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Abstract. In this article we suggest a model of computation for the cake

cutting problem. In this model the mediator can ask the same queries as in
the Robertson-Webb model but he or she can only perform algebraic operations

as in the Blum-Shub-Smale model. All existing algorithms described in the

Robertson-Webb model can be described in this new model.
We show that in this model there exist explicit couples of measures for which

no algorithm outputs an equitable fair division with connected parts.

We also show that there exist explicit set of measures for which no algorithm
in this model outputs a fair division which maximizes the utilitarian social

welfare function.

The main tool of our approach is Galois theory.

Introduction

In 1837, Pierre Wantzel has shown that there exists no general construction us-
ing only compass and straightedge which divides an angle into three equal angles.
The proof relies on algebra and field theory. The angle trisection problem can be
seen as a fair division problem: we have a portion of pizza and we want to divide
it in a fair way between three friends (by using only compass and straightedge con-
structions. . . ). Wantzel’s theorem says that this problem has no solution.

In this article, we are going to study a similar fair division problem and we are
going to use similar tools.

In the following, we consider an heterogeneous good, for example: a cake, land,
time or computer memory, represented by the interval X = [0, 1] and n players with
different points of view. We associate to each player a non-atomic probability mea-
sure µi on the interval X = [0; 1]. These measures represent the utility functions of
the player. This means that if [a, b] ⊂ X is a part of the cake then µi([a, b]) is the
value associated by the i-th player to this part of the cake. As µi are probability
measures, we have µi(X) = 1 for all i.
A division of X is a partition X = tiXi where Xi is the part given to the i-th
player. A division is simple when each Xi is an interval.

Several notions of fair division exists.
We say that a division is proportional when µi(Xi) ≥ 1/n.
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We say that a division is envy-free when for i 6= j, we have µi(Xi) ≥ µi(Xj).
We say that a division is equitable when for all i 6= j, we have µi(Xi) = µj(Xj).

We say that the division X = tiXi maximizes the utilitarian social welfare
function when

n∑
i=1

µi(Xi) ≥
n∑
i=1

µi(Yi),

for all partition X = tiYi.

The problem of fair division (theoretical existence of fair division and construc-
tion of algorithms) has been studied in several papers [Ste48, DS61, EP84, EP11,
BT95, RW97, Pik00, Tho06, Pro13, BJK13, AM16], and books about this topic,
see e.g. [RW98, BT96, Pro16, Bar05]. These results appear in the mathemat-
ics, economics, political science, artificial intelligence and computer science liter-
ature. Recently, the cake cutting problem has been studied intensively by com-
puter scientists for solving resource allocation problems in multi agents systems,
see e.g. [CDE+06, CLPP13, KPS13, BM15].

A practical problem is the computation of fair divisions. In order to describe
algorithms we thus need a model of computation. There exist two main classes
of cake cutting algorithms: discrete and continuous protocols (also called moving
knife methods). Here, we study only discrete algorithms. These kinds of algorithms
can be described thanks to the classical model introduced by Robertson and Webb
and formalized by Woeginger and Sgall in [WS07]. In this model we suppose that a
mediator interacts with the agents. The mediator asks two type of queries: either
cutting a piece with a given value, or evaluating a given piece. More precisely, the
two type of queries allowed are:

(1) evali(x, y): Ask agent i to evaluate the interval [x, y]. This means compute
µi([x, y]).

(2) cuti(x, a): Asks agent i to cut a piece of cake [x, y] such that µi([x, y]) = a.
This means: for given x and a, solve µi([x, y]) = a.

In the Robertson-Webb model the mediator can adapt the queries from the previ-
ous answers given by the players. In this model, the complexity counts the finite
number of queries necessary to get a fair division. For a rigorous description of this
model we can consult: [WS07, BN17].

The result of a query is a real number and thus the mediator has to manipulate
real numbers. There exist two possible models of computation which allows this
task.
First, we can consider computable real numbers. Roughly speaking a real number
is said to be computable if there exists a Turing machine which writes digit by
digit the (infinite) decimal expansion of this number. Unfortunately, this model of
computation is not natural in our setting because we cannot decide in this model
if a computable number is equal to 0. This means that we cannot decide if two
computable numbers are equal. Thus, with this model, the mediator cannot check
if a fair division is equitable.
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Second, we can consider the BSS model of computation. This model has been de-
veloped by Blum, Shub and Smale (BSS). It allows to study algorithms over a ring.
Roughly speaking a BSS machine has registers which can hold arbitrary elements
of the studied ring (here R), and perform exact arithmetic (+,−,×,÷) and can
branch on conditions based on exact comparisons (=, <,>,≤,≥). Furthermore,
with this theory when the ring is Z/2Z then we recover the classical theory of Tur-
ing machine. For a detailed description of this model see [BSS89, BCSS98].

In this article we are going to suppose that the mediator use a BSS machine.
We call this new model of computation the BSSRW model (Blum-Shub-Smale-
Robertson-Webb model) and we are going to prove impossibilty results.

In the fair division literature some impossibility results have been already given.
Stromquist in [Str08] has proved that there exists no algorithm giving a simple
and envy-free fair division for n ≥ 3 players. When n = 2, the classical “Cut and
Choose” algorithm gives a simple and envy-free fair division.
Cechlárová et al. have shown, in [CP12], that there exists no algorithm computing
a simple and equitable fair division for n ≥ 3 players in the Roberston-Webb model.

The strategy used in these articles is the following: they suppose that an algo-
rithm computing the desired division exists and then by an iteration process they
construct from this algorithm a set of measures giving a contradiction. Thus they
obtain a result of this kind: for all algorithms in the Roberston-Webb model there
exists a set of measures for which the desired fair division cannot be given.
It must be noticed that this approach gives for each algorithm a set of measures
leading to a contradiction. Thus the set of measures is related to the algorithm.
Moreover, the measures are not explicitly given. Therefore, we can imagine that
these sets of measure correspond to very complicated situations not appearing in
practice and that for “reasonable” sets of measures the contradiction does not occur.

Procaccia and Wang have also given an impossibility result for equitable fair
division in [PW17]. As a corollary of a theorem about a lower bound for equitable
division they deduce that there exists no algorithm giving an equitable fair division.
However, with this approach we still cannot give an explicit example of measures
such that no algorithm in the Robertson-Webb model returns an equitable division
with this input.

In the first part of this article, we are going to study simple equitable fair di-
visions. This topic has been less studied than proportional and envy-free divi-
sions. However, there exist some results showing the existence of such fair divisions
[CDP13, SHS18, Chè17]. Furthermore, if we consider a continous protocol, it is
possible to get an equitable fair division (not necessarily simple) thanks to Austin’s
moving knife procedure, see [Aus82].
Here, we are going to give explicit examples where two players cannot get an equi-
table fair division with connected parts if we use our suggested model of computa-
tion.
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Theorem 1. In the BSSRW model of computation no algorithm returns a simple
and equitable division when the measures (µ1, µ2) are given by

µ1

(
[0, x]

)
= x, µ2

(
[0, x]

)
= x5.

The strategy used to prove this theorem is the following: We are going to show
that if there exists an equitable and simple division X = [0, t] t [t, 1] then the final
cutpoint t must satisfy a polynomial equation. Then, with elementary field theory,
we can show that t cannot be computed with the BSSRW model.

Now, if we use Abel’s impossibility theorem and Galois’ theory showing that
some polynomials are not solved by radicals, then we obtain other examples as
stated in the next theorem:

Theorem 2. In the BSSRW model of computation there exist measures (µ1, µ2)
such that no algorithm returns a simple and equitable division for these measures.
Furthermore, we can take (µ1, µ2) in the following way:

µ1

(
[0, x]

)
= x, µ2

(
[0, x]

)
= xd

where

• d ≥ 5 is even,
• or d ≥ 5 is odd with d 6≡ 2 [3],
• or d ≥ 5 is prime and d ≡ 2 [3].

Thus, when we have two players, we can give easy and explicit couples of mea-
sures for which no algorithm in the BSSRW model gives a simple and equitable fair
division.

In a second part, we show that in the BSSRW model we cannot obtain a fair
division which maximizes the utilitarian social welfare function. In this last situa-
tion, we will consider n players and we will not suppose the division X = tiXi to
be simple.

Theorem 3. In the BSSRW model of computation there exists measures µ1, µ2, . . . , µn
such that no algorithm returns a division which maximizes the utilitarian social wel-
fare function.
Furthermore, we can take µ1, µ2, . . . , µn in the following way:

µ1([0, x]) = · · · = µn−1([0, x]) = x, µn([0, x]) = xp

where p ≥ 3 is a prime number.

Now, in order to state our results, we introduce our model of computation.

1. The BSSRW model

In the Robertson-Webb model of computation the computational power of the
mediator is not specified. It is not mentioned what kind of computations the me-
diator can perform with the results of the queries. Furthermore, the number of
elementary operations done by the mediator (equality and inequality tests and
arithmetic operations +,−,×,÷) is not taken into account in the complexity. This
point has been discussed in [Chè18].
Here, we suppose as in the classical model that the mediator can use the cuti and
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evali queries. However, we also suppose that the mediator can only perform equal-
ity and inequality tests and the usual algebraic operations: +,−,×,÷ on the results
of queries. We also suppose that the mediator can use freely the rational numbers.
This means that the mediator uses a Blum-Shub-Smale machine.

These assumptions are not restrictive. Indeed, no known algorithm uses the
computation of a logarithm or of an exponential by the mediator or more generally
the computation of a transcendental function.
Furthermore, when the mediator needs a constant during the algorithm this con-
stant is always a rational number. Indeed, in practice the mediator never asks a
query of the form cuti(0,

e
4µi(X)), where e = 2, 718 . . . is Napier’s constant. Queries

have the form cuti
(
0, µi(X)

n

)
or cuti

(
0, pqµi(X)

)
, where p, q, n are integers.

Therefore, if we suppose that the answer to the first three queries are denoted
by α1, α2, α3, then in this new model, the fourth query is of the form cuti(β1, β2) or
evali(β1, β1) where β1, β2 ∈ Q(α1, α2, α3). This means that β1 and β2 are rational
expressions in terms of α1, α2, α3.

The algebraic assumption is not restrictive and to author’s knowledge all al-
gorithms written in the classical Robertson-Webb model can be written in this
Blum-Shub-Smale-Robertson-Webb model (BSSRW model). However, these pre-
cisions are important for our study. Indeed, if the algorithm uses k queries with
answers α1, . . . , αk for computing a fair division, then the cutpoints used in the
output of the algorithm must belong to Q(α1, α2, . . . , αk). This gives an algebraic
condition for the final cutpoints. Using this algebraic condition, we can prove our
impossibility theorems.

Notations and elementary results. For given measures µ1, µ2, . . . , µn we denote
by fi, i = 1, . . . , n the function

fi(x) = µi
(
[0, x]).

Let αj be the result of the j-th query, then we set

Kj = Q(α1, . . . , αj).

We thus have Kj = Kj−1(αj) and K0 = Q.

We recall that when a field F is a subfield of a field K then we say that we have a
field extension and this is denoted by K/F. Furthermore, the dimension of K seen
as a F-vector space is called the degree of the extension and is denoted by [K : F].
When the degree is finite we say that the extension is finite. Moreover, when we
have the inclusion F ⊂ K ⊂ L, this gives two extensions L/K and K/F. If the degree
of these two extensions are finite then the extension L/F is also finite and we have
the following equality: [L : F] = [L : K][K : F], see e.g. [Tig01, Lemma 15.3].
Furthermore, we recall that if α is a root of an irreducible polynomial in K[T ] with
degree d then [K(α) : K] = d, see [Tig01, Proposition 12.15].

Now, we recall some classical results which will be useful in our proofs.
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Lemma 4. Let p be a prime number and let b be an element of some field F, which
is not a p-th power in F.
The polynomial T p − b is irreducible over F.

Proof. For a proof see [Tig01, Lemma 13.9]. �

Lemma 5. If f1(x) = · · · = fn−1(x) = x, and fn(x) = xp with p ≥ 3 a prime
number then the degree of the field extension Kj/Kj−1 is equal to p or 1.

Proof. By definition we have Kj = Kj−1(αj).
Two situations appear:
First, αj = evali(x, y), where x, y ∈ Kj−1.
As, eval1(x, y) = · · · = evaln−1(x, y) = y − x and eval2(x, y) = yp − xp, we deduce
that in this case αj ∈ Kj−1. Thus Kj = Kj−1 and the degree of the extension is
equal to one.
Second, αj = cuti(x, a), where x, a ∈ Kj−1.
If i = 1, . . . , n − 1 then αj is the solution of αj − x = a then αj ∈ Kj−1 and the
degree of the field extension is equal to one.
If i = n then αj is the solution of αpj − xp = a.
If this equation has a solution in Kj−1, this means αj ∈ Kj−1 and the degree of
Kj/Kj − 1 is equal to one.
If the equation αpj −xp = a has no solution in Kj−1, then a+xp is not a p-th power

in Kj−1. Thus by Lemma 4 the polynomial T p − xp − a ∈ Kj−1[T ] is irreducible
over Kj−1. In this last case, the degree of the extension Kj/Kj−1 is equal to p, see
[Tig01, Proposition 12.15]. �

2. Impossible equitable fair divisions

2.1. Proof of Theorem 1. The idea used to prove our theorems is the following:
If there exists a simple and equitable fair division X = [0, t] t [t, 1], then we have

µ1

(
[0, t]

)
= µ2

(
[t, 1]

)
or µ2

(
[0, t]

)
= µ1

(
[t, 1]

)
.

This gives
f1(t) = 1− f2(t) or f2(t) = 1− f1(t).

These two equations are equivalent to the following one:

(E) f1(t) + f2(t)− 1 = 0.

This equation gives an algebraic condition on t which cannot be satisfied when we
use the BSSRW model. The following proof explains why.

Proof of Theorem 1. If an algorithm in the algebraic Robertson-Webb model com-
putes an equitable and simple fair division in k steps then the final cutpoint t
belongs to Kk = Q(α1, . . . , αk). We have thus the inclusion Q ⊂ Q(t) ⊂ Kk.
As t satisfies the equation (E) we have here

t5 + t− 1 = 0.

We can factorize this expression and we obtain:

t5 + t− 1 = (t2 − t+ 1)(t3 + t2 − 1) = 0.

As the polynomial T 2 − T + 1 has no real roots we deduce that we have

t3 + t2 − 1 = 0.
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Furthermore, the polynomial T 3 + T 2 − 1 is irreducible in Q[T ]. Indeed, it suffices
to remark that T 3 +T 2−1 has no rational roots. This a consequence of the rational
roots theorem. In our situation, this theorem says that if T 3 +T 2−1 has a rational
root then it must be ±1. Thus T 3 +T − 1 has no rational root and this polynomial
is irreducible over Q.

We deduce then

[Q(t) : Q] = 3.

However, by Lemma 5 with n = 2, we have

[Kk : Q] = 5l,

with l ≤ k. Therefore, the equality

5l = [Kk : Q] = [Kk : Q(t)][Q(t) : Q] = [Kk : Q(t)]× 3

is impossible and this concludes the proof. �

Remark 6. We can remark that with the measures given in Theorem 1 even if the
mediator can compute square roots then we still have an impossibility result.
Indeed, if the mediator use a square root after the j-th query then this means that
during the algorithm the mediator uses a number α =

√
β, where β ∈ Kj . Then,

we must consider some extensions K′j = Kj(α) where α2 = β ∈ Kj . Therefore,
the degree of some extensions Kj/Kj−1 can be equal to two. Thus, in the previous
proof the degree [Kk : Q] has the following form [Kk : Q] = 2m5l and the conclusion
is still valid.

2.2. Proof of Theorem 2. In order to prove Theorem 2, we need some tools.

Lemma 7. If fi(x) = xei , for i = 1, 2 then for all j ≥ 1, Kj = Kj−1 or Kj is a
radical extension of Kj−1.

Roughly speaking, this lemma says that the field Kj is of the following form:
Kj−1( n

√
α), where n is an integer and α ∈ Kj−1.

Proof. If the j-th query is of the form evali
(
[x, y]

)
with x, y ∈ Kj−1 then evali

(
[x, y]

)
is equal to yei − xei . Thus the result to this query αj = yei − xei ∈ Kj−1. In this
situation we have then Kj := Kj−1.
If the j-th query is of the form cuti

(
x, a
)

with x, a ∈ Kj−1 then the result αj to
this query is the unique solution in [0, 1] of the following equation:

αeij − x
ei = a.

This implies αj = ei
√
a+ xei and Kj := Kj−1( ei

√
a+ xei).

The extension Kj/Kj−1 is thus a radical extension.
�

As Q ⊂ K1 ⊂ · · · ⊂ Kk we have by definition of a radical extension, see [Tig01,
Chapter 13], the following corollary:

Corollary 8. For all j ≥ 1, the extension Kj/Q is radical.

Now, we recall a result about the irreducibility and the Galois group of certain
trinomials.
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Proposition 9 (Selmer [Sel56]). The polynomials T d − T − 1 are irreducible in
Q[T ] for all d.
The polynomials T d + T + 1 are irreducible in Q[T ] for d 6≡ 2 [3], but have a factor
T 2 + T + 1 when d ≡ 2 [3]. In the latter case, T d + T + 1 has another factor which
is irreducible.

Proposition 10 (Osada [Osa87]). Let f(T ) = T d +aT + b ∈ Z[T ], where a = a0c
d

and b = b0c
d for some integer c. Then the Galois group over Q of this polynomial

is isomorphic to the symmetric group Sd if the following conditions are satisfied:

(1) f(T ) is irreducible over Q,
(2) gcd

(
a0c(d− 1), db0

)
= 1.

These propositions allow us to show the following lemma.

Lemma 11. If d is even or if d ≥ 5 is odd with d 6≡ 2[3], then the Galois group
over Q of T d + T − 1 is isomorphic to the symmetric group Sd.
If d ≥ 5 is prime and d ≡ 2[3] then T d + T − 1 is reducible over Q: it has an
irreducible factor with degree 2 and another one with degree d− 2.

Proof. When d is even, the change of variables Y = −T gives

T d + T − 1 = (−T )d − (−T )− 1 = Y d − Y − 1.

We deduce that T d + T − 1 is irreducible since, by Proposition 9, Y d − Y − 1 is
irreducible.
When d ≥ 5 is odd with d 6≡ 2 [3], the change of variables Y = −T gives

T d + T − 1 = −(−T )d − (−T )− 1 = −Y d − Y − 1 = −(Y d + Y + 1).

As before, thanks to Proposition 9, we deduce that T d + T − 1 is irreducible since
Y d + Y + 1 is irreducible.

Therefore, in the two previous cases T d + T − 1 is irreducible over Q.
Proposition 10 with a0 = c = 1 and b = −1 entails in these situations that the
Galois group of T d + T − 1 is isomorphic to Sd.

When d ≥ 5 is prime and d ≡ 2[3], the change of variables Y = −T gives as
before T d + T − 1 = −(Y d + Y + 1) and Proposition 9 gives the desired result. �

Now, we can prove Theorem 2.

Proof of Theorem 2. We suppose that there exists an algorithm in the BSSRW
model computing an equitable and simple fair division X = [0, t] ∪ [t, 1]. Then, t
must satisfy the equation (E). Here, this equation is:

td + t− 1 = 0.

First, we suppose that d satisfies the hypothesis of one of the first two items.

As t must belong to Kk and, by Corollary 8, Kk is a radical extension of Q, we
deduce that t has a radical expression over Q. Thus as the polynomial T d+T −1 is
irreducible then it can be solved by radicals over Q, see [Tig01, Proposition 14.33].
However, by Lemma 11, the Galois group of T d +T − 1 is isomorphic to Sd . Then
Galois’ theory implies that this polynomial cannot be solved by radicals over Q,
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see [Tig01, Chapter 14]. This gives the desired contradiction.

Now, we suppose that d ≥ 5 is prime and d ≡ 2 [3].
In this case, the proof is a generalization of the proof of Theorem 1.

By Lemma 11, the polynomial T d + T − 1 has an irreducible factor with degree
2 and another one with degree d− 2. This gives

[Q(t) : Q] = 2 or [Q(t) : Q] = d− 2.

Furthermore, thanks to Lemma 5 we have

[Kk : Q] = dl,

where l ∈ N.
The equality

[Kk : Q] = [Kk : Q(t)][Q(t) : Q]

is then impossible since d is prime. This concludes the proof. �

3. Impossibility to maximize the social welfare function

Theorem 3. In the BSSRW model of computation there exists measures µ1, µ2, . . . , µn
such that no algorithm returns a division which maximizes the utilitarian social wel-
fare function.
Furthermore, we can take µ1, µ2, . . . , µn in the following way:

µ1([0, x]) = · · · = µn−1([0, x]) = x, µn([0, x]) = xp

where p ≥ 3 is a prime number.

It must be noticed that the division is not supposed to be simple.

The previous theorem deals with a problem involving an inequality about the
utilitarian social welfare function. Our strategy will be to reduce this problem to a
problem involving an equation.
In general, fair division problems are stated with inequalities, see e.g. envy-free
division and proportional division. We can always reduce these problems to prob-
lems involving equalities. For example, the condition µi(Xi) ≥ 1/n becomes
µi(Xi) = 1/n + e2, where e ∈ R. However, with this method we introduce new
variables and the problem do not become necessarily easier with these equalities.

Proof. Let X = tni=1Xi be a division of X constructed with m cuts.
This means that each Xi can be written in the following way Xi = tj∈Ii [xj , xj+1],
and we have m different xj : x1 ≤ x2 ≤ · · · ≤ xm.

The value of the utilitarian social welfare function associated to this division is

F(x1, . . . , xm) =

n−1∑
i=1

∑
j∈Ii

(xj+1 − xj) +
∑
j∈In

(xpj+1 − x
p
j ).

Now, we consider an index j0 ∈ In.
We remark that

F(x1, . . . , xm) = g(x1, . . . , xj0−1, xj0+1, . . . , xm) + xj0 − x
p
j0
,
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where g is a function independent of xj0 .
If this division maximizes the social welfare function then we must have

∂xj0
F(x1, . . . , xm) = 1− pxp−1

j0
= 0.

Then xj0 = p−1
√

1/p. As p ≥ 3 is a prime number we deduce that xj0 6∈ Q.
Furthermore, as xj0 is a root of the polynomial pT p−1 − 1 we get

1 < [Q(xj0) : Q] < p.

Now, suppose that an algorithm in the BSSRW model computes in k steps a division
which maximizes the utilitarian social welfare function. Then, xj0 ∈ Kk. However,
by Lemma 5, we have

[Kk : Q] = pl,

with l ≤ k. Therefore, the equality

[Kk : Q] = [Kk : Q(xj0)][Q(xj0) : Q]

is impossible since p is prime. This concludes the proof. �
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