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Abstract

A new subdivision method for computing the nearest univariate gcd is described and analyzed.
It is based on an exclusion test and an inclusion test. The exclusion test in a cell exploits
Taylor expansion of the polynomial at the center of the cell. The inclusion test uses Smale’s
α-theorems to certify the existence and unicity of a solution in a cell.

Under the condition of simple roots for the distance minimization problem, we analyze the
complexity of the algorithm in terms of a condition number, which is the inverse of the distance
to the set of degenerate systems.

We report on some experimentation on representative examples to illustrate the behavior
of the algorithm.

1. Introduction

Computing an approximate gcd of two polynomials is a fundamental and difficult problem
in symbolic-numeric computation. It has been extensively studied in the Computer Algebra
community, following different strategies: [6, 22, 19, 8, 13, 11, 2, 10, 3, 4, 20, 26, 15, 14, 18,
24]. . . . The problem is usually formulated as finding a perturbation of a pair of polynomials
(f, g) within a given ball of radius ε, such that the perturbed pair (p, q) has a non-trivial exact
gcd (of highest possible degree) in this ball.

In our approach, we reformulate the problem as an optimization problem: Given the poly-
nomial pair (f, g) of a given degree, we look at the nearest polynomial pair (p, q) of the same
degree which has a non-trivial exact gcd. The ε-approximate gcd problem has a solution iff this
nearest pair with a non-trivial gcd is within a distance ε.

This paper is an extended version of the conference paper [7]. In the first section, we
present the optimization problem that we are going to solve, we state our complexity main
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result and mention the related approaches in the literature for approximate gcd computation.
In section 2, we describe the main ingredients of our subdivision method. In section 3, we
analyze its complexity using α-theory. Finally, in section 4, we report of some experimentation
to illustrate the behavior of the algorithm.

1.1. A minimization problem

As usual, we denote by Rd[z] and Cd[z] the vector spaces of univariate polynomials of degree
less or equal to d, with coefficients in R and C. We denote by f = (f0, . . . , fd)

T the coefficients

of the polynomial f(z) =
∑d

k=0 fkzk ∈ Rd[z]. The 2-norm of f is ||f ||2 =
∑d

k=0 fkf̄k.
We address the nearest gcd problem, i.e. the following minimization problem:

Problem 1.1 Given two degree d polynomials f(z) and g(z), find two degree d polynomials
p(z) and q(z) with a non trivial gcd, which are solutions of the minimization problem

min p,q∈Cd[z]

Resultantd(p,q)=0

||f − p||2 + ||g − q||2, (1)

Here Resultantd(p, q) is the resultant of p and q when they are considered as polynomials of
degree d. We recall that Resultantd(p, q) = 0 if and only if gcd(p, q) is non-trivial or deg (p) < d
and deg (q) < d. In the last case p and q have a common root at infinity, see Example 2 in
Section 4.
In our formulation of the nearest gcd problem, we look for the nearest pair (p, q) of degree at
most d with a non-trivial gcd. In Example 1 in Section 4 we will see that if deg f = 7 and
deg g = 8 then we can find p and q with degree 8. Thus the degree of p can be bigger than the
degree of f .

N.K. Karmarkar and Y.N. Lakshman in [15] reduced that problem to another minimization
problem :

Problem 1.2

minz∈P(C)
f(z)f(z) + g(z)g(z)

∑d
k=0 zkzk

. (2)

Moreover, a global minimum z0 of (1.2) is a root of a nearest gcd and determines the polynomials
p and q of (1.1) by the formulas:

p(z) = f(z) − f(z0)
∑d

k=0 z0
kzk

0

d
∑

k=0

z0
kzk

q(z) = g(z) − g(z0)
∑d

k=0 z0
kzk

0

d
∑

k=0

z0
kzk.

We observe that with the change of variables z = X + iY , the problem amounts to minimize
a homogeneous rational bivariate function

F(z) = F (X,Y ) =
N(X,Y )

D(X,Y )
.

So we focus on the resolution of this task.
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1.2. Notations

We denote by G(X,Y ) = (G1(X,Y ), G2(X,Y )) the couple of numerators of the gradient
∇F (X,Y ). We denote by Pµ = N − µD where µ ∈ R and F = N

D .

For G(X,Y ) = (G1(X,Y ), G2(X,Y )) with

Gk(X,Y ) =

deg Gk
∑

l=0

∑

i+j=l

Gk;i,jX
iY j ∈ C[X,Y ], k = 1, 2,

we define the (Bombieri) norm ‖G‖B by:

‖G‖2
B =

∑

k=1,2

deg Gk
∑

l=0

∑

i+j=l

Gk;i,jGk;i,j
i!j!

deg Gk!
.

AF := {(xi, yi) | i = 1, .., n } is the set of global minima of F (X,Y ). We assume that this
set is finite.
ZH is the set of zeroes of a polynomial function H(X,Y ) and d(x, y, ZH) is the Euclidean
distance from (x, y) ∈ R2 to ZH . The function H(X,Y ) will be specialized to Pµ(X,Y ) or to
Gi(X,Y ), i = 1, 2.
Let S or S(x, y, r) be a square centered at (x, y) and of radius r.

1.3. Our approach

We use a bisection algorithm, based on an exclusion test and an inclusion test (see below),
applied simultaneously to:

1- the polynomial Pµ(X,Y ) = N(X,Y ) − µD(X,Y )

2- the system G(X,Y ) = (G1(X,Y ), G2(X,Y )).

Our bisection algorithm will iteratively update a list of retained squares and a list of ap-
proximate global minima of F . We prove a complexity result in Section 3.
We use G1 and G2 to compute local extrema. The polynomial Pµ is used to exclude “bad”
squares. Indeed, during our algorithm µ is a candidate for the minimum of F and we set
µ = N(x0, y0)/D(x0, y0) where (x0, y0) is a center of a square. Thus, if Pµ(x, y) > 0 in a square
S then F (x, y) > µ, and we cannot find a global minimum in S.

We follow the approach initiated by S. Smale and his co-worker in a series of papers (see
e.g. [5] and the references therein) relying on their celebrated α and γ-theorems.

In section 2 we will briefly review some of these notions and recall the definitions of α, β, γ,
we also set γ(G,AF ) := max(x,y)∈AF

γ(G;x, y). After that, we provide a precise quantitative
definition for a point (x, y) to be, in our setting, an approximate global minimum of F (x, y).
Then thanks to the γ−theorem, the approximation is sufficiently good to imply that a Newton
iteration converges quadratically towards a global minimum.

To state our result on the complexity analysis of the subdivision method, we need the
following notations:

• σF := 1
min(x,y)∈AF

dF (DG(x,y),Σ) where dF is the Frobenius distance and Σ is the set of

singular matrices.

• Vǫ(G) is the tubular neighborhood of the zero set G(x, y) = 0;
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• N is the maximal number of connected components of Uǫ := Vǫ(G1) ∩ Vǫ(G2), for all
ǫ > 0;

• for all ǫ > 0, ǫK is bounding the radius of a connected component of Uǫ.

• J (G,F, r0) :=
⌈

log2(
K r0γ(G,AF )

δ0
)
⌉

where r0 > 0 and δ0 is the smallest positive root of

(13 − 3
√

17) (2u2 − 4u + 1)2 − 4u = 0.

Theorem 1.3 (Global minimum) Assume that all the elements of AF are regular points of
the system G(x, y) = 0 and are contained in some square S0 := S(x0, y0, r0).
Denote by Rj the set of retained squares at step j. Then, for j ≥ J = J (G,F, r0), all the points
of Rj are approximate global minima of F (x, y). That is to say the Newton iteration applied to
G from a point in Rj converges quadratically to a global minimum of F .

Theorem 1.4 (Complexity analysis) For the same notations and assumptions as in above
theorem, we have the following properties:

1- The number of exclusion tests is bounded by 1 + J N K2.

2- When d tends to infinity, J belongs to O
(

d log(r0) + log(σF ) + log(||G||B) + log(K) +

log(d)
)

. The number of exclusions steps belongs to O
(

N K2 (d log(r0)+log(σF )+log K+

log(||G||B))
)

.

Remark:

1. σF = 1
min(x,y)∈AF

dF (DG(x,y),Σ) is related to the condition number of the system. That is

why we keep this constant in the big O notation.

Unfortunately, we do not know how to bound this constant in terms of the degree of f and g.
The computation of this kind of bound is a difficult problem.

1. ♯AF ≤
∑

(p,q) solution of Problem 1.1

deg gcd(p, q).

Thus if Problem 1.1 has a unique solution then ♯AF ≤ deg gcd(p, q) ≤ d.

2. In this paper, in order to apply α and γ−theorems, we suppose that all the elements of
AF are regular points of the system G(x, y) = 0. We could avoid this hypothesis, instead
of using α and γ−theorems, by relying on the tools developed in [12].

1.4. Other approaches in the literature

The nearest GCD problem has been studied with different approaches and with other for-
mulations by many authors.

1.4.1. Algebraic approach via Euclid’s algorithm, resultant and subresultant

The first papers, see for example Brown [6], on the complexity of Euclid’s algorithm only
works with exact coefficients. Then the numerical case has been successively considered by
Schönhage [22], Noda and Sasaki [19], Corless, Gianni, Trager and Watt [8], Hribernig and
Stetter [13], Emiris, Galligo and Lombardi [11], Beckermann, Labahn [2]. These authors con-
sider the so-called near GCD or the ǫ-GCD problem. The singular value decomposition was
first applied to the Sylvester matrix, in [8], and later applied to the subresultant matrices, in
[10, 11] in order to get a certification when a condition (depending on the level of accuracy) is
satisfied. An efficient implementation is done in [21].
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1.4.2. Padé approximation and structured matrices approach

See the book of Bini and Pan [3] and the bibliography therein, and more recently Boito,
Bini [4].

1.4.3. Rootfinding and cluster root approach

Pan [20] and, more recently, Zeng [26] use root finding and least squares methods.

1.4.4. Optimization approach

The resolution of problem 1.2 is the main and the most “time-consuming” step of the method
propose in [15] that we aim to improve. The authors rely on techniques from Arnon-McCallum
[1] and Manocha-Demmel [16]. The second paper is based on resultant for expressing the in-
tersection of two curves and on numerical computation of eigenvalues and eigenvectors by QR
iterations. Therefore the expected running time is in O(p3) where p is the product of degrees
of two curves, hence the complexity of the algorithm is at least in O(d6).

Kaltofen and his co-workers [14] determine approximate GCDs from methods based on
structured total least square (STLN). The STLN is an iterative method of the family of Gauss-
Newton methods. The authors describe its application to the case of the Sylvester matrix
associated to the input polynomials f and g, then show its interest and efficiency by producing
the results of experiments. However, since the starting point of their Gauss-Newton like method
is not precised, the method can diverge. This is an important drawback.

Nie-Demmel-Gu [18] uses a sum of squares (SOS) technique, the resolution relies on semi
definite programming (SDP). For the nearest GCD problem, this yields linear matrix inequal-
ities (LMI) whose size s is O((d + 2)(d + 1)) whose complexity of resolution by projective
algorithm is in O(s3) [17]. So, one ends up with a complexity in O(d6).

More recently, Terui [24] uses a generalization of the gradient-projection method proposed by
Tanabe [25]. Then he obtains a fast algorithm for solving a constrained minimization problem
related to the approximate gcd problem. Unfortunately, there exists no complexity results for
this approach. Furthermore, in this method the degree of the approximate gcd is given in input.

2. The proposed bisection method

2.1. Principles

We propose a bisection method, described below, to approximate the global minima of the
function F (X,Y ) defined in the introduction. In the next section, a procedure for computing an
initial square is given ; so we suppose here that a square S(x0, y0, r0) containing all the global
minima is known.

The bisection method is based on an exclusion test and an inclusion test. An exclusion test,
denoted hereafter by E(F, S) or E+(F, S), is defined on the set of squares and returns true if
the function F has no zero in the square S or false if it might have a zero. Examples of exclusion
tests are provided in section 3.

An inclusion test I(G,S) is needed to numerically prove the existence of a local minimum:
it takes G = (G1, G2) and a square S then returns true if there exists a ball B(x∗, y∗, r∗),
containing S, which contains one zero of G, in that case it also returns (x∗, y∗, r∗), otherwise it
returns false.

Our definition of approximate minima is based on γ-theorem and α-theorem of Smale
[23], [5], [12], applied to the system G(x, y). We first introduce some quantities and the corre-
sponding classical notations:
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• β := β(G;x, y) = ||DG(x, y)−1G(x, y)||

• γ := γ(G; x, y) = supk≥2

`

1
k!

||DG(x, y)−1DkG(x, y)||
´1/(k−1)

• α := α(G;x, y) = βγ.

• γ(G;AF ) = max(x,y)∈AF
γ(G;x, y).

Smale’s γ−theorem [5] states:

Theorem 2.1 Let (x∗, y∗) be a zero of G and suppose that DG(x∗, y∗) is invertible. If

‖(x, y) − (x∗, y∗)‖γ(G, x∗, y∗) ≤ 3 −
√

7

2

then the Newton iteration from (x, y) converges quadratically to (x∗, y∗).

This leads to the following definition and quantitative results on the convergence of Newton
scheme.

Definition 2.2 The point (x, y) is an approximate global minimum of F (x, y) if

d((x, y), AF ) ≤ 3 −
√

7

2γ(G,AF )
.

Under this condition, the γ−theorem asserts that the Newton iteration from any point in the

ball B(x∗, y∗, 3−
√

7
2γ(G,AF ) ) where (x∗, y∗) ∈ AF , converges quadratically towards (x∗, y∗).

The following result gives a sufficient condition for a point to be a good starting point for the
Newton iteration. This result is called α-theorem.

Theorem 2.3 If α < (13 − 3
√

17)/4 then G has one and only one zero in the open ball
B(x, y, σ(x, y)) with

σ(x, y) =
1 + α −

√
1 − 6α + α2

4γ
≤ 2 −

√
2

2γ
.

and the Newton iteration from (x, y) converges to (x∗, y∗). Furthermore, we have

‖(x∗, y∗) − Nk
G(x, y)‖ ≤ 5 −

√
17

4γ

(1

2

)2k−1

,

where Nk
G(x, y) is the k-th iterate of the Newton iteration applied to G with starting point (x, y).

The following result gives a radius r∗ of a ball centered in (x∗, y∗) such that every point in
B(x∗, y∗, r∗) satisfies the hypothesis of the α-theorem.

Proposition 2.4 Let (x∗, y∗) be a zero of G and suppose that DG(x∗, y∗) is invertible. Let δ0

be the smallest positive root of u − 13 − 3
√

17

4
Ψ(u)2, where Ψ(u) = 2u2 − 4u + 1. If

‖(x, y) − (x∗, y∗)‖γ(G, x∗, y∗) ≤ δ0

then

α(G, x, y) ≤ 13 − 3
√

17

4
.
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Remark: 0.07 ≤ δ0 ≤ 0.08.

Proof. We use the following inequality, see [23]

α(G, x, y) ≤ u

Ψ(u)2
,

where u = ‖(x, y) − (x∗, y∗)‖γ(G, x∗, y∗). Furthermore, we have u/Ψ(u)2 ≤ (13 − 3
√

17)/4 for
u ∈ [0; δ0] and this gives the desired result.

In our complexity study we will need a bound on γ(G,AF ). The following proposition will
be useful.

Proposition 2.5 Let deg G = max(deg G1,deg G2), (x, y) ∈ S(0, 0, r0), Then

γ(G;x, y) ≤ ‖G‖B ‖DG(x, y)−1‖(deg G)2(1 + 2r2
0)

(deg G−2)/2.

Proof. We set some notations: ‖(x, y)‖1 = (1 + x2 + y2)1/2, ∆(ai) is the diagonal matrix with
coefficients ai.

By [23, Proposition 3], we have the following bound:

γ(G;x, y) ≤ C(G;x, y)deg G3/2

2‖(x, y)‖1
,

where C(G;x, y) = ‖G‖B‖DG(x, y)−1∆(deg (Gi)
1/2‖(x, y)‖deg Gi−1

1 )‖.
We use the following classical inequality ‖AB‖ ≤ ‖A‖‖B‖ to conclude.

Let a threshold ǫ > 0 be given, the output of this bisection method will be a set (eventually
empty) Z = {(x∗

i , y
∗
i , r∗i , µ∗

i )}, such that :

1- the (x∗
i , y

∗
i )’s are approximate global minima of F (x, y) and µ∗

i = F (x∗
i , y

∗
i ).

2- the ball B(x∗
i , y

∗
i , r∗i ) contains one and only one zero of G(x, y) where r∗i = σ(x∗

i , y
∗
i ).

3- If i 6= j then B(x∗
j , y

∗
j , r∗j ) ∩ B(x∗

i , y
∗
i , r∗i ) = ∅ and |µ∗

i − µ∗
j | < ǫ.

2.2. Computation of an initial square

Lemma 1 in [15] gives us a bound for the initial square:

Lemma 2.6 Let f =
∑d1

k=0 fkzk, g =
∑d2

k=0 gkzk, where fd1
6= 0 and gd2

6= 0. Let F be the
rational bivariate function corresponding to the approximate gcd problem. Let (x, y) ∈ AF then

‖(x, y)‖ ≤ 5max
(‖f‖2

f2
d1

,
‖g‖2

g2
d2

)

.

2.3. Sketch of algorithm

The algorithm consists of an initialization followed by a while loop with an internal for loop.
We call step k, the k-th step of the while loop.

Proposition 2.7 Assume there exists ǫ > 0 such that for all square S(x, y, ǫ) ⊂ S0 we have :

1- the inclusion test is true if S(x, y, ǫ) contains a zero of G.

2- the exclusion test is true if S(x, y, ǫ) does not contain a zero of G.

Then we have :

7



Algorithm 2.1: Approximate gcd

Input: F = N/D, G = (G1, G2), an initial square S0 and a threshold ǫ > 0, as described
above.

⋄ Create a set of squares L := {S0}, a set of solutions Z := ∞ and a value (the minimum
to be updated) µ := F(∞).
⋄ While L is not empty do

• Compute δ = minF (xi, yi) where the (xi, yi)’s are the centers of squares of L.

• If δ < µ then µ := δ.

• For each square S of L perform the exclusion tests E+(Pµ, S), E(G1, S) and E(G2, S).
If at least one of these exclusion tests is true then remove S from L ; else, perform an
inclusion test I(G,S).

• If it returns false then divide S in 4 equal squares ;
else an approximate local minimum (x∗, y∗) is provided, it is the unique zero of G(x, y)
in the ball B(x∗, y∗, r∗).

– If µ∗ = F (x∗, y∗) > µ + ǫ then remove S ;
else update the set Z as follows:

∗ If µ∗ = F (x∗, y∗) < µ then put µ := µ∗. For each element (x∗
i , y

∗
i , r∗i , µ∗

i ) of Z
do

· If µ < µ∗
i and |µ− µ∗

i | > ǫ then remove the solution (x∗
i , y

∗
i , r∗i , µ∗

i ) from Z ;

· If for any element (x∗
i , y

∗
i , r∗i , µ∗

i ) of Z, |µ − µ∗
i | < ǫ and (x∗, y∗) is not in

the ball B(x∗
i , y

∗
i , r∗i ) then add (x∗, y∗, r∗, µ∗) to Z.

Output: The set Z of approximate global minima of F .
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1- The algorithm stops.

2- Let µ(ǫ) be the value of µ at the end of the algorithm with input ǫ. Then limǫ→0 µ(ǫ) =
min(x,y)∈S0

F (x, y).

Proof. The point 1 holds by construction under these assumptions. For point 2, the radius
r(ǫ) of the retained squares in the last iteration decreases. Hence from the continuity of F , we
obtain limǫ→0 µ(ǫ) = min(x,y)∈S0

F (x, y).

3. Complexity analysis

3.1. Exclusion test

Let H be a polynomial in R[X,Y ] and denote by DkH(x, y) the homogeneous part of degree
k of the Taylor expansion of H at the point (x, y).

Let S(x0, y0, r0) be a square. To define an exclusion function E(H,S), we rely on the
following expression and lemma:

MH(x0, y0, r0) = |H(x0, y0)| −
∑

k≥1

||DkH(x0, y0)||
k!

rk
0 .

Lemma 3.1 If MH(x0, y0, r0) > 0 then the closed square S̄(x0, y0, r0) does not contain any
zero of the polynomial H(x, y).

Proof. The proof follows from Taylor formula and a simple inequality.
A key to analyze the complexity of the algorithm of section 2 is the following lemma, see [9].

Lemma 3.2 Let H ∈ R[X,Y ] be a polynomial of degree e, consider the associated algebraic
variety ZH = {(x, y) ∈ R2 : H(x, y) = 0}.

Let Le =
21/e − 1√

2
and mH(x, y) be the function implicitly defined by

MH(x, y,mH(x, y)) = 0.

Then mH(x, y) is related to the distance d(x, y, ZH) by the following inequalities:

Le.d(x, y, ZH) ≤ mH(x, y) ≤ d(x, y, ZH).

The exclusion tests to be used for the algorithm of section 2 are defined for a polynomial P by:

1- E(P, S) is true if MP (x, y, r) > 0,

2- E+(P, S) is true if MP (x, y, r) > 0 and P (x, y) > 0.

Since the degree of Pµ is 2d and the degree of the Gi’s is 4d−2, we get: if Pµ(x, y) > 0 then
mPµ

(x, y) ≥ L2d.d(x, y, ZPµ
) and mGi

(x, y) ≥ L4d−2.d(x, y, ZGi
).

Remark: deg Gi ≤ 4d−2 because the coefficient of the term of degree 4d−1 is 2df2
d +2dg2

d−
2df2

d − 2dg2
d = 0.

Putting these facts together, we obtain the following proposition:
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Proposition 3.3 Let H(X,Y ) = Pµ(X,Y ) or H(X,Y ) = Gi(X,Y ), i = 1, 2. Let S :=
S(x, y, r). The logical relation

E(H,S) is true means mH(x, y) > r,

so S does not contain any zero and is excluded in the bisection algorithm. Otherwise

E(H,S) is false means mH(x, y) ≤ r,

and S may contain zeros. In this case S will be divided into four squares each of them with a
radius r/2.

3.2. Inclusion test

Our inclusion test is based on Smale’s α-theory. The test is true if :

1- α(G;x, y) <
13 − 3

√
17

4
,

and

2- S(x, y, r) ⊂ B
(

x, y, σ(x, y)
)

, in other words r
√

2 < σ(x, y), see Theorem 2.3.

3.3. Proof of theorem 1.3

Consider a retained square S := S(xl, yl,
r0

2k ) at step k. We have µ := µk and Pµ(xl, yl) ≥ 0.
If E(Pµ, S) is false and E(Gi, S) is false, it means, by Proposition 3.3, that Pµ(xl, yl) = 0

or mPµ
(xl, yl) ≤

r0

2k
and mGi

(xl, yl) ≤
r0

2k
.

From Lemma 3.2, we deduce that

if Pµ(xl, yl) > 0 then L2d.d(xl, yl, ZPµ
) ≤ m(xl, yl) ≤

r0

2k
.

Hence if Pµ(xl, yl) > 0, then for each (x, y) ∈ S we have

d(x, y, ZPµ
) ≤ ||(x, y) − (xl, yl)|| + d(xl, yl, ZPµ) ≤ σk rk

where σk = (1 + 1/L2d) and rk := r0

2k . In the same way,

d(x, y, ZGi
) ≤ ||(x, y) − (xl, yl)|| + d(xl, yl, ZGi

)

≤ ωk rk, i = 1, 2.

where ωk = (1 + 1/L4d−2). For H(x, y) ∈ R[x, y] and ǫ > 0, let

Vǫ(H) = {(x, y) ∈ R2, st. ∃(u, v) ∈ C2,H(u, v) = 0, d((x, y), (u, v)) < ǫ}.

Vǫ(H) is called the tubular neighborhood of the solution set of H(x, y) = 0 at distance ε.
By the previous inequalities, if Pµ(xl, yl) > 0 then we have

S ⊂ Uk := Vσk
(Pµ) ∩ Vωk

(G1) ∩ Vωk
(G2).

Notice that AF ⊂ ∩k≥0Uk. Let κk rk be half the maximal diameter of a connected component
Uk. The area of Uk is bounded by π νk κ2

k r2
k where νk is the number of connected components

of Uk. For k big enough, this number of connected components is the number of real roots of
G1(x, y) = G2(x, y) = 0 with Pµ(x, y) > 0. We denote by N < ∞ the maximum of all the νk.
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When k tends to infinity, the connected components of Uk tend to the real roots of G1(x, y) =
G2(x, y) = 0 with Pµ(x, y) > 0 and κk tends to

√

2 (1 + cos(α)) where α is the angle between
the tangents of the curves G1(x, y) = 0 and G2(x, y) = 0, at the root. Let K bound all the
possible κk.

Let J be the first J such that K rJ ≤ δ0

γ(G,AF )
, then for k ≥ J , all the points of the

retained squares are approximated zeros of the set AF , by Proposition 2.4 and Theorem 2.3.
An upper bound for J is given in the theorem.

3.4. Proof of theorem 1.4

To compute an upper bound for the number of exclusion tests, we notice that at step k, Uk

contains the union of the kept squares (whose exclusion test is false), their number is denoted
by qk. Since the area of this union is qkr2

k and must be less or equal to the area of Uk, we get

qk ≤ π νk δ2
k ≤ πN K2.

Now, let pk be the number of excluded squares at step k. As we know the relation 4qk−1 = pk+qk

with p0 = 0, q0 = 1 holds, the number of exclusion tests until step j is bounded by

j
∑

k=0

pk + qk = 1 + 4

j−1
∑

k=0

qk ≤ 1 + j πN K2.

The last part of Theorem 1.4 comes from Proposition 2.5 which gives: for (x, y) ∈ AF ,

log γ(G;x, y) belongs to O
(

log
(

d2r
4(d−1)
0 ||G||B ||DG−1(x, y)||

) )

or to O
(

log(d) + d log(r0) +

log(||G||B) + log(σF )
)

.

4. Examples

Our algorithm have been implemented in Matlab 7 (we use an Intel Xeon 3 Ghz processor)
and we have perform some experiments to show its behavior. Currently, our algorithm is slower
than other methods (e.g. [4, 14, 24]) due to the bound on the initial square given in Lemma
2.6. Nevertheless, our algorithm is certified. In the following we give examples and timings.

4.1. Increasing the degree

We consider the following example taken from the work of D. Rupprecht [21]. In his Ph.D.
thesis, he developed a technique which allowed him to certify the degree of an approximate gcd
but only if the required precision ε belongs to some intervals. There are small gaps between
these intervals and the numerical computation of an approximate gcd is sensitive.

In our formulation of the nearest gcd problem, we look for the nearest pair (p, q) of degree
d with a non-trivial gcd.

f = (z
2

− 1.001) (z
2

+ 1.00000001) (z
3

+ 2 z
2

− 2.999999 z + 1)

= 1.000000000000000 z
7

+ 2.000000000000000 z
6

− 3.000998990000000 z
5

+0.998000020000000 z
4

− 0.998000041009990 z
3

− 2.003000010020000 z
2

+3.002999029029990 z − 1.001000010010000

g = (z
2

− 0.999)(z
2

+ 1.00000003)(z
4

+ 3z − 1.0000002)

= 1.000000000000000z
8

+ 0.001000030000000 z
6

+ 3.000000000000000 z
5

−1.999000229970000 z
4

+ 0.003000090000000 z
3

− 0.001000030200006 z
2

−2.997000089910000 z + 0.999000229770006

11



The nearest perturbed pair (p, q) with a non-trivial gcd that we compute is:

p = (0.000000001537219 + 0.000000006148875 i) z
8

+(0.999999993851125 + 0.000000001537219 i) z
7

+(1.999999998462781 − 0.000000006148875 i) z
6

+(−3.000998983851125 − 0.000000001537219 i) z
5

+(0.998000021537219 + 0.000000006148874 i) z
4

+(−0.998000047158864 + 0.000000001537219 i) z
3

+(−2.003000011557218 − 0.000000006148874 i z
2

+(3.002999035178864 − 0.000000001537219 i) z

+(−1.001000008472781 + 0.000000006148874 i)

q = (1.000000000000000 + 0.000000008719619 i) z
8

+(−0.000000008719619 − 0.000000000000000 i) z
7

+(0.001000030000000 − 0.000000008719619 i) z
6

+(3.000000008719619 + 0.000000000000000 i) z
5

+(−1.999000229970001 + 0.000000008719619 i) z
4

+(0.003000081280381 − 0.000000000000000 i) z
3

+(−0.001000030200006 − 0.000000008719619 i) z
2

+(−2.997000081190381 + 0.000000000000000 i) z

+(0.999000229770005 + 0.000000008719619 i)

The order of the perturbation is 10−8 and the degree of the corresponding gcd is 1.
Note that in this example, even if f is of degree 7, we allow a perturbation of degree 8

(which is the degree of g).

4.2. Solution at infinity

Here, we show that the global minimum can be reached at infinity. We consider:

f = z2 − 4z + 3,

g = z2 + 4z + 3.

In this situation, we have:

F (X,Y ) =
N(X,Y )

D(X,Y )
= 2

9 + 22X2 + 10Y 2 + (X2 + Y 2)2

1 + X2 + Y 2 + (X2 + Y 2)2
.

Figure 1 shows the graph of F . Notice that there are no global minima of F in C. Indeed, we
have

lim
‖(x,y)‖→∞

F (x, y) = F(∞) = 2,

N(X,Y ) − 2D(X,Y ) = 16 + 42X2 + 18Y 2 > 0.

Then the global minimum is reached at infinity.
In this situation the initial square given by Lemma 2.6 is [−130, 130]2, and our algorithm
excludes this square after 10 iterations. That is to say, the size of the smallest excluded square
is 130/210. The cpu-time in this example is 0.06 seconds.

In this situation, we have F(∞) = 2. Furthermore, with z0 = ∞ and the formula recalled
in Subsection 1.1, we obtain p = −4z+3 and q = 4z+3. Notice that deg (p) < 2 and deg (q) < 2.

Remark: We compute F(∞) in the following way: F(∞) = Fr(0), where Fr(z) = zdeg (F)F(1/z).
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Figure 1: F has no global minima in C.

4.3. Example 3

Here, we consider:

f = 9z3 − 18z2 + 3z + 1,

g = −37z3 + 63z2 − 30z + 3.

We illustrate the algorithm step by step. The smallest perturbation that we obtain is: p(z) =
9.059z3 − 17.875z2 + 3.26z + 1.544,
q(z) = −36.916z3 + 63.174z2 − 29.636z + 3.758, and the common root is z = 0.479.
Step 1. We begin in Figure 2 (a) with a big square and we divide it in four squares.

(a) (b) (c)

(d) (e) (f)

Figure 2: Subdivision steps

Step 2. As we cannot exclude any squares and all the inclusion tests are false we divide each
square in four squares (Figure 2 (b)).

During the algorithm we compute F for each center of each square. The point in the figure
corresponds to the center where F is minimum. Furthermore, the value of F at this point is
equal to the real number µ defined in our algorithm.

Step 3. In Figure 2 (c), we cannot exclude any squares and the inclusion tests are false.

Step 4. At this step, see Figure 2 (d), we can exclude a lot of squares.

Step 5. In Figure 2 (e), we see that we can exclude a lot of squares and one inclusion test is
true. So with the Newton’s method applied to G we can compute the global minima. That is
to say we apply Newton’s method with the black point as a starting point and we get the red

13



point (on the x-axis) as the global minimum.

Step 6. In this last step, we can exclude the last squares and we find the global minimum,
see Figure 2 (f).

4.4. Random examples

We have carried out the following tests:

• f and g are polynomials of degree d with random coefficients. Our results are given in
Figure 3, and cpu denotes the cpu-time needed in seconds to performs our algorithm.

• f(z) = (z − 1)f1(z) + 10−3ǫ1(z), g(z) = (z − 1)g1(z) + 10−3ǫ2(z), where f1 and f2 are
random polynomials with degree d − 1, ǫ1 and ǫ2 are random polynomials with degree
d. In these examples our algorithm gives an approximate gcd near z − 1. Our results
are given in Figure 4, and cpu denotes the cpu-time needed in seconds to performs our
algorithm.

Here random means that we use the Gaussian distribution with mean 0 and variance 1.

0 5 10 15 20 25 30
0

5

10

15

cpu

d

Figure 3: Random examples

0 5 10 15 20 25 30
0

2

4

6

8

10

12

cpu

d

Figure 4: f = (z − 1).f1 + 10−3ǫ1, g = (z − 1).g1 + 10−3ǫ2
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