Université Toulouse 3, Année universitaire 2019-2020, Prépa agreg

Corrigé partiel de la feuille de TD d'algèbre linéaire

Exercice 10

- 1. Tout élément y de E peut s'écrire de la forme $\sum_{i=1}^{n} \lambda_i f^i(x_0) = f(\sum_{i=0}^{n-1} \lambda_{i+1} f^i(x_0))$. Donc f est surjective. Comme E est de dimension finie, f est bijective. Si on suppose à la place que $(x_0, \ldots, f^{n-1}(x_0))$ on ne peut pas conclure la même chose. Par exemple, f peut être un endomorphisme nilpotent d'ordre n.
- 2. On écrit

$$f^{n}(f(x_{0})) = f^{n+1}(x_{0}) = -\sum_{i=1}^{n} a_{i-1}f^{i}(x_{0}) = -\sum_{i=0}^{n-1} a_{i}f^{i}(f(x_{0})).$$

C'est possible car $f(x_0), \ldots, f^n(x_0)$ est une base de E. On applique f^k de part et d'autre de l'équation, pour k entre 0 et n-1. Ceci établi que les endormorphismes

$$g = f^n \qquad \text{et} \qquad h = -\sum_{i=0}^{n-1} a_i f^i$$

prennent les même valeurs sur la base $f(x_0), \ldots, f^n(x_0)$, donc sont égaux.

Exercice 11 On note C_1, \ldots, C_n les colonnes. On suppose qu'elles sont liées. Alors il existe $\lambda_1, \ldots, \lambda_n$ non tous nuls tels que $\sum_i \lambda_i C_i = 0$.

Soit i_0 un indice tel que que $|\lambda_{i_0}|$ est maximal. Alors $\lambda_{i_0} \neq 0$ et en en posant $\mu_i = -\lambda_i/\lambda_{i_0}$, on obtient :

$$C_{i_0} = \sum_{i \neq i_0} \mu_i C_i$$

En appliquant ceci à la ligne i_0 , on trouve alors $a_{i_0i_0} = \sum_{i \neq i_0} \mu_i a_{i_0i}$, donc $|a_{i_0i_0}| \leq \sum_{i \neq i_0} |\mu_i| |a_{i_0i}| \leq \sum_{i \neq i_0} |a_{i_0i}|$. Ce qui contredit l'hypothèse.

Exercice 15

- 1. Non. Prendre n'importe quel endormorphisme avec un sous espace propre de dimension au moins 2 : toute droite vectorielle incluse dans ce sous espace propre est stable, mais n'est pas égale au sous espace propre.
- 2. Prendre f de matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, E est égal au sous espace caractéristique de f, et un sous espace de E n'est pas forcément stable.
- 3. C'est facile de se convaincre que dans un espace de dimension n > 2, toute droite est intersection de deux plans. Donc si les plans sont stables, les droites le sont également (donc u est une homothetie). En général, dans un ev de dimension n > k, on vérifie que toute droite est intersection de sous espaces de dimension k. Par exemple, prendre $D = Vect(e_0)$, et compléter e_0 en une famille libre e_0, \ldots, e_k . Alors en prendant $E_j = Vect(e_0, \ldots, e_{j-1}, e_{j+1}, \ldots, e_k)$ pour $j \in \{1, \ldots, k\}$. On voit que les E_j sont de dimension k, et l'intersection des E_j est $Vect(e_0) = D$. Donc si les E_j sont stables, D l'est aussi.

Exercice 16 Prenons $\mathbb{K} = \mathbb{R}$.

- $1. \ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$
- $2. \ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
- 3. Une rotation.
- 4. Si u a au moins trois droites stables, le même argument que pour l'exo 9.2 donne que u est une homothetie.

Exercice 18

1. Si on écrit $\chi_f = \prod_i (X - \lambda_i)^{\alpha_i}$ et on a $N_{\lambda_i}(f) = \ker((f - \lambda_i)^{\alpha_i})$, on a clairement $N_{\lambda_i}(f) \cap F = \ker((f_F - \lambda_i)^{\alpha_i})$. On a $\chi_{f_F}|\chi_f$, donc l'ordre α'_i de la racine λ_i de χ_{f_F} est inférieure ou égale à α_i . Ce qui donne :

$$N_{\lambda_i}(f_F) = \ker((f_F - \lambda_i)^{\alpha_i'}) = \ker((f_F - \lambda_i)^{\alpha_i}) = N_{\lambda_i}(f) \cap F.$$

- 2. Une somme de sous espace stables de sous espaces caractéristiques de f est stable par f. Par l'étude précédente, la réciproque est vraie : si F est stable, F est somme directe de sous espace caractéristiques de f_F qui sont des sous espaces stables des sous espaces caractéristiques de f. Donc pour l'endomorphisme f donné, on commence par déterminer les sous espaces stables des sous espaces caractéristiques $N_1(f)$ et $N_2(f)$. Notons, (e_1, \ldots, e_4) la base canonique.
 - Pour $N_1(f)$, on a $\{0\}$, $Vect(e_1)$ et $N_1(f) = Vect(e_1, e_2)$.
 - Pour $N_2(f)$, on a $N_2(f) = Vect(e_3, e_4)$ et Vect(x) pour tout $x \in N_2(f)$ et $\{0\}$.

Ce qui donne en tout 9 sous espaces stables.

Exercice 19

- 1. Un endomorphisme est diagonalisable ssi il est annulé par un polynôme scindé à racine simple. C'est le cas de u (car diagonalisable) donc u_F aussi. Matriciellement, si une matrice bloc $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ est diagonalisable, alors A l'est aussi (c'est également vrai pour C qui correspond l'endomorphisme induit sur l'espace quotient E/F).
- 2. Si u est diagonalisable, on prend un sous espace stable F, u_F est diagonalisable. On complete la base de F composée de vecteurs propres de u_F en une base de E composée de vecteurs propre de f, ça donne un supplémentaire stable.

Réciproquement, si u est semi-simple. On peut être tenté par l'argument suivant : on prend un vecteur propre (qui existe car K est algébriquement clos), qui donne un sous espace stable de dimension 1, il y a un supplémentaire stable F, et "par récurrence", u_F est diagonalisable. Ça pose des problèmes car ça ne saute pas aux yeux que u_F est semi simple! (essayons : soit $F_1 \subset F$ stable, on a un supplémentaire stable de F_1 dans F?).

Reprenons nous calmement : prenons plutôt $F = \bigoplus E_{\lambda}(u)$ la somme des sous espaces propres. C'est un sous espace stable, il a un supplémentaire stable G, mais alors u_G ne devrait plus avoir de vecteur propres (sinon, ça donnerait un vecteur propre de u qui n'est pas dans F), la seule possibilité vu que K est algébriquement clos est que $G = \{0\}$, c-a-d u est diagonalisable.

Exercice 20

- 1. Vu en TD.
- 2. On voit facilement que $\ker(g) \subset Im(f)$. Donc $n rg(g) \leq rg(f)$. Or, Par hypothèse on a $n-rg(g) \ge rg(f)$. Donc $\dim(\ker(g)) = n-rg(g) =$ rg(f). Donc ker(g) = Im(f). Il en découle que pour tout $x \in Im(f)$, f(x) = x, c'est à dire que f est un projecteur.

Exercice 21 En posant $U_n = \binom{u_{n+1}}{u_n}$, on voit que l'on a $U_{n+1} = MU_n$, donc $U_n = M^nU_0$. Pour déterminer M^n , on la diagonalise (si c'est possible). Les valeurs propres sont $\phi, \bar{\phi}$, donc M est diagonalisable, $M = PDP^{-1}$ avec D = $Diag(\phi,\bar{\phi})$, donc $M^n=PD^nP^{-1}$ avec $D^n=Diag(\phi^n,\bar{\phi}^n)$. Pour déterminer u_n , on peut chercher la matrice de passage, on trouve $P = \begin{pmatrix} \phi & \bar{\phi} \\ 1 & 1 \end{pmatrix}$, et en déduire M^n . On peut aussi remarquer que l'expression de M^n va donner u_n de la forme $a\phi^n + b\bar{\phi}^n$. Ensuite, $u_0 = 0$ donne a = -b, $u_1 = 1$ donne $a\sqrt{5} = 1$.

Exercice 24

- 1. Pour $\mathcal{M}_2(\mathbb{Z}/p\mathbb{Z})$. Un nilpotent est de rang 0 ou 1. Il y en a un seul de rang 0. En rang 1, on remarque que dans ce cas, Im(f) = Ker(f) = D. Donc pour déterminer un nilpotent de rang 1, on choisit une droite vectorielle D, puis on se fixe un élement $e \notin D$ et on choisit l'image de e, qui est n'importe quel élément non nul de D. Ça donne
 - $\frac{p^2-1}{p-1}$ possibilités pour D (on choisit un vecteur qui engendre D, et il y a p-1 vecteurs qui engendrent la même droite vectorielle).
 - p-1 possibilités pour f(e).
 - Donc en tout : $\frac{p^2-1}{p-1} \times (p-1) + 1 = p^2$ nilpotents dans $\mathcal{M}_2(\mathbb{Z}/p\mathbb{Z})$.
- 2. Pour $\mathcal{M}_3(\mathbb{Z}/p\mathbb{Z})$. Un nilpotent est de rang 0,1 ou 2. Il y en a un seul de rang 0. En rang 1, on remarque que dans ce cas $D = Im(f) \subset$ Ker(f) = P (et f est d'ordre de nilpotence 2). Donc f se détermine de la manière suivante : une droite D, un plan P contenant D, puis on se fixe un élément $e \notin P$, et on choisit son image dans $D \setminus \{0\}$. Ca donne

 - donne $-\frac{p^3-1}{p-1} \text{ possibilités pour } D$ $-\frac{p^3-p}{p^2-p} \text{ possibilités pour } P \text{ (on choisi un vecteur qui n'est pas dans } D \text{ pour engendrer } P, \text{ et il y a } p^2-p \text{ possibilités qui donnent le}$ même plan P).

— p-1 possibilités pour f(e).

Donc $\frac{p^3-1}{p-1} \times \frac{p^3-p}{p^2-p} \times (p-1)$ possibilités pour un nilpotent de rang 1. En rang 2, on a cette fois $D = Ker(f) \subset Im(f) = P$, et l'indice de nilpotence est 3. Alors f est déterminé de la façon suivante : on se fixe une base adaptée à cette décomposition : $e_1 \in Ker(f)$, $e_2 \in P \setminus D$, $e_3 \notin P$, on a a priori $f(e_1) = 0$, $f(e_2) \in D$ (sinon, f pas nilpotente), $f(e_3) \in P$. Il faut en plus $f(e_3) \notin D$ (sinon, $Im(f) \subset D$), et $f(e_2) \neq 0$ $(sinon, Im(f) = Vect(e_2))$. Et les conditions indiquées sont suffisantes pour avoir f nilpotente avec Im(f) = P. Ca donne:

- $-\frac{p^3-1}{p-1} \text{ possibilités pour } D, \frac{p^3-p}{p^2-p} \text{ possibilités pour } P$ $-p-1 \text{ possibilités pour } f(e_2).$
- $p^2 p$ possibilités pour $f(e_3)$.

Donc $\frac{p^3-1}{p-1} \times \frac{p^3-p}{p^2-p} \times (p-1) \times (p^2-p)$ possibilités pour un nilpotent de rang 2.

On arrive à un total de p^6 possibilités.

Exercice 25 Si M et tM sont semblables, alors pour toute valeur propre λ de M, $t\lambda$ est valeur propre de tM donc de M. Donc $\lambda, t\lambda, \ldots, t^n\lambda, \ldots$ sont valeurs propres. Si $\lambda \neq 0$ et comme t n'est pas une racine n-ième de l'unité, on obtient une infinité de valeurs propres, ce qui n'est pas possible. Donc $\lambda = 0$. Si toute valeur propre est nulle, comme le corps de base est \mathbb{C} (algébriquement clos), le polynôme caractéristique est X^n donc M est nilpotente.

Si M est nilpotente, on constate que M et tM ont même noyaux itérés $(Ker(M^k))$, donc sont semblables. On peut aussi utiliser la décomposition de Jordan : si on a un bloc de Jordan pour M correspondant à une famille $(e_1, \dots e_{r-1}, e_r)$, alors on obtient le même bloc pour tM en considérant la famille $(t^{r-1}e_1, \dots, te_{r-1}, e_r)$.

Exercice 28

1.

2. Si l'adhérence de la classe de similitude de M contient la matrice nulle, on en déduit par continuité de $N \to \chi_N$ que $\chi(M) = X^n$ donc M est nilpotente. Réciproquement, si M est nilpotente, on la trigonalise et par le même argument que dans 28.1, on voit que dans l'adhérence on a une matrice diagonale D dont les éléments diagonaux sont les valeurs propres de M, c'est à dire D=0.

Exercice 29 On écrit juste qu'une équation linéaire est de la forme $\phi(u) = 0$ avec ϕ dans l'espace dual $(\mathbb{K}^n)^*$. Dire qu'un sous espace vectoriel F est défini par k équations linéaires indépendantes signifie qu'il existe $\phi_1, \ldots, \phi_k \in E^*$ une famille libre telle que $u \in F \Leftrightarrow \phi_1(u) = \cdots = \phi_k(u) = 0$. En d'autre terme, F est l'orthogonal $Vect(\phi_1, \ldots, \phi_k)$ qui est de dimension k. On a donc $\dim(F) + \dim(Vect(\phi_1, \ldots, \phi_k)) = n$.

Exercice 30 On montre que ϕ_0, \ldots, ϕ_n est libre. Soit $\lambda_0, \ldots, \lambda_n$ tel que $\sum_k \lambda_k \phi_k = 0$. On évalue en X^i . On trouve :

$$0 = \sum_{k} \lambda_k \phi_k(X^i) = i! \lambda_i$$

donc $\lambda_i = 0$. Au passage, on a utilisé que $\phi_k(X^i) = i!\delta_{i,k}$, en d'autre termes : ϕ_0, \ldots, ϕ_n est la base duale de $(\frac{1}{i!}X^i)_{i \in \{0,\ldots,n\}}$.

Exercice 31 On écrit en lignes la matrice des coordonnées de ϕ_1, ϕ_2, ϕ_3 :

$$P = \begin{pmatrix} 1 & 2 & -3 \\ 5 & -2 & 0 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} \underline{L_1} \\ \underline{L_2} \\ L_3 \end{pmatrix}$$

On voit que P est inversible donc on a bien une base. Pour trouver la base anteduale, on écrit les coordonnées de cette base en colonnes dans une matrice $Q = \begin{pmatrix} C_1 & C_2 & C_3 \end{pmatrix}$. On doit avoir $L_i C_j = \delta_{i,j}$ (par définition de base anteduale), en d'autre termes, $P \cdot Q = I_3$, donc $Q = P^{-1}$.

Exercice 33 Petit rappel : en algèbre linéaire on ne considère que des combinaisons linéaires finie. Donc une famille $(e_i)_{i\in I}$ est génératrice de E si tout élément de E est combinaison linéaire d'une sous famille finie de $(e_i)_{i\in I}$. Une famille $(e_i)_{i\in I}$ est libre si, toute sous famille finie est libre.

1. On a $e_k = X^k$. Par définition, e_k^* est l'application linéaire de k[X] dans k telle que $e_k^*(e_i) = \delta_{i,k}$. Si on suppose, $\phi \in Vect((e_k^*)_k)$, alors il existe n > 0 et $\lambda_0, \ldots, \lambda_n$ tel que :

$$\phi = \sum_{k=0}^{n} \lambda_k e_k^*$$

Mais alors $1^{n+1} = \phi(e_{n+1}) = \sum_{k=0}^{n} \lambda_k e_k^* e_{n+1} = 0$. Ce qui est absurde.

2. On suppose qu'il existe $a_1,\ldots,a_n\in\mathbb{R}$ (deux à deux disjoints) et $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ tel que

$$\sum_{k=1}^{n} \lambda_k \phi_{a_k} = 0$$

On applique ça au polynôme

$$P_i = \prod_{k \in \{1, \dots, n\}, \ k \neq i} (X - a_k)$$

On obtient

$$0 = \lambda_i P_i(a_i)$$

Comme $P_i(a_i) \neq 0$, on a $\lambda_i = 0$.

Si E était isomorphe à E^* , on en déduirait une base $(e_n)_{n\in\mathbb{N}}$ de E, mais alors

$$F_n = \{ a \in \mathbb{R}, \ \phi_a \in Vect(e_0, \dots, e_n) \}$$

est de cardinal inférieur ou égal à n+1 (le cardinal d'une famille libre dans un ev de dimension finie est inférieur ou égal à la dimension). Donc $\bigcup_n F_n$ est dénombrable, donc différent de \mathbb{R} , donc il existe $a \in \mathbb{R}$ tel que $\phi_a \notin Vect((e_n)_{n \in \mathbb{N}})$. Contradiction.