
SEMI-CONTINUITY OF SIEGEL DISKS UNDER PARABOLIC

IMPLOSION

ARNAUD CHÉRITAT

Abstract. We transfer the lower semi-continuity of Siegel disks with fixed
Brjuno type rotation numbers to geometric limits. Here, we restrict to Lavaurs
maps associated to quadratic polynomials with a parabolic fixed point.

Contents

1. Introduction 1
2. Statement 1
3. Tools of the proof 3
3.1. Semi-continuity of Siegel disks 3
3.2. Parabolic implosion 3
4. Proof 6
4.1. Defining perturbed horn maps 6
4.2. Transferring the semi-continuity 9
References 9

1. Introduction

We will prove here what was called hypothesis 4 in [C]. There is no breakthrough
here. The essential difficulty resides in getting a correct definition of perturbed horn
maps, which we need to tend to the extended horn map of the limit parabolic point.

2. Statement

Let

Pθ(z) = ei2πθz + z2.

The map Pp/q with p/q irreducible and q > 0 has a parabolic point at z = 0. The
theory of parabolic implosion associates to this two families of (related) maps: the
horn maps h, living in the cylinder and the Lavaurs maps g, living in the dynamical
plane of Pp/q. Both depend on a parameter σ ∈ C called the phase. Let us choose
the phase such that the virtual multiplier of h at one end of the cylinder is equal
to ei2πθ, with θ a Brjuno number:

θ ∈ B.

To determine which end of the cylinder we will choose, we need to introduce a few
definitions. Let us expand the p/q in continued fraction:

p

q
= a0 +

1

a1 +
1

.. . +
1

am
1
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with ai ∈ N∗, which we more concisely write p/q = [a0, a1, . . . , am]. Let θ ∈ B and

θn = a0 +
1

.. . +
1

am +
1

n + θ

Let us recall that p/q has two such expansions, one of the form [a0, . . . , ak] with
ak ≥ 2 and one of the form [a0, . . . , ak − 1, 1]. In one case, m = k, in the other case
m = k + 1. We have

θn −→
p

q
,

sign
(
θn −

p

q

)
= (−1)m.

The end of the cylinder we consider in the upper end if θn > p/q and the lower end
of θn < p/q.

Figure 1: Let θn = [0, 2, 2, n + θ] with θ =
√

5−1
2 , the first three images show the

Siegel disk of Pθn
for n = 10, 500, 10000, and the last is the virtual Siegel disk of

P2/5 they tend to. Here θn > p/q.

Theorem. For all compact subset C of the virtual Siegel disk, ∃N such that ∀n ≥
N , C is contained in the Siegel disk of Pθn

.

Remark. The theorem extends to a more general setting than quadratic polyno-
mials.
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3. Tools of the proof

3.1. Semi-continuity of Siegel disks. The following theorem is due to E. Risler,
it is a corollary of [R]. I wrote a specific proof in [C]. Let Sθ be the set of analytic
maps f : D → C fixing 0 with multiplier ei2πθ (we do not assume injectivity).
The Siegel disk ∆(f) is the maximal subset of D containing 0 and on which f is
conjugate to a rotation. Let

Rθ(z) = ei2πθz.

Theorem 1. ∀θ ∈ B, ∀ε > 0, ∃η > 0 such that if f ∈ Sθ and ‖f − Rθ‖sup < η
then ∆(f) ⊃ D(0, 1− ε). (For all Brjuno number, all maps in Sα sufficiently close
to the rotation have a Siegel disk containing any given compact subset of D.)

3.2. Parabolic implosion. 1

For all n big enough, there are q fixed points z1, . . . , zq of P q
θn

that tend to 0 as
n −→ +∞. We have

zq
i ∼

n→+∞

(
θn −

p

q

)
c

for some constant c ∈ C∗, and moreover there is exactly one point zi close to each
of the q-th roots of (θn − p

q )c. Thus they tend to 0 asymptotically to q equally

spaced axes. We can label the axes with the symbols 1 to q and label the q fixed
points according to the axis they are close to. We will focus our attention on one
of them, let us say z1. Let

p(z) = z/|z| = ei arg(z).

0

z1

z2

z3

z4

z5

0

z1

P−
n

P+
n

In

Figure 2: The fixed points and the petal Pn.

We will work on a small ball B(0, r), where r will be fixed later. Let us consider
the map pown : z 7→ (z/p(z1))

q defined on the sector “ arg(z/zi) ∈] − π
q , π

q [” (so

that pown is injective). Let us consider the two biggest open disks whose boundary
passes by 0, 1 and that are contained in the image of B(0, r) ∩ S by pown, i.e. in
B(0, rq)\]−∞, 0]. Let Pn be the preimage by pown of the union of these two disks
(see the picture). This is the petal associated to z1. Let us cut the union of two
disks by the real line. It corresponds to a cut In = [0, z1] of Pn. If θn > p/q, we

1The theory of parabolic implosion (perturbation of parabolic points leading to geometric
limits) has been developed by several authors, among which (alphabetical order) A. Douady,
A. Epstein, R. Oudkerk, P. Lavaurs, M. Shishikura, and is still under development. Here we simply
state the results that will be useful for our proof, after introducing the necessary definitions. We
do not pretend to give an introduction to the topic.
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will call P+
n the preimage of the part above the real line, and P−

n the other one. If
θn < p/q this will be the other way round.

Let ζn : Pn → C be defined by

ζn(z) =
−1

i2πq2(θn−p/q)
log

(
1 − (z1/z)q

)
.

The map 1− z 7→ (z1/z)q sends Pn to a sector centered on 0, on which a branch of
log is chosen. The map ζn is univalent and sends Pn to a vertical band, mapping
0 to the upper end and z1 to the lower end if θn > p/q and the other way round
otherwise.

Figure 3: The petal (rotated), its image under the map z 7→ 1 − z1

zq , and its image
under ζn. The grid and the yellow parts correspond to each other. In the middle
image, the yellow boxes are close to the point z = 1 which is marked by a cross.

Let α1 be the argument of the axis z1 is close to. Let pow : z 7→ (z/eiα1)q be
defined on the sector “ arg(z/eiα1) ∈] − π

q , π
q [”. Let P be the preimage by pow of

the union of the two biggest disks tangent to R at 0 and contained in B(0, rq) (these
are the limits of the previous disks). Then every compact subset of P is eventually
contained in Pn. Let P+ and P− be the analogs of P+

n and P−
n . Then, provided r

is small enough, P+ is a repelling petal and P− is an attracting petal for Pp/q .

Lemma 1. There exist k+, k− ∈ Z (with k− − k+ = (−1)m) such that

ζn(z) +
k+

q2(θn − p/q)
−→

c

i2πq2zq

on every compact subset of P+ and

ζn(z) +
k−

q2(θn − p/q)
−→

c

i2πq2zq

on every compact subset of P−.
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Figure 4: The limit petal P+ ∪ P− (rotated), decorated by the preimage of the
orthogonal grid by the limit map z 7→ c

i2πq2zq .

Let π : C → C/Z be the quotient map. Then ∃r0 > 0, ∀r < r0, ∃N ∈ N, ∀n ≥ N ,
the following two theorems hold.

A

f(A)

f2(A)

f3(A) f4(A)

A = Pn

f = Pθn

Figure 5: This picture illustrates the domain Pn and its first 4 iterates by Pθn
.

Notice the overlaps.

Theorem 2. 2

(1) The following sets are pairwise disjoint: P−
n , Pθn

(P−
n ), . . . , P q−1

θn

(P−
n ).

(2) The closures of two of them intersect only at 0.

(3) The sames hold for P−, . . . , P q−1
p/q (P−).

(4) If z ∈ P+
n and 0 < k < q then P k

θn
(z) /∈ In.

2Points (1) through (5) are elementary consequence of Pθn
being close to Rθn

near z = 0.

Points (6) through (8) are consequences of the following estimate:
˛̨
˛ζn ◦P

q

θn
(z)◦ζ−1

n − (z +1)
˛̨
˛ ≤ ε

for r small enough (and N big enough, depending on r). Point (9) is a consequence of the same
estimate for an other branch of ζn.



6 ARNAUD CHÉRITAT

(5) ∃r′ < r (r′ depends on n) such that every point in B(0, r′) eventually falls
in P−

n under iteration of Pθn
.

(6) For all z ∈ ∂P−
n \ In, P q

θn

(z) ∈ P−
n .

(7) Every point of P−
n is eventually mapped to P+

n under iteration of P q
θn

.

(8) If z ∈ P−
n ∩ P k

θn
(P+

n ) with 0 ≤ k < q then P q
θn

(z) ∈ P−
n .

(9) Note ]a, b[×R = ζn(Pn). There exists M > 0 (which depends on r but not on
n) such that every point z ∈ P+

n with Im(ζn(z)) > M and Re(ζn(z)) > b−2
is eventually mapped to P−

n under iteration of Pθn
.

Theorem 3 (perturbed Fatou coordinates).

(10) There exists a univalent function Φn : Pn → C such that Φn ◦P q
θn

= T1 ◦Φn

holds on Pn ∩ (P q
θn

)−1(Pn).

(11) The derivative of Φn ◦ ζ−1
n stays in B(1, 1/4).

(12) The image of P+
n under Φn is surjectively mapped to C/Z by π. The same

holds for P−
n .

(13) If both z and z + n belong to Φn(P+
n ), then z + k ∈ Φn(P+

n ) for 0 < k < n.
The same holds for P−

n .
(14) sign(θn − p/q). Im(Φn(z)) −→ +∞ ⇐⇒ z −→ 0

(15) Φn(z) =
z−→0

log z

i2π(qθn − p)
+ cst+o(1).

(16) For any given a ∈ P+ (resp. P−), Φn(z)−Φn(a) tends uniformly on every
compact subset of P+ (resp. P−) to a Fatou coordinate for Pp/q.

Points (12), (13) and (14) follow from (11).
Point (16) motivates the following definition: we fix any a+ ∈ P+ and a− ∈ P−,

and define Φ+ : P+ → C to be the limit of Φn(z) − Φn(a+) for z ∈ P+ and
analogously for Φ− : P− → C.

4. Proof

4.1. Defining perturbed horn maps. This definition requires some care.
We first define a function k on C:

k(z) = inf
{
k ∈ N

∣∣ P k
θn

(z) ∈ P−
n

}
∈ N ∪ {+∞}.

Since P−
n is open, k is upper semi-continuous.

Then we let

U =
{
z ∈ P+

n

∣∣ k(z) < +∞ and P k
θn

(z) /∈ In for 0 ≤ k ≤ k(z)
}
.

The set U is open and U ⊂ P+.

From (4) and (8), we get:

Lemma 2. If z ∈ P+
n and P q

θn

(z) ∈ P+
n then z ∈ U ⇐⇒ P q

θn

(z) ∈ U .

This, together with (10) and (13) implies that Φn(U) = Φn(P+
n ) ∩ π−1(Ũ) for

some subset Ũ of C/Z.
We set

def(hn) = Ũ

which is an open subset of C/Z. For w ∈ Ũ we let w′ ∈ Φn(P+
n ) be any represen-

tative of w. Then w′ = Φn(z) for a unique z ∈ U and we let

hn(w) = Φn(P
k(z)
θn

(z)) mod Z ∈ C/Z.

Claim: hn(w) is independent of the representative w′ of w we chose.
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Proof. Indeed, if w1 = Φn(z1) and w2 = w1 + m = Φn(z2) are two representatives,

then (13) and (10) imply P jq
θn

(z1) ∈ P+
n for 0 ≤ j ≤ m and z2 = Pmq

θn
(z1). Let

uk = P k
θn

(z1).

Case 1: k(z1) ≥ mq. Then k(z2) = k(z1) − mq and thus P
k(z2)
θn

(z2) = P
k(z1)
θn

(z1).

Case 2: k(z1) ≤ mq. Then point (8) implies uk(z1)+jq ∈ P−
n for all j such that

k(z1) ≤ k(z1) + jq < mq + q. By (1), these are the only values of k such that
k(z1) ≤ k < mq + q and uk ∈ P−

n . In particular, k(z2) = b where b ∈ [0, q[
is the remainder of the Euclidean division k(z1) = aq + b. By point (10), we

have Φn(uk(z1)+jq) = j + Φn(uk(z1)). Whence Φn(P
k(z2)
θn

(z2)) = Φn(umq+b) =

m − a + Φn(uk(z1)) = m − a + Φn(P
k(z1)
θn

(z1)). �

Claim. The map hn is analytic.

Proof. It is obvious for points w ∈ Ũ such that k is locally constant at z. If
w0 = π(Φn(z0)) with z0 ∈ U is such that k is not locally constant at z0, it means

that there is k′ < k(z0) such that P k′

θn
(z0) ∈ ∂P−

n . Since In must be avoided, point

(6) says P k′+q
θn

(z0) ∈ P−
n . Now by (1), k(z0) = k′ + q. In particular, k′ is unique.

By (2), one concludes that in a neighborhood V of z0, k(z) ∈ {k′, k′ + q}. We can

choose V small enough so that P k′+q
θn

(V ) ⊂ P−
n . For z ∈ V so that k(z) = k′, (10)

implies Φn(P k′+q
θn

(z)) = Φn(P k′

θn
(z)) mod Z. Thus hn(w) = Φn(P k′+q

θn
(z)) mod Z

holds on a neighborhood of w0. �

By (7), we get:

Proposition 1. ∀z ∈ Pn, if Φn(z) ∈ def(hn) mod Z then ∃k ∈ N such that3 k > 0,
z′ = P k

θn
(z) ∈ P+

n and Φn(z′) = hn(Φn(z)) mod Z.

Corollary 1. ∀z ∈ Pn, if Φn(z) mod Z has an infinite orbit under def(hn), then
the orbit of z under Pθn

passes an infinite number of times in P+
n .

By (12), (14) and (5), the set def(hn) is a neighborhood of ν, and hn has a

continuous (and thus analytic) extension ĥn fixing it.4

Let ν be the upper end if θn > p/q and the lower end if θn < p/q.

Proposition 2 (folk.). The multiplier of ĥn at the end ν is equal to

exp
(
(−1)m+1i2πθ

)
.

This is a well known corollary of point (15), of a local combinatorial study, and of
the theory of continued fractions.

The (unperturbed) horn map h can be defined as follows: given w ∈ C/Z let
w′ ∈ Φ+(P+) be any representative of w in C and z = Φ−1

+ (w′). If there is a k ∈ N

such that z′ = P k
θn

(z) ∈ P−, then we define

h(w) = Φ−(z′) mod Z.

Otherwise we decide that z /∈ def(h). Analogously, the map h is well defined, the
set def(h) is open, h is analytic, def(h) is a neighborhood of ν, and h has an analytic

continuation ĥ fixing it (cf. [DH], [E], [S], etc. . . ).

Lemma 3.

T−Φn(a−) ◦ ĥn ◦ TΦn(a+) −→
n→+∞

ĥ

in the sense described above.

3k > 0 is an important point
4We consider the cylinder completed by its two ends as a Riemann surface isomorphic to the

Riemann sphere (via the map (z mod Z) 7→ ei2πz).
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Proof. Let w ∈ def(ĥ).

Case 1: w 6= ν. By definition and (16), T−Φn(a+) ◦ Φn −→ Φ+ uniformly on

every compact subsets of P+. Thus Φ−1
n ◦ TΦn(a+) −→ Φ−1

+ uniformly on every
compact subsets of Φ+(P+). If z ∈ P+ is eventually mapped to P− under iteration
of Pp/q, say P k

p/q(z) ∈ P−, then there is a neighborhood V of z and N such that

∀n ≥ N , P k
θn

(V ) ⊂ P−
n . By taking a slightly smaller V , we may assume also that

0 /∈ P k
p/q(V ). Since In −→ {0} as n −→ +∞, we know that for all n big enough,

V avoids In before getting in P−
n under Pθn

(otherwise, P k
p/q(V ) would contain

0). Therefore, there is a neighborhood of w that is contained in def(hn) for n big
enough. Now, either z does not fall in ∂P− before getting in P−, in which case
there is a neighborhood V ′ ⊂ V of z and N ′ ≥ N such that ∀n ≥ N ′, ∀z′ ∈ V ′,
kn(z′) = k(z). Or ∃k′ < k(z) such that P k′

p/q(z) ∈ ∂P−. Since P− is a petal, we

know by (3) that k(z) = k′ + q, whence k′ is unique. This implies, by (3) and (10)

that we have ĥn(w) = Φn(P k′+q
θn

(z)) mod Z which holds for all n big enough on a
neighborhood of w independent of n. In both cases, the convergence then follows
from the definitions and from T−Φn(a−) ◦ Φn −→ Φ−.

Case 2: w = ν. We will prove that there is a neighborhood V of ν that is eventually

contained in def(ĥn). Then, using case 1 on a circle A ⊂ V around ν, we deduce that

the limit hn −→ h must be uniform on A. But since ĥn(ν) = ν, the limit ĥn −→ ĥ
must be uniform above A for the spherical metrics, which ends the proof of case 2.
For the existence of V , consider the set U of points in the band ζn(Pn) =]a, b[×R

whose real part are ≥ b − 2 and imaginary part are ≥ M with M given by (9).
Since ζn converges on compact subsets of P+ (cf. lemma 1), it converges at a+, and
this implies by (11) that the sets π ◦ T−Φn(a+) ◦ Φn ◦ ζ−1

n (U) contain a common5

neighborhood of ν in C/Z. Let us call it V . By (9), V ⊂ def(ĥn).
�

Since ĥ has a non zero multiplier at the end ν, we have ĥ(z)−z −→ τ as z −→ ν.
Together with proposition 2 this gives:

Φn(a+) − θ − Φn(a−) −→
n→+∞

τ

Thus we can rephrase lemma 3 in a more convenient way:

T−Φn(a+) ◦ ĥn ◦ TΦn(a+) −→
n→+∞

T−θ−τ ◦ ĥ.

In other words

f̂n −→
n→+∞

f̂

with

f̂n = T−Φn(a+) ◦ ĥn ◦ TΦn(a+)

and

f̂ = T−θ−τ ◦ ĥ,

and f̂ and f̂n have the same multiplier at ∞ (the one given by proposition 2).
Since this number is a Brjuno number, we can apply the semi-continuity result
(theorem 1) and deduce from this:

Lemma 4. Every compact subset of ∆(f̂n) is eventually contained in ∆(f̂). Note
that we include the end ν in these Siegel disks, so in particular, there is a neigh-

borhood of ν that is eventually contained in ∆(f̂n).

5i.e. independent of n
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4.2. Transferring the semi-continuity. Let us define the shorthands ∆(f) =

π−1(∆(f̂ )), and ∆(fn) = π−1(∆(f̂n)). The virtual Siegel disk is defined6 as

∆∞ =
⋃

k∈N

P k
p/q(Φ

−1
+ (∆(f))).

Let ∆n be the (usual) Siegel disk of Pθn
.7 By lemma 4, ∃y0 > 0, ∃N ∈ N, such

that ∀n ≥ N , ∆(fn) contains “ Im(z) > y0”.

Claim: ∀n ≥ N and ∀z ∈ Pn, if Im(Φn(z) − Φn(a+)) > y0 then z ∈ ∆n.

Proof. By (11), Φn(Pn) ∩ “ Im(z) > something” is connected. Thus Φ−1
n (“ Im(z −

Φn(a+)) > y0”) is a connected open set whose points have by corollary 1 an orbit
under Pθn

which passes an infinite number of times in the bounded set P+
n . There-

fore, it is contained in the Fatou set of the polynomial Pθn
. Using (11) again, we

see that this open set adheres to 0. Since Pθn
is linearizable at 0, the connected

open set is contained in the Siegel disk. �

Let z0 be in the virtual Siegel disk. Let us write z0 = P k0

p/q(Φ
−1
+ (w0)) with

w0 mod Z ∈ ∆(f). Let γ : [0, 1] → ∆(f) a path from w0 to any point w1 in
“ Im(z) > y0”. By lemma 4, the curve γ is contained in ∆(fn) for n big enough.
Since this curve is compact, there exists m0 > 0 such that T−m0

◦ γ([0, 1]) ⊂
Φ+(P+). By definition and (16), there exists a neighborhood U of γ([0, 1]) such
that T−m0

(U) ⊂ T−Φn(a+) ◦ Φn(Pn) for n big enough. Up to taking a smaller
neighborhood, we will choose U open, connected and contained in ∆(f). Then, by
corollary 1, Φ−1

n ◦TΦn(a+) ◦T−m0
(U) is contained in the Fatou set, and by the claim

above, it contains a point in ∆n (the image of γ(1)). Being moreover connected, it
is contained in ∆n. Therefore

P k0

θn
◦ Φ−1

n ◦ TΦn(a+) ◦ T−m0
(U) ⊂ ∆n.

Since the limit P k0

p/q ◦Φ−1
+ ◦T−m0

of the functions P k0

θn

◦Φ−1
n ◦TΦn(a+) ◦T−m0

is non

constant, the image of U and contains some neighborhood of z0 for n big enough.
This ends the proof of the main theorem.
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