
A near parabolic renormalization invariant
class for unicritical polynomials

Arnaud Chéritat
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Renormalization in dynamics

Renormalization
=

First return map + Change of coordinate
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Cylinder renormalization
in complex dynamics

f holomorphic

γ simple curve between 2 fixed points

γ
f (γ)

f

U U/f ' C/Z

robust under de-
formations of γ
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Cylinder
is C∗

C/Z S \ {PS ,PN} C∗

+i∞ PN 0
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Near parabolic situation
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Near parabolic situation

Lavaurs, Douady, others: If fn −→ f and f ′n(0) −→ 1 in a controlled way,
then

R[fn] −→ R[f ]

where

• R[fn] is near parabolic cylinder renormalization and

• R[f ] is parabolic renormalization.

R[f ] is nothing but the horn map (aka. Écalle-Voronin-Martinet-Ramis
invariant) of the parabolic point of f .

(I’m hiding details under the rug)
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Invariant classes for
renormalizations

Invariant classes usually have lots of consequences for the maps that can
be infinitely renormalized, in particular:

• precise description of the long term dynamics,

• properties of invariant sets at microscopic scale.

When the renormalization operator is analytic, invariant classes often yield
compact operators, so better bounds (spectral gaps, contraction up to a
finite dimensional subspace, etc.).
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High type numbers

Using near parabolic renormalization to study a neutral fixed point (placed
at one end of γ) requires that the rotation number α be close to 0. It acts
on the rotation number as the Gauss map: α 7→ Frac 1

α .

Iteration of R requires that all entries in the continued fraction of α be
≥ N for some N that depends on the invariant class under consideration.
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Examples of consequences

Consequences of the invariant classes of Inou and Shishikura for near
parabolic renormalization for high type numbers include:

• Fact that the fixed point β of a quadratic polynomial is not in the
boundary of the Siegel disk (Shishikura).

• Upper semi-continuity type control on the post-critical set (used in
the proof of positive measure by Buff and Chéritat).

• Precise description of the postcritical set and hedgehogs, Herman’s
conjecture, Douady’s conjecture (Cheraghi, Shishikura).

• MLC at some parameters (Cheraghi, Shishikura)

• . . .
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Parabolic renormalization
precise definition

For a parabolic map f fixing the origin 0, we now denote R[f ] its full
parabolic renormalization at the upper end of the cylinder, which we define
at the end of the next few slides.
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Parabolic renormalization

Fatou coordinates:
– φatt on attracting petal Patt to right half plane
– φrep on repelling petal Prep to left half plane
both are injective and satisfy φ(f (z)) = φ(z) + 1 wherever both hands are
defined.

f (z) = z + z2

φatt←−
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Parabolic renormalization

Extended Fatou coordinates:
– φatt extends into a unique function Φatt such that:

Φatt ◦ f = T1 ◦ Φatt (same domains),

– φ−1rep extends to a unique function Ψrep such that

f ◦Ψrep = Ψrep ◦ T1 (same domains).

These extensions are holomorphic, not necessarily injective, the domain of
Φatt is the whole attracting basin of Patt.
If f maps its domain in itself then Ψrep is defined everywhere.
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Parabolic renormalization
Dynamical chessboard
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Parabolic renormalization
Structural chessboard
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Parabolic renormalization

Translation : Tσ(z) = z + σ, σ ∈ C.

Horn maps: hσ := Φatt ◦Ψrep ◦ Tσ,

Cylinder ↔ C∗: E (z) = exp(2πiz).

σ0 : a special choice of σ (see below)

Parabolic renormalization: map R[f ] such that

R[f ] ◦ E = E ◦ hσ0
completed by fixing 0, restricted to the c.c. containing 0 of its domain,
with σ0 such that R[f ]′(0) = 1.

R[f ] is the limit of cylinder renormalization R[fn] of a carefully chosen
sequence of perturbations fn of f .
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Structural chessboard of
R[z 7→ z + z2]
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Unisingular parabolic Blaschke
products

are unique up to Möbius conjugacy

We have

Bd(z) =
zd + ad

1 + adzd

with ad = d−1
d+1 , and

B∞(z) = φ−1 ◦ tan ◦φ
with φ : H→ D, z 7→ i−z

i+z .
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Parabolic renormalization
An invariant class

Theorem (folk?, Shishikura, Lanford-Yampolsky, others?)

Let f : U ⊂ Ĉ→ Ĉ a holomorphic map with a parabolic petal of period
one and such that one and only one singular value of f , as a map from U
to Ĉ, lies in the associated immediate basin A. Then the restriction of f
to A is analytically conjugated to the restriction of Bd to D for some
d ∈ {2, 3, . . .} ∪ {∞}.
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Parabolic renormalization
An invariant class
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Parabolic renormalization
An invariant class

Theorem (Shishikura, Lanford-Yampolsky)

For a fixed d, all the maps in the previous situation have equivalent
parabolic renormalizations in the following sense: f1 ∼ f2 whenever there is
a holomorphic bijection φ on domains such that f1 = f2 ◦ φ:

dom(f1)
φ //

f1 ��

dom(f2)

f2��
Ĉ

This is not a conjugacy, so the maps behave differently w.r.t. iteration, but
they behave similarly as ramified covers.

Let us call Sd the equivalence class of R[f ] for any f as above.
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Parabolic renormalization
An invariant class

Maps in Sd as above have only one free singular value over Ĉ.

By Fatou’s theorem, their parabolic basin contains a unique singular value:
by the first theorem, the second theorem can be applied to them again.

In other words:

Theorem (Shishikura, Lanford-Yampolsky)

R[Sd ] ⊂ Sd
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By Fatou’s theorem, their parabolic basin contains a unique singular value:
by the first theorem, the second theorem can be applied to them again.

In other words:

Theorem (Shishikura, Lanford-Yampolsky)

R[Sd ] ⊂ Sd
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Stroll
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Arnaud Chéritat (CNRS, UPS) Renorm. for unicrit. polyn. June 2020 22 / 47



Stroll
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Structures

Let f1 : X1 → Y and F2 : X2 → Y be holomorphic. Let us say that the
pairs f1 and f2 are structurally equivalent if there exists an analytic
isomorphism φ : X1 → X2 such that f1 = f2 ◦ φ i.e. such that the following
diagram commutes:

X1
φ //

f1 ��

X2

f2��
Y

(in the definition we should also add marked points but we do not mention
them here to keep things simple).

The equivalence class of a map is called its structure.
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On perturbability

Maps f in the Sd class have sort of a complete structure and the theorem
says that parabolic renormalization of a map with the full structure also
has the full structure.

Unfortunately, this result does not withstand perturbation without
modification:

If one perturbs an f that has a complete structure as fn, for example
composing with a rotation, and does near parabolic renormalization, it is
not expected that the maps R[fn] will have a complete structure.
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Structures
sub-structures

Let A and B be structures and f1 ∈ A and f2 ∈ B. If f1 is structurally
equivalent to a restriction of f2, we say that A is a sub-structure of B.
If f1 is structurally equivalent to a restriction of f2 to a relatively compact
subset of its domain, we say that A is relatively compact in B.
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Near parabolic renormalization
I.S. invariant class

Theorem (Inou, Shishikura)

There exists a relatively compact sub-structure B of S2 and a relatively
compact sub-structure A of B such that:

• ∀f ∈ A, the map f is defined on a connected and simply connected
Riemann surface and has exactly one critical point, of local degree
two; the same holds for B.

• For any map in A defined on a subset of C and that fixes the origin
with multiplier one, its parabolic renormalization has at least
structure B.

This result accommodates small perturbations, and can thus be applied to
near parabolic renormalization as well.
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B in S2
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B A
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Near parabolic renormalization
higher order critical points

Main Theorem (C.) (submitted)

For all 1 < d < +∞ here exists a relatively compact sub-structure B of Sd
and a relatively compact sub-structure A of B such that:

• ∀f ∈ A, the map f is defined on a connected and simply connected
Riemann surface and has several critical points, all of local degree d,
all mapping to the same point; the same holds for B.

• For any map in A defined on a subset of C and that fixes the origin
with with multiplier one, its parabolic renormalization has at least
structure B.
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B for I.S. B for us

Case d = 2
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Strategy of the proof
Notations

Given r ∈ ]0, 1[ and a subset U of C conformally equivalent to D and
containing 0, we will denote

U } r = φ(B(0, r))

where φ : D→ U is a conformal isomorphism with φ(0) = 0.

The domains U are bounded by inner equipotentials of U w.r.t. 0.
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Strategy of the proof
Notations

Recall Bd is the unicritical parabolic Blaschke product of degree d .

Define the classes of maps:

F0 =
{
R[Bd ] ◦ φ−1

∣∣φ : D→ C univalent, φ(z) = z +O(z2)
}

Fε =
{
R[Bd ] ◦ φ−1

∣∣φ : B(0, 1− ε)→ C univalent, φ(z) = z +O(z2)
}

Morally, F0 = Sd .

All maps in F0 are structurally equivalent.
All maps in Fε are structurally equivalent.
Maps in F0 have the full S-structure.
Maps in Fε have less structure.

We will prove the main theorem with A = Fε0 and B = Fε1 for some pair
0 < ε1 < ε0 < 1.
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Strategy of the proof

Two steps:

• For a map in f ∈ F0, prove that the definition
of R[f ] on dom(R[f ]) } (1− ε) uses only iteration
of f on dom(f ) } (1− ε′)
where ε′ � ε.

• For maps f ∈ F0, define a deformation ft ∈ Ft , t < 1, so that f 7→ ft
is a bijection from F0 to Ft . As t increases from 0, R[ft ] looses
structure. We prove that for t ≤ ε′/K , R[ft ] ∈ Fε, (K > 1).

More precise statements below.
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Step 1: how much structure is
actually used

Let Φ[f ] be the normalized extended attracting Fatou coordinate of f .
Let Ψ[f ] be the normalized extended inverse repelling Fatou coordinate.
Let E (z) = exp(2πiz).

Proposition (Step 1)

∀ε, ∀f ∈ F0, Ψ(E−1(domR[f ] } 1− ε)) ⊂ dom(f ) } 1− ε′ with

log
1

ε′
≤ c ′ + c log

(
1 +

1

log ε

)
.
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Reformulation

By definition

R[f ](z) = E ◦ φatt ◦ f n ◦ φ−1rep(w)

for any w ∈ E−1(z) with Re(w) negative enough, and any n such that
f n(u) maps u := ψ−1rep(w) from the repelling to the attracting petal of f .

The attracting and repelling petals are both well-inside dom f and the
proposition tells us that the rest of the orbit is not too close to ∂ dom f .
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Arnaud Chéritat (CNRS, UPS) Renorm. for unicrit. polyn. June 2020 35 / 47



Reformulation
in terms of hyperbolic metric

E−1(z) = w + Z
Ψ(E−1(z)) =

{
un
∣∣ n ∈ Z

}
is a bidirectional orbit of f .

The hyperbolic distance in D from 0 to 1− ε in D is comparable to log 1
ε .

Hence the proposition can be reformulated as follows:

D ′ ≤ c ′ + c logD

with:
– D the domR[f ]-distance from 0 to z
– D ′ the biggest dom f -distance from 0 to the orbit un.
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Step 1

Notation: BU(z , r) denotes the ball for the hyperbolic metric of U.

Let A = A[f ] be the parabolic basin. If z ∈ domR[f ] } 1− ε then the
f -orbit {un} = Ψ(E−1(z)) is contained in A.

Lemma: ∃r0 > 0 s.t. ∀f ∈ F0, the two main dynamical chessboard boxes
of f in A are contained in Bdom(f )(0, r0).

Proof by compactness of the class F0.

Lemma: The orbit stays at A-hyperbolic distance ≤ L = c1 + c2 log(1/ε)
of the set of the previous lemma.

Proof: Ψ is holomorphic from E−1(domR[f ]) to A hence weakly contracts
for respective hyperbolic metrics.
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Step 1

Now

• the inclusion of A in dom f is contracting for the hyperbolic metric.

• The contraction factor is strong nearby ∂ dom f .

[see pictures]
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Step 1

The actual bound is proved by introducing the box-Euclidean metric,
pull-back of the cylinder metric by f .
Consider a path of A-length ≤ L from a point in the orbit to the set of the
previous lemma.
The path is of box-Euclidean length O(L) because its image by f is still in
A and has A-length ≤ L and A is a simply connected subset of the cylinder.

Arnaud Chéritat (CNRS, UPS) Renorm. for unicrit. polyn. June 2020 39 / 47



Step 1

Let Bm be the union of connected chains of length at most n of closed
boxes starting from the box containing the origin.

Lemma: ∃m ∈ C s.t. ∀f ∈ F0, the basin A[f ] is contained in Bm.

The proof is not so easy. [Picture]

On each box, there is a logarithmic gain:

Lemma: Consider two points in a common box, the distance de between
these two points for the box-Euclidean distance and the distance dh
between these two points for hyperbolic metric on U∗1 . Then

dh ≤ c ′2 + log(1 + c2de).

From this we can conclude step 1.
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Step 2: A perturbation
Putting back missing structure

For f ∈ F0, thus f = R[Bd ] ◦ φ−1 for some Schlicht map φ : D→ C, let

ft = R[Bd ] ◦ φ−1t

with φt(z) = rtφ0(z/rt) and rt = 1− t. We have

dom(ft) = range(φt) = rt · dom(f )

and φ−1t (z) = rtφ
−1
0 (z/rt) so

range(φ−1t ) = rt · D.

Given a map g ∈ Ft , there exists a unique f ∈ F0 such that g = ft : f is a
deformation of g with the totality of the structure. The domain of f is
just the rescaled domain of g .

Remark: Restricting is not enough: taking a map in F0 and restricting it
to a sub-domain (and conjugating by a rescaling) would yield a
non-surjective map from F0 to Ft . In near parabolic renormalization, we
need maps in Ft that do not extend to a map with the full structure.
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Step 2: Following fibers

We work with a normalization of the Fatou coordinates that makes all
renormalizations have the same critical value. Let

R :

{
domR → C

(t, z) 7→ R[ft ](z)

The domain of R is an open subset of [0, 1[×C and R is continuous,
analytic w.r.t. z for fixed values of t. (It is also analytic w.r.t. (t, z) but
we will not use this fact.)
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Step 2: Following fibers

R :

{
domR → C

(t, z) 7→ R[ft ](z)

To z ∈ domR[f ], we associate a motion, which is defined using the
connected component of the fiber of R that contains (0, z):

Lemma: This fiber is the graph, contained in domR ⊂ [0, 1[×C, of a
continuous map t 7→ z〈t〉 defined on [0, ω(z)[ where ω(z) is called the
survival time.

This is because we work with a normalization of the Fatou coordinates so
that all renormalizations have the same unique critical value. Fibers
cannot undergo bifurcation, they can only disappear.
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Step 2: Following fibers

To prove that R[ft ] has at least structure Fε, it is enough to prove that
∀z ∈ domR[f0] } (1− ε), ω(z) > t.

Proposition

If the orbit associated to z is contained in dom(f ) } (1− ε′) then
ω(z) ≥ ε′/K.

(Provided ε′ is small enough, independently of f ∈ F and of
z ∈ domR[f ].)
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Step 2: Following fibers

The whole orbit un associated to z also undergoes a motion and becomes
an orbit un〈t〉 of ft that still tends to 0 in the future and in the past: we
are fixing its normalized attracting Fatou coordinate.

The claim ω(z) ≥ ε′/K is proved by bounding the motion of these points
and using contraction arguments under pull-backs.

To bound the motion of un we look at the homotopic length of the path
t 7→ un〈t〉 for the hyperbolic metric on the set

W0 = C \ PC (f0).

or on the set

C \ {0, 1}
where 1 is the critical value of f0.
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Step 2: Following fibers

The control on the homotophic length ` w.r.t W0 is done by a backward
induction on n ∈ Z.

Each curve un−1〈[0, tmax]〉 is, under good conditions, homotopic to the
concatenation γ1 · γ2 where:
– γ1 is the pull-back of un〈t〉 by f0 starting from un−1〈0〉,
– γ2 is a correcting curve defined by ft(γ2(t)) = f0(γ1(tmax)).

Under good conditions:
– `(γ1) ≤ `(un) with λ < 1 independent of f0 and n.
– `(γ2) ≤ Kt for some K > 0.
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Step 2: Following fibers

In reality it is a bit more complicated.

The orbit un for t = 0 is cut in chunks.

• 1st chunk: in the repelling petal for all n negative enough

• intermediate chunks: between n and n + 1 when un+1 not in the
repelling petal, between n and n + k + 1 when in the repelling petal
from n to n + k ,

• final chunk : when in the attracting petal or close to the critical orbit
(here we replace the hyperbolic metric of W0 by that of C \ {0, 1} in
the attracting petal).
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