use the Rothstein-Trager algorithm, which is much easier to implement.

In our experiments we take K := Z/754974721Z, and we illustrate the behavior
of our program with random irreducible polynomials in K[x, y] of total degree d with
r absolutely irreducible factors (although our program does not require the input
polynomial to be irreducible). Timings are measured by means of the command
Cputime() with a 1.8 GHz Pentium M processor and Magma V2.11-14.

In Table 2 we display the running time of our program for various values of d and
r. All the computations in this table took at most 141 MB of memory. In Table 3
we provide the percentages of the time spent in the main steps of Algorithm 12:
the line “lifting” corresponds to the lifting stage (namely, step 2); “lin. solve” to
the building and the resolution of the linear systems (namely, the total amount for
steps 4a and 4b); “frac. dec.” to the partial fraction decompositions (namely, the
total amount for step 4c).

With these examples, we observe that our heuristic works fine: only one step
in the main loop (namely, step 4) is necessary. When r = 1 no partial fraction
decomposition is necessary. When r = d the linear system to be solved is empty,
so that its resolution is fast. This explains the smaller timings observed in Table 2.
In all cases, it turns out that most of the time is spent in the lifting stage (which
does not depend on r), and that our heuristic actually leads to a very small cost
for linear solving. In addition, we can clearly observe that the running time of our
implementation roughly increases like d3, which shows that our asymptotic cost
analysis is well reflected in practice.

In Table 4 we compare our algorithms to others with the same family of examples.
We arbitrarily take r = 2blog2(d)/2c. In the column “Gao/Gaussian” we indicate the
time needed to solve system (6), with G and H in K[x, y]d−1. Here we use the
function Nullspace for sparse matrices. This function implements the Gaussian
elimination. Since the linear system has d(d + 1) unknowns, the running time is
cubic in the dense size of F . When d = 64, this method took 327 MB of memory
so that we were not able to run the test for d = 128 with the 512 MB of memory
of our computer.

In [Gao03] Gao proposed that system (6) could be solved faster by means of
the black box approach à la Wiedemann. In order to compute a single random
solution of the system this approach performs d(d + 1) matrix-vector products.
Each product amounts to compute 3 multiplications of bivariate polynomials of
total degree at most d. In the column “Gao/black box” of Table 4 we indicate the
time needed to compute all the 3d(d+1) polynomial multiplications. This way, one

30 G. CHÈZE AND G. LECERF

r 1 2 16 128 256
lifting 90 % 78 % 80 % 73 % 57 %

lin. solve 10 % 10 % 10 % 9 % 2 %
frac. dec. 0 % 12 % 10 % 18 % 41 %

Table 3. Profiling information with d = 256

d Gao/Gaussian Gao/black box Lecerf/Trager
8 0.01 s 0.09 s 0.14 s
16 0.16 s 2.7 s 1.2 s
32 8.4 s 74 s 13 s
64 467 s 540 s 274 s
128 >512 MB 11842 s 2565 s

Table 4. Comparisons with other algorithms

random solution of (6) can be computed with Õ(d4) operations in K when using
fast polynomial multiplication.

In the subsection “Related Work” of the introduction, we explained how Trager’s
reduction to factoring over algebraic extensions could be combined to the rational
factorization algorithm of [Lec06]. We first compute an irreducible factor e(y) of
F (0, y) (of smallest degree). Then we let E := K[y]/(e(y)) and let β denote the
residue class of y in E. We factor F (0, y) in E[y], and lift the resulting irreducible
factors in E[[x]][y] to the precision (x2d+1). Then we apply the recombination
algorithm of [Lec06]. In the column “Lecerf/Trager” of Table 4 we only give the
total running time for the lifting in E[[x]][y] to precision (x2d+1).

Table 4 shows that the theoretical cost estimates can roughly be observed in
high degrees. We can also observe that the black box approach does not gain
versus the Gaussian elimination up to degree 64. Although the running times
of the two versions of Gao’s algorithm and of the “Lecerf/Trager” strategy only
represent rough lower bounds for complete implementations, we can observe that
our algorithm gains even in small degrees by comparing Tables 2 and 4.

Conclusion

We have presented new faster algorithms for computing the absolute factorization
of a bivariate polynomial. Experiments show that these algorithms are of practical
interest for dense polynomials over large finite fields. One important remaining
question is the average cost of our heuristic algorithm.

In near future, we shall design a faster version of our program for the special
case when K = Q: an important intermediate growth of the integers occurs during
the computation of φ. This phenomenon can be observed in Example 3 given in
the introduction. We also plan to extend our methods to small characteristics and
to improve them for sparse polynomials.

Appendix A. Univariate Absolute Partial Fraction Decomposition

Throughout this appendix K is a field and f denotes a polynomial in K[y], which
satisfies

Hypothesis (h)

{
(i) f is monic of degree d ≥ 1,
(ii) δ := Res(f, f ′) 6= 0.

ABSOLUTE FACTORIZATION 31

Let g be a polynomial in K[y] of total degree at most d− 1. Under Hypothesis (h),
there exist unique pairwise distinct elements ρ1, . . . , ρr in K̄ and unique monic
polynomials f1, . . . , fr in K̄[y] such that f1 · · · fr = f and

g

f
=

r∑
i=1

ρi
f ′i
fi
. (14)

The right-hand side of this equality is called the absolute partial fraction decompo-
sition of g/f . The set of factors {f1, . . . , fr} can be represented by a set of pairs
of polynomials {(q1, f1), . . . , (qs, fs)} that satisfies the following properties:

• For all i ∈ {1, . . . , s}, the polynomial qi belongs to K[z], is monic, squarefree
and deg(qi) ≥ 1.

• For all i ∈ {1, . . . , s}, the polynomial fi belongs to K[y, z], is monic in y, and
degz(fi) ≤ deg(qi)− 1.

• deg(q1) + · · · + deg(qs) = r, the set of roots of q1 · · · qs is {ρ1, . . . , ρr}, and
{f1, . . . , fr} =

⋃s
i=1{fi(y, α) | qi(α) = 0}.

Such a representation is not redundant: to each fj there corresponds a unique pair
(i, α) such that fj(y) = fi(y, α) and qi(α) = 0. Decomposition (14) rewrites to:

g

f
=

s∑
i=1

∑
qi(α)=0

α

∂fi
∂y (y, α)

fi(y, α)
. (15)

In this appendix we briefly recall the classical algorithms for computing the
decomposition of g/f in form (15). These algorithms were originally designed to
compute symbolic integrals of rational functions in characteristic zero. The aim
of this appendix is to verify that they still apply in positive characteristic under
Hypothesis (h). We closely follow the presentation made in [GG03, Chapter 22].
The reader may also consult [Bro05, Chapter 2].

For all i ∈ {1, . . . , r}, we introduce di := deg(fi) and f̂i := f/fi. We also define:

Q(z) :=
r∏
i=1

(z − ρi)di and q(z) :=
r∏
i=1

(z − ρi).

A.1. The Rothstein-Trager Algorithm. The following proposition is adapted
from [GG03, Theorem 22.8]. The original idea is due to Rothstein [Rot76, Rot77]
and Trager [Tra76] independently.

Proposition 15. Under Hypothesis (h), the polynomials Q and q belong to K[z].
We have δQ(z) = Resy(f(y), zf ′(y)−g(y)), and fi is proportional to gcd(f, ρif ′−g)
for all i ∈ {1, . . . , r}.

Proof. Multiplying both sides of (14) by f , we obtain g =
∑r
i=1 ρif

′
i f̂i, and then

rem(g, fi) = rem(ρif ′i f̂i, fi) = rem(ρif ′, fi). By the multiplicativity of the resul-
tant, we deduce:

Resy(f(y), zf ′(y)− g(y)) =
r∏
i=1

Resy(fi(y), zf ′(y)− g(y))

=
r∏
i=1

Resy(fi(y), (z − ρi)f ′(y))

=
r∏
i=1

Res(fi, f ′)
r∏
i=1

Resy(fi(y), z − ρi)

= Res(f, f ′)
r∏
i=1

(z − ρi)di .

32 G. CHÈZE AND G. LECERF

It follows that Q ∈ K[z]. Thanks to Hypothesis (h), f is separable, so is its splitting
field E. Since ρi = g(β)/f ′i(β) for any root β of fi, the residues ρ1, . . . , ρr belong
to E. Therefore the minimal polynomial of ρi over K is separable. Since it divides
Q, it is an irreducible factor of q. All the irreducible factors of q can be obtained
this way, whence q ∈ K[z].

For any i and j in {1, . . . , r}, by taking both sides of the equality

ρif
′ − g =

r∑
j=1

(ρi − ρj)f ′j f̂j

modulo fj , we obtain:

rem(ρif ′ − g, fj) = (ρi − ρj) rem(f ′j f̂j , fj).

Thanks to Hypothesis (h) again, the polynomial f ′j f̂j is invertible modulo fj . We
finally deduce that fj divides ρif ′ − g if, and only if, ρi = ρj . �

Lemma 8. Under Hypothesis (h), if K has cardinality at least d+ 1 then Q can be
computed from f and g with O(dM(d) log(d)) operations in K.

Proof. For each i ∈ {0, . . . , d}, the value Q(i) can be computed with O(M(d) log(d))
operations. Since Q has degree d, it can be interpolated with O(M(d) log(d)) oper-
ations. �

Let us mention that the methods of [BFSS06] would yield a slightly better cost
for the computation of Q. Let q1, . . . , qs denote the monic irreducible factors of q.
For each i ∈ {1, . . . , s}, let ri := deg(qi), Ei := K[z]/(qi(z)), and let αi denote the
residue class of z in Ei. There exists a unique polynomial fi(y, z) ∈ K[y, z] that
satisfies the following properties:

• fi is monic in y and degz(fi) ≤ ri − 1;
• fi(y, αi) is proportional to gcd(f, αif ′ − g).

By Proposition 15, we have:

{f1, . . . , fs} =
s⋃
i=1

{fi(y, α) | qi(α) = 0}.

Therefore (q1, f1), . . . , (qs, fs) represent the absolute partial fraction decomposition
of g/f . These formulas lead to the following algorithm:

Algorithm 13. The Rothstein-Trager algorithm.

Input: f ∈ K[y] satisfying Hypothesis (h), and g ∈ K[y] with deg(g) ≤ d− 1.
Output: the absolute partial fraction decomposition of g/f .

1. Compute Q(z) := Resy(f(y), zf ′(y)− g(y)).
2. Compute the irreducible factors q1, . . . , qs of Q.
3. For each i ∈ {1, . . . , s}, compute fi(y, z) as the canonical preimage of the

monic part of gcd(f, αif ′ − g) in Ei[y].
4. Return (q1, f1), . . . , (qs, fs).

Proposition 16. Algorithm 13 is correct. If the K has cardinality at least d + 1
then it performs one irreducible factorization of a univariate polynomial of degree
d in K[y] plus O(M(d)(M(r) log(d)2 + d log(d))) operations in K.

Proof. By Lemma 8, step 1 costs O(dM(d) log(d)). In step 3, the computation of
each fi takes O(M(d) log(d)) operations in Ei, hence O(M(ri) log(ri)M(d) log(d))
operations in K. We use the super-additivity (3) of M to conclude the proof. �

ABSOLUTE FACTORIZATION 33

A.2. The Lazard-Rioboo-Trager Algorithm. In [LR90] Lazard and Rioboo
modified Algorithm 13 in order to avoid the irreducible factorization of Q in step 2.
They showed that the squarefree factorization of Q suffices to deduce the decompo-
sition of g/f . The same idea was independently found and implemented by Trager
in his SCRATCHPAD II package, but never published.

We define the monic polynomial remainder sequence p1(y, z), . . . pm(y, z) of f(y)
and zf ′(y)− g(y) in K(z)[y] recursively as follows:

p0 := f(y)/ coeff(f, yd), p1 := (zf ′(y)− g(y))/ coeff(zf ′(y)− g(y), yd−1),

pi+1 := rem(pi−1, pi)/ci+1 for i ≥ 1,
where ci+1 denotes the leading coefficient in y of rem(pi−1, pi), for i ≥ 1. The
integer m is defined as the first integer such that pm+1 = 0. The following result is
adapted from [GG03, Theorem 22.9].

Proposition 17. Assume that Hypothesis (h) holds and let α be a root of Q of
multiplicity e. Then there exists a unique remainder pi of degree e in y. In addition,
the polynomial pi(y, α) is well-defined and is proportional to gcd(f, αf ′ − g).

Proof. From Proposition 15, we already know that gcd(f, αf ′ − g) has degree e.
The rest of the proof follows from [GG03, Theorem 6.55], exactly as in the proof
of [GG03, Theorem 22.9]. �

From now on q1, . . . , qs represent the squarefree factors of Q, so that

Q :=
s∏
i=1

qei
i ,

with ri := deg(qi) ≥ 1 and 1 ≤ e1 < e2 < · · · < es ≤ d. By the previous proposition,
for each i ∈ {1, . . . , s}, there exists a unique remainder wi(y, z) ∈ K(z)[y] of degree
ei. In addition, wi(y, α) is well-defined for any root α of qi. Let αi now denote the
residue class of z in Ei := K[z]/(qi(z)). We can define the polynomial fi(y, z) as the
canonical preimage of wi(y, αi) in K[y, z]. Finally, (q1, f1), . . . , (qs, fs) represent the
absolute partial fraction decomposition of g/f . These formulas lead to the following
algorithm:

Algorithm 14. The Lazard-Rioboo-Trager algorithm.
Input: f ∈ K[y] satisfying Hypothesis (h), and g ∈ K[y] with deg(g) ≤ d− 1.
Output: the absolute partial fraction decomposition of g/f .
1. Compute Q(z) := Resy(f(y), zf ′(y)− g(y)).
2. Compute the squarefree decomposition qe11 · · · qes

s of Q.
3. Compute the remainders w1, . . . , ws of respective degrees e1, . . . , es in the

monic polynomial remainder sequence of f(y) and zf ′(y)− g(y) in K(z)[y].
4. For each i ∈ {1, . . . , s}, construct fi(y, z) as the canonical preimage of
wi(y, αi).

5. Return (q1, f1), . . . , (qs, fs).

Proposition 18. Algorithm 14 is correct. If K has characteristic 0 or at least d+1,
and if K has cardinality at least 6d + 3, then Algorithm 14 takes O(dM(d) log(d))
operations in K.

Proof. By Lemma 8, step 1 takes O(dM(d) log(d)) operations. Thanks to the hy-
pothesis on the characteristic of K, step 2 can be done with O(M(d) log(d)) opera-
tions by means of Yun’s algorithm [GG03, Algorithm 14.21]: we can apply [GG03,
Theorem 14.23] mutatis mutandis. By [GG03, Part (ii) of Exercise 11.9] and thanks
to the hypothesis on the cardinality of K, step 3 can be done with O(dM(d) log(d))
operations in K. By [GG03, Theorem 6.54], each coefficient of wi has numerator

34 G. CHÈZE AND G. LECERF

and denominator of degree at most 2d in z. Therefore the total cost of step 4
amounts to

O

(
s∑
i=1

(eiM(d) + eiM(ri) log(ri))

)
operations in K. From assumption (2), we deduce that this cost belongs to

O

(
dM(d) +

s∑
i=1

M(eiri) log(d)

)
⊆ O (dM(d) + M(d) log(d)) ,

which concludes the proof. �

It is worth noting that the above hypothesis on the cardinality of K could be
slightly refined, but this would yield us too far from our present concerns. Lastly,
we refer the reader to [Mul97] for implementation details, and to [GL03] for a recent
comprehensive survey on polynomial remainder sequences.

References

[AGL04] F. Abu Salem, S. Gao, and A. G. B. Lauder. Factoring polynomials via polytopes. In
Proceedings of ISSAC 2004, pages 4–11. ACM Press, 2004.

[BCGW93] C. Bajaj, J. Canny, T. Garrity, and J. Warren. Factoring rational polynomials over
the complex numbers. SIAM J. Comput., 22(2):318–331, 1993.

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory.
Springer-Verlag, 1997.

[BFSS06] A. Bostan, Ph. Flajolet, B. Salvy, and É. Schost. Fast computation of special resul-
tants. J. Symbolic Comput., 41(1):1–29, 2006.

[BHKS04] K. Belabas, M. van Hoeij, J. Klüners, and A. Steel. Factoring polynomials over global
fields. Manuscript, October 2004.

[BLS03] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In Proceedings
of ISSAC 2003, pages 37–44. ACM Press, 2003.

[BLS+04] A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt. Complexity issues in
bivariate polynomial factorization. In Proceedings of ISSAC 2004, pages 42–49. ACM
Press, 2004.

[BP94] D. Bini and V. Y. Pan. Polynomial and matrix computations. Vol. 1. Fundamental
algorithms. Progress in Theoretical Computer Science. Birkhäuser, 1994.

[Bro01] M. Bronstein. Computer algebra algorithms for linear ordinary differential and dif-
ference equations. In European Congress of Mathematics, Vol. II (Barcelona, 2000),
volume 202 of Progr. Math., pages 105–119. Birkhäuser, 2001.

[Bro05] M. Bronstein. Symbolic integration. I Transcendental functions. Springer-Verlag, sec-
ond edition, 2005.

[BS05] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of
points. J. Complexity, 21(4):420–446, 2005.

[BT03] M. Bronstein and B. M. Trager. A reduction for regular differential systems. Manu-
script, 2003.

[CG05] G. Chèze and A. Galligo. Four lectures on polynomial absolute factorization. In
A. Dickenstein and I. Z. Emiris, editors, Solving polynomial equations: foundations,
algorithms, and applications, volume 14 of Algorithms Comput. Math., pages 339–392.
Springer-Verlag, 2005.

[CG06] G. Chèze and A. Galligo. From an approximate to an exact absolute polynomial
factorization. J. Symbolic Comput., 41(6):682–696, 2006.

[CGKW02] R. M. Corless, A. Galligo, I. S. Kotsireas, and S. M. Watt. A geometric-numeric
algorithm for absolute factorization of multivariate polynomials. In Proceedings of
ISSAC 2002, pages 37–45. ACM Press, 2002.

[Chè04a] G. Chèze. Absolute polynomial factorization in two variables and the knapsack prob-
lem. In Proceedings of ISSAC 2004, pages 87–94. ACM Press, 2004.

[Chè04b] G. Chèze. Des méthodes symboliques-numériques et exactes pour la factorisation ab-
solue des polynômes en deux variables. PhD thesis, Université de Nice-Sophia An-
tipolis (France), 2004.

[CSTU02] O. Cormier, M. F. Singer, B. M. Trager, and F. Ulmer. Linear differential operators
for polynomial equations. J. Symbolic Comput., 34(5):355–398, 2002.

ABSOLUTE FACTORIZATION 35

[Del01] S. Dellière. On the links between triangular sets and dynamic constructible closure.
J. Pure Appl. Algebra, 163(1):49–68, 2001.

[DT89] R. Dvornicich and C. Traverso. Newton symmetric functions and the arithmetic of al-
gebraically closed fields. In Applied algebra, algebraic algorithms and error-correcting
codes (Menorca, 1987), volume 356 of Lecture Notes in Comput. Sci., pages 216–224.
Springer-Verlag, 1989.

[Duv91] D. Duval. Absolute factorization of polynomials: a geometric approach. SIAM J.
Comput., 20(1):1–21, 1991.

[Duv95] D. Duval. Évaluation dynamique et clôture algébrique en Axiom. J. Pure Appl. Al-
gebra, 99:267–295, 1995.

[FKG05] A. Frühbis-Krüger and G.Pfister. Some applications of resolution of singularities from
a practical point of view. In Proceedings of the Conference Computational Commuta-
tive and Non-commutative Algebraic Geometry, Chisinau 2004, volume 196 of NATO
Science Series III, Computer and Systems Sciences, pages 104–117, 2005.

[Gao01] S. Gao. Absolute irreducibility of polynomials via Newton polytopes. J. Algebra,
237(2):501–520, 2001.

[Gao03] S. Gao. Factoring multivariate polynomials via partial differential equations. Math.
Comp., 72(242):801–822, 2003.

[GC84] D. Yu. Grigoriev and A. L. Chistov. Fast factorization of polynomials into irreducible
ones and the solution of systems of algebraic equations. Dokl. Akad. Nauk SSSR,
275(6):1302–1306, 1984.

[GG94] S. Gao and J. von zur Gathen. Berlekamp’s and Niederreiter’s polynomial factoriza-
tion algorithms. In Finite fields: theory, applications, and algorithms (Las Vegas,
NV, 1993), volume 168 of Contemp. Math., pages 101–116. Amer. Math. Soc., 1994.

[GG03] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, second edition, 2003.

[GKL04] S. Gao, E. Kaltofen, and A. Lauder. Deterministic distinct degree factorization for
polynomials over finite fields. J. Symbolic Comput., 38(6):1461–1470, 2004.

[GKM+04] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi. Approximate factorization of
multivariate polynomials via differential equations. In Proceedings of ISSAC 2004,
pages 167–174. ACM Press, 2004.

[GL01] S. Gao and A. G. B. Lauder. Decomposition of polytopes and polynomials. Discrete
Comput. Geom., 26(1):89–104, 2001.

[GL03] J. von zur Gathen and T. Lücking. Subresultants revisited. Theor. Comput. Sci.,
297(1-3):199–239, 2003.

[GL04] S. Gao and A. G. B. Lauder. Fast absolute irreducibility testing via Newton polytopes.
Manuscript, 2004.

[GPS05] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Algebra
System for Polynomial Computations, Centre for Computer Algebra, University of
Kaiserslautern, 2005. http://www.singular.uni-kl.de.

[GR02] A. Galligo and D. Rupprecht. Irreducible decomposition of curves. J. Symbolic Com-
put., 33(5):661–677, 2002.

[GR03] S. Gao and V. M. Rodrigues. Irreducibility of polynomials modulo p via Newton
polytopes. J. Number Theory, 101(1):32–47, 2003.

[Hoe02] M. van Hoeij. Factoring polynomials and the knapsack problem. J. Number Theory,
95(2):167–189, 2002.

[HRUW99] M. van Hoeij, J.-F. Ragot, F. Ulmer, and J.-A. Weil. Liouvillian solutions of linear
differential equations of order three and higher. J. Symbolic Comput., 28(4-5):589–
609, 1999.

[HS81] J. Heintz and M. Sieveking. Absolute primality of polynomials is decidable in random
polynomial time in the number of variables. In Automata, languages and programming
(Akko, 1981), volume 115 of Lecture Notes in Comput. Sci., pages 16–28. Springer-
Verlag, 1981.

[Kal85] E. Kaltofen. Fast parallel absolute irreducibility testing. J. Symbolic Comput.,
1(1):57–67, 1985.

[Kal90a] E. Kaltofen. Computing the irreducible real factors and components of an algebraic
curve. Appl. Algebra Engrg. Comm. Comput., 1(2):135–148, 1990.

[Kal90b] E. Kaltofen. Polynomial factorization 1982–1986. In Computers in mathematics
(Stanford, CA, 1986), volume 125 of Lecture Notes in Pure and Appl. Math., pages
285–309. Dekker, 1990.

[Kal92] E. Kaltofen. Polynomial factorization 1987–1991. In LATIN ’92 (São Paulo, 1992),
volume 583 of Lecture Notes in Comput. Sci., pages 294–313. Springer-Verlag, 1992.

36 G. CHÈZE AND G. LECERF

[Kal95] E. Kaltofen. Effective Noether irreducibility forms and applications. J. Comput. Sys-
tem Sci., 50(2):274–295, 1995.

[Kal03] E. Kaltofen. Polynomial factorization: a success story. In Proceedings of ISSAC 2003,
pages 3–4. ACM Press, 2003.

[KS91] E. Kaltofen and B. D. Saunders. On Wiedemann’s method of solving sparse linear sys-
tems. In H. F. Mattson, T. Mora, and T. R. N. Rao, editors, Proceedings of AAECC-9,
volume 539 of Lect. Notes Comput. Sci., pages 29–38. Springer-Verlag, 1991.

[Lec06] G. Lecerf. Sharp precision in Hensel lifting for bivariate polynomial factorization.
Math. Comp., 75:921–933, 2006.

[Lec07] G. Lecerf. Improved dense multivariate polynomial factorization algorithms. J. Sym-
bolic Comput. (to appear), 2007. doi:10.1016/j.jsc.2007.01.003.

[LR90] D. Lazard and R. Rioboo. Integration of rational functions: rational computation of
the logarithmic part. J. Symbolic Comput., 9(2):113–115, 1990.

[Mag] The Magma computational algebra system for algebra, number theory and geometry.
http://magma.maths.usyd.edu.au/magma/. Computational Algebra Group, School of
Mathematics and Statistics, The University of Sydney, NSW 2006 Australia.

[MŞ99] M. Mignotte and D. Ştefănescu. Polynomials. An algorithmic approach. Springer-
Verlag, 1999.

[Mul97] T. Mulders. A note on subresultants and the Lazard/Rioboo/Trager formula in ra-
tional function integration. J. Symbolic Comput., 24(1):45–50, 1997.

[Nie93] H. Niederreiter. A new efficient factorization algorithm for polynomials over small
finite fields. Appl. Algebra Engrg. Comm. Comput., 4(2):81–87, 1993.

[Poh05] M. E. Pohst. Factoring polynomials over global fields. I. J. Symbolic Comput.,
39(6):617–630, 2005.

[PS73] M. Paterson and L. Stockmeyer. On the number of nonscalar multiplications necessary
to evaluate polynomials. SIAM J. on Computing, 2(1):60–66, 1973.

[Rag97] J.-F. Ragot. Sur la factorisation absolue des polynômes. PhD thesis, Université de
Limoges (France), 1997.

[Rag02] J.-F. Ragot. Probabilistic absolute irreducibility test for polynomials. J. Pure Appl.
Algebra, 172(1):87–107, 2002.

[Rot76] M. Rothstein. Aspects of symbolic integration and simplification of exponential and
primitive functions. PhD thesis, University of Wisconsin-Madison (USA), 1976.

[Rot77] M. Rothstein. A new algorithm for the integration of exponential and logarithmic
functions. In Proceedings of the 1977 MACSYMA Users Conference, pages 263–274.
NASA Pub. CP-2012, 1977.

[Rup86] W. M. Ruppert. Reduzibilität ebener Kurven. J. Reine Angew. Math., 369:167–191,
1986.

[Rup99] W. M. Ruppert. Reducibility of polynomials f(x, y) modulo p. J. Number Theory,
77(1):62–70, 1999.

[Rup04] D. Rupprecht. Semi-numerical absolute factorization of polynomials with integer co-
efficients. J. Symbolic Comput., 37:557–574, 2004.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

[Sch00] A. Schinzel. Polynomials with special regard to reducibility, volume 77 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2000.

[SS93] T. Sasaki and M. Sasaki. A unified method for multivariate polynomial factorizations.
Japan J. Indust. Appl. Math., 10(1):21–39, 1993.

[Ste02] A. Steel. A new scheme for computing with algebraically closed fields. In Algorithmic
number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages
491–505. Springer-Verlag, 2002.

[Sto00] A. Storjohann. Algorithms for matrix canonical forms. PhD thesis, ETH, Zürich
(Switzerland), 2000.

[SU97] M. F. Singer and F. Ulmer. Linear differential equations and products of linear forms.
J. Pure Appl. Algebra, 117/118:549–563, 1997.

[SVW02] A. J. Sommese, J. Verschelde, and C. W. Wampler. Symmetric functions applied to
decomposing solution sets of polynomial systems. SIAM J. Numer. Anal., 40(6):2026–
2046, 2002.

[SVW04] A. J. Sommese, J. Verschelde, and C. W. Wampler. Advances in polynomial contin-
uation for solving problems in kinematics. ASME J. Mech. Design, 126(2):262–268,
2004.

[Tra76] B. M. Trager. Algebraic factoring and rational function integration. In Proceedings
of the third ACM symposium on symbolic and algebraic computation, pages 219–226.
ACM Press, 1976.

ABSOLUTE FACTORIZATION 37

[Tra84] B. M. Trager. Integration of algebraic functions. PhD thesis, M.I.T. (USA), 1984.
[Tra85] C. Traverso. A study on algebraic algorithms: the normalization. Rend. Sem. Mat.

Univ. Politec. Torino, Special Issue:111–130, 1985.
[Zas69] H. Zassenhaus. On Hensel factorization I. J. Number Theory, 1(1):291–311, 1969.
[Zas78] H. Zassenhaus. A remark on the Hensel factorization method. Math. Comp.,

32(141):287–292, 1978.
[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings EU-

ROSAM’ 79, number 72 in LNCS, pages 216–226. Springer-Verlag, 1979.
[Zip93] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, 1993.

Guillaume Chèze, Laboratoire de Mathématiques J.-A. Dieudonné, UMR 6621 CNRS,
Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France

E-mail address: Guillaume.Cheze@math.unice.fr

Grégoire Lecerf, Laboratoire de Mathématiques, UMR 8100 CNRS, Université de

Versailles Saint-Quentin-en-Yvelines, 45 avenue des États-Unis, 78035 Versailles, France
E-mail address: Gregoire.Lecerf@math.uvsq.fr

	Introduction
	Notation
	Complexity Model
	Representation of the Absolute Factorization
	Main Results
	Overview of the Algorithms
	Related Work

	1. Change of Coordinates
	2. Lifting
	2.1. Polynomial Evaluation
	2.2. Newton's Operator

	3. Linear System Solving
	3.1. Proof of Theorem 4
	3.2. Deterministic Linear Solving
	3.3. Probabilistic Linear Solving
	3.4. Heuristic Linear Solving

	4. Absolute Partial Fraction Decomposition
	4.1. Existence of the Representation of the Absolute Factorization
	4.2. Absolute Multi-factor Hensel Lifting
	4.3. Deterministic Decomposition
	4.4. Probabilistic Decomposition

	5. Main Algorithms
	5.1. Deterministic Absolute Factorization Algorithm
	5.2. Probabilistic Absolute Factorization Algorithm
	5.3. Heuristic Absolute Factorization Algorithm

	6. Experiments
	Conclusion
	Appendix A. Univariate Absolute Partial Fraction Decomposition
	A.1. The Rothstein-Trager Algorithm
	A.2. The Lazard-Rioboo-Trager Algorithm

	References

