CONSTRUCTION OF ARTIFICIAL BOUNDARY CONDITIONS FOR DISPERSIVE EQUATIONS

by

Christophe BESSE

Institut Mathématique de Toulouse, Université Toulouse 3, CNRS
TBC for dispersive Eqs.

UNIVERSITÉ TOULOUSE III

Introduction

The Schrödinger Eq．in \mathbb{R}
（S） $\begin{cases}i \partial_{t} \psi+\partial_{x}^{2} \psi+V(x, t) \psi=0, & (x, t) \in \mathbb{R} \times[0 ; T] \\ \lim _{x \mid \rightarrow+\infty} \psi(x, t)=0, & t \in[0 ; T] \\ \psi(x, 0)=\psi_{0}(x), & x \in \mathbb{R}\end{cases}$
－$\psi(x, t)$ ：wave function，complex
－real potential， $\mathscr{V}=V(x, t) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{+}, \mathbb{R}\right)$
－ψ_{0} compact support in Ω

$\Psi \mathrm{DO}$

- Laplace transform

$$
\mathscr{L}_{t}(u)(x, \omega)=\int_{0}^{\infty} u(x, t) e^{-\omega t} d t
$$

with the covariable $\omega=\sigma+i \tau, \sigma>0$

- Fourier transform :

$$
\mathscr{F}_{t}(u)(x, \tau)=\hat{u}(x, \tau)=\frac{1}{2 \pi} \int_{\mathbb{R}} u(x, t) e^{-i t \tau} d t .
$$

- $\mathscr{L}_{t}\left(\partial_{t} u\right)(x, \omega)=\omega \mathscr{L}_{t}(u)(x, \omega)-u(x, 0)$
- $\mathscr{F}_{t}\left(\partial_{t} u\right)(x, \tau)=i \tau \mathscr{F}_{t}(u)(x, \tau)$

Pseudodifferential Operators in 1D

- A pseudodifferential operator $P\left(x, t, \partial_{t}\right)$ is described by its total symbol $p(x, t, \tau)$ in the Fourier space (τ is the covariable of t)

$$
P\left(x, t, \partial_{t}\right) u(x, t)=\mathscr{F}_{t}^{-1}(p(x, t, \tau) \hat{u}(x, \tau))=\int_{\mathbb{R}} p(x, t, \tau) \hat{u}(x, \tau) e^{i t \tau} d \tau
$$

Notations: $\quad P=O p(p), p(x, t, \tau)=\sigma\left(P\left(x, t, \partial_{t}\right)\right)$

- Let $\alpha \in \mathbb{R}$ and the open set $\Xi \subset \mathbb{R}$. Symbol class: $S^{\alpha}(\Xi \times \Xi)$ vector space of functions $a(x, t, \tau) \in \mathcal{C}^{\infty}(\Xi \times \Xi \times \mathbb{R})$ s.t. $\forall K \subseteq \Xi \times \Xi$ and β, δ, γ, $\exists C_{\beta, \delta, \gamma}(K)$ s.t.

$$
\left|\partial_{\tau}^{\beta} \partial_{t}^{\delta} \partial_{x}^{\gamma} a(x, t, \tau)\right| \leq C_{\beta, \delta, \gamma}(K)(1+|\tau|)^{\alpha-\beta}
$$

$\forall(x, t) \in K$ and $\tau \in \mathbb{R}$.

- The order of P is the homogeneity order of its symbol w.r.t τ.
$P\left(x, t, \partial_{t}\right)$ homogeneous of order m if and only if for $\mu>0$, $p(x, t, \mu \tau)=\mu^{m} p(x, t, \tau)$.

Asympotic expansion in homogeneous symbols

P is said to be of order $M, M \in \mathbb{Z} / 2$, if:

$$
p(x, t, \tau) \sim \sum_{j=0}^{+\infty} p_{M-j / 2}(x, t, \tau), \quad \begin{aligned}
& p_{M}=\text { principal symbol of } P \\
& P \in O P S^{m} \text { and } p \in S^{m}
\end{aligned}
$$

where $p_{M-j / 2}$ is homogeneous of order $2 M-j$ and $P_{M-j / 2}: H^{s} \rightarrow H^{s+M-j / 2}$.
Meaning of $\sim: \forall \widetilde{m} \in \mathbb{N}, \quad p-\sum_{j=0}^{\widetilde{m}} p_{M-j / 2} \in S^{M-(\widetilde{m}+1) / 2}$.
Symbolic calculus

Composition rule

$$
\sigma(A B)=\sum_{\alpha=0}^{+\infty} \frac{(-i)^{\alpha}}{\alpha!} \partial_{\tau}^{\alpha} \sigma(A) \partial_{t}^{\alpha} \sigma(B)
$$

If $A \in O P S^{m}$ and $B \in O P S^{n}$, then $A B \in O P S^{m+n}$.

Examples

The fractional operators $\partial_{t}^{1 / 2}$ And $I_{t}^{\alpha / 2}$

$$
\begin{aligned}
& \partial_{t}^{1 / 2} f(t)=\frac{1}{\sqrt{\pi}} \partial_{t} \int_{0}^{t} \frac{f(s)}{\sqrt{t-s}} d s \\
& I_{t}^{\alpha / 2} f(t)=\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{t}(t-s)^{\alpha / 2-1} f(s) d s
\end{aligned}
$$

Nonlocal w．r．t time convolution operator

Operator

Symbol

$$
\begin{array}{cc}
\partial_{t} & \partial_{t}^{1 / 2} \\
\downarrow & \downarrow
\end{array}
$$

$i \tau$

$$
e^{-i \pi / 4} \sqrt{-\tau}
$$

$$
\begin{array}{cc}
I_{t}^{1 / 2} & I_{t} \\
\downarrow & \downarrow \\
\frac{e^{i \pi / 4}}{\sqrt{-\tau}} & \frac{1}{i \tau}
\end{array}
$$

Class
$O P S^{1 / 2}$
$O P S^{-1 / 2}$
$O P S^{-1}$

Properties w.r.t derivatives

- Let $A \in O P S^{m}: \quad \partial_{\tau} A \in O P S^{m-1}, \quad \partial_{t, x} A \in O P S^{m}$
- $\partial_{x} P=O p\left(\partial_{x} p\right)+P \partial_{x}, \quad \sigma\left(\partial_{x} P\right)=\partial_{x} p+\sigma\left(P \partial_{x}\right)$

Fractional operator $\partial_{t}^{1 / 2}$ Et $I_{t}^{\alpha / 2}$

$$
\begin{array}{ll}
\partial_{t}^{1 / 2} f(t)=\frac{1}{\sqrt{\pi}} \partial_{t} \int_{0}^{t} \frac{f(s)}{\sqrt{t-s}} d s, & \sigma\left(\partial_{t}^{1 / 2}\right)=e^{-i \pi / 4} \sqrt{-\tau} \in S^{1 / 2} \\
I_{t}^{\alpha / 2} f(t)=\frac{1}{\Gamma(\alpha / 2)} \int_{0}^{t}(t-s)^{\alpha / 2-1} f(s) d s, & \sigma\left(I_{t}^{\alpha / 2}\right)=\left(\frac{i}{\tau}\right)^{\alpha / 2} \in S^{-\alpha / 2}
\end{array}
$$

- Case $\mathscr{V}=0$

TBC: $\partial_{\mathbf{n}} \psi+e^{-i \pi / 4} \partial_{t}^{1 / 2} \psi=0, \quad$ on Σ_{T}.

- Case constant $\mathscr{V}=V$

TBC: $\partial_{\mathbf{n}} \psi+e^{-i \pi / 4} e^{i t V} \partial_{t}^{1 / 2}\left(e^{-i t V} \psi\right)=0, \quad$ on Σ_{T}.

- Case $\mathscr{V}=0$

TBC: $\partial_{\mathbf{n}} \psi+e^{-i \pi / 4} \partial_{t}^{1 / 2} \psi=0, \quad$ on Σ_{T}.

$$
\partial_{\mathbf{n}} \psi-i O p(\sqrt{-\tau}) \psi=0, \quad \text { on } \Sigma_{T} .
$$

- Case constant $\mathscr{V}=V$

TBC: $\quad \partial_{\mathbf{n}} \psi-i e^{i t V} O p(\sqrt{-\tau})\left(e^{-i t V} \psi\right)=0, \quad$ on Σ_{T}.
－Case $\mathscr{V}=0$
TBC：$\partial_{\mathbf{n}} \psi+e^{-i \pi / 4} \partial_{t}^{1 / 2} \psi=0, \quad$ on Σ_{T} ．

$$
\partial_{\mathbf{n}} \psi-i O p(\sqrt{-\tau}) \psi=0, \quad \text { on } \Sigma_{T}
$$

－Case constant $\mathscr{V}=V$
TBC：$\quad \partial_{\mathbf{n}} \psi-i e^{i t V} O p(\sqrt{-\tau})\left(e^{-i t V} \psi\right)=0, \quad$ on Σ_{T}.

$$
\partial_{\mathbf{n}} \psi-i O p(\sqrt{-\tau+V})(\psi)=0, \quad \text { on } \Sigma_{T}
$$

Lemma

If a is a symbol belonging to S^{m} independent of t ，and $V=V(x)$ ，then

$$
O p(a(\tau-V(x))) \psi=e^{i t V(x)} O p(a(\tau))\left(e^{-i t V(x)} \psi\right)
$$

- Case $\mathscr{V}=0$

TBC: $\partial_{\mathbf{n}} \psi+e^{-i \pi / 4} \partial_{t}^{1 / 2} \psi=0, \quad$ on Σ_{T}.

$$
\partial_{\mathbf{n}} \psi-i O p(\sqrt{-\tau}) \psi=0, \quad \text { on } \Sigma_{T}
$$

- Case constant $\mathscr{V}=V$

TBC: $\quad \partial_{\mathbf{n}} \psi-i e^{i t V} O p(\sqrt{-\tau})\left(e^{-i t V} \psi\right)=0, \quad$ on Σ_{T}.

$$
\partial_{\mathbf{n}} \psi-i O p(\sqrt{-\tau+V})(\psi)=0, \quad \text { on } \Sigma_{T}
$$

Lemma

If a is a symbol belonging to S^{m} independent of t, and $V=V(x)$, then

$$
O p(a(\tau-V(x))) \psi=e^{i t V(x)} O p(a(\tau))\left(e^{-i t V(x)} \psi\right)
$$

- Case $\mathscr{V}=V(t):$ Gauge change Antoine, Besse et Descombes, 2006

$$
\partial_{\mathbf{n}} \psi-i e^{i \mathcal{V}(t)} O p(\sqrt{-\tau})\left(e^{-i \mathcal{V}(t)} \psi\right)=0, \quad \text { on } \Sigma_{T}
$$

Remarks and notations

If $\mathscr{V}=V(x, t)=x$, by Fourier transform, the Eq. $i \partial_{t} u+\partial_{x}^{2} u+x u=0$ becomes the Airy Eq.

$$
\partial_{x}^{2} \hat{u}+(-\tau+x) \hat{u}=0
$$

So $\hat{u}=\operatorname{Ai}\left((x-\tau) e^{-i \pi / 3}\right)$ and we have the TBC

$$
\partial_{\mathbf{n}} u+e^{2 i \pi / 3} O p\left(\frac{\operatorname{Ai}^{\prime}\left((x-\tau) e^{-i \pi / 3}\right)}{\operatorname{Ai}\left((x-\tau) e^{-i \pi / 3}\right)}\right)(u)=0 .
$$

Remarks and notations

If $\mathscr{V}=V(x, t)=x$, by Fourier transform, the Eq. $i \partial_{t} u+\partial_{x}^{2} u+x u=0$ becomes the Airy Eq.

$$
\partial_{x}^{2} \hat{u}+(-\tau+x) \hat{u}=0
$$

So $\hat{u}=\operatorname{Ai}\left((x-\tau) e^{-i \pi / 3}\right)$ and we have the TBC

$$
\partial_{\mathbf{n}} u+e^{2 i \pi / 3} O p\left(\frac{\mathrm{Ai}^{\prime}\left((x-\tau) e^{-i \pi / 3}\right)}{\operatorname{Ai}\left((x-\tau) e^{-i \pi / 3}\right)}\right)(u)=0
$$

In a first approximation

$$
\frac{\mathrm{Ai}^{\prime}\left((x-\tau) e^{-i \pi / 3}\right)}{\operatorname{Ai}\left((x-\tau) e^{-i \pi / 3}\right)} \approx-e^{-i \pi / 6} \sqrt[+]{-\tau+x}
$$

and one has the $A B C$

$$
\partial_{\mathbf{n}} u+i O p(-\sqrt[+]{-\tau+x})(u)=0, \quad(x, t) \in \Sigma_{T}
$$

which leads to

$$
\partial_{\mathbf{n}} u+e^{i t x} e^{-i \pi / 4} \partial_{t}^{1 / 2}\left(e^{-i t x} u\right)=0, \quad(x, t) \in \Sigma_{T}
$$

Remarks and notations

REMARK there exists a change of unknown s．t．if v is solution to $i \partial_{t} v+\partial_{x}^{2} v=0$ ， then

$$
u(x, t)=e^{-i\left(-\alpha t x+\frac{t^{3}}{3}|\alpha|^{2}\right)} v\left(x-t^{2} \alpha, t\right)
$$

is solution to

$$
i \partial_{t} u+\partial_{x}^{2} u+\alpha x u=0
$$

Therefore，one can work on the free Schrödinger equation．
Changes of unknown are also available for the cases $V(x)= \pm x^{2}$ by lens transform （固R．Carles（05））．

Remarks and notations

Partial conclusion

- We have factorized the operator

$$
i \partial_{t}+\partial_{x}^{2}+V=\left(\partial_{x}+i \sqrt{i \partial_{t}+V}\right)\left(\partial_{x}-i \sqrt{i \partial_{t}+V}\right)
$$

Partial conclusion

- We have factorized the operator

$$
i \partial_{t}+\partial_{x}^{2}+V=\left(\partial_{x}+i \sqrt{i \partial_{t}+V}\right)\left(\partial_{x}-i \sqrt{i \partial_{t}+V}\right)
$$

- TBCs and ABCs are written through a DtN op.

$$
\partial_{\mathbf{n}} u+i O p(-\sqrt[+]{-\tau})(u)=0 \quad \text { on } \Sigma_{T}
$$

or

$$
\partial_{\mathbf{n}} u+i O p(-\sqrt[+]{-\tau+V})(u)=0 \quad \text { on } \Sigma_{T}
$$

Remarks and notations

Partial conclusion

- We have factorized the operator

$$
i \partial_{t}+\partial_{x}^{2}+V=\left(\partial_{x}+i \sqrt{i \partial_{t}+V}\right)\left(\partial_{x}-i \sqrt{i \partial_{t}+V}\right)
$$

- TBCs and ABCs are written through a DtN op.

$$
\partial_{\mathbf{n}} u+i O p(-\sqrt[+]{-\tau})(u)=0 \quad \text { on } \Sigma_{T}
$$

or

$$
\partial_{\mathbf{n}} u+i O p(-\sqrt[+]{-\tau+V})(u)=0 \quad \text { on } \Sigma_{T}
$$

- if $\mathscr{V}=V(t)$, the change of unknowns $v(x, t)=e^{-i \mathcal{V}(t)} u(x, t)$ with $\mathcal{V}(t)=\int_{0}^{t} V(s) d s$ reduces the Schrödinger Eq. with potential to a free Schrödinger Eq. and the TBC is

$$
\partial_{\mathbf{n}} u(x, t)+e^{-i \frac{\pi}{4}} e^{i \mathcal{V}(t)} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}(t)} u\right)(x, t)=0 \quad \text { on } \Sigma_{T}
$$

Artificial boundary conditions $\mathscr{V}=V(x, t)$

1D Schrödinger Eq. $\mathscr{V}=V(x, t)$

$$
\begin{array}{lll}
& i \partial_{t} \psi+\partial_{x}^{2} \psi+\mathscr{V} \psi=0, & (x, t) \in \mathbb{R}_{x} \times[0 ; T] \\
\text { (Syst1) } & \lim _{|x| \rightarrow \infty} \psi(x, t)=0, \\
& \psi(x, 0)=\psi_{0}(x), & x \in \mathbb{R}_{x}
\end{array}
$$

In the general case $V(x, t)$, we can not expect to derive a TBC.
Use the symbolic calculus to determine ABCs.
High frequency solution: Engquist-Majda method
Admissible potentials class: repulsive potentials
Repulsive potential
V smooth and $x \partial_{x} V(x, t)>0$ for $x \in \bar{\Omega}, t>0$.
$\mathrm{Ex}: V(x, t)=x^{2}$

ARTIFICIAL BOUNDARY CONDITIONS $\mathscr{V}=V(x, t)$

Two strategies

GAUGE CHANGE (STRATEGY 1)

- Change of unknown (this solves the case $\mathscr{V}=V(t)): v=e^{-i \nu} u$ with

$$
\mathcal{V}(x, t)=\int_{0}^{t} V(x, s) d s \text { where } f=2 i \partial_{x} \mathcal{V} \text { et } g=i \partial_{x}^{2} \mathcal{V}-\left(\partial_{x} \mathcal{V}\right)^{2}
$$

- We work with the equation for v :

$$
i \partial_{t} v+\partial_{x}^{2} v+f \partial_{x} v+g v=0
$$

DIRECT METHOD (STRATEGY 2)

- One works directly on the original equation

$$
i \partial_{t} u+\partial_{x}^{2} u+V u=0
$$

\Rightarrow Boundary conditions for $i \partial_{t} w+\partial_{x}^{2} w+A \partial_{x} w+B w=0$, with

- $A=0$ and $B=V(x, t)$ if $w=u$,
- $A=f(x, t)$ and $B=g(x, t)$ if $w=v e^{-i \nu} u$.

General Schrödinger operator: $L=i \partial_{t}+\partial_{x}^{2}+A \partial_{x}+B$

Artificial boundary conditions $\mathscr{V}=V(x, t)$

Factorization of the operator L (Nirenberg)

$$
L=i \partial_{t}+\partial_{x}^{2}+A \partial_{x}+B=\left(\partial_{x}+i \Lambda^{-}\right)\left(\partial_{x}+i \Lambda^{+}\right)+R
$$

$\Lambda^{ \pm} \in \mathrm{OPS}^{1 / 2}$ and $R \in \mathrm{OPS}^{-\infty}$
Λ^{+}has an asymptotic expansion in homogeneous symbols:

$$
\sigma\left(\Lambda^{+}\right)=\lambda^{+} \sim \sum_{j=0}^{+\infty} \lambda_{1 / 2-j / 2}^{+}=\lambda_{1 / 2}^{+}+\lambda_{0}^{+}+\lambda_{-1 / 2}^{+}+\lambda_{-1}^{+}+\cdots
$$

with $\lambda_{1 / 2-j / 2}^{+}$homogeneous of order $1 / 2-j / 2$.
ARTIFICIAL CONDITION : $\partial_{\mathbf{n}} w+i \Lambda^{+} w=0$

$$
\partial_{\mathbf{n}} w+i \sum_{j=0}^{+\infty} O p\left(\lambda_{1 / 2-j / 2}^{+}\right) w=0, \quad \text { on } \Sigma_{T}
$$

Approximated condition of order M:

$$
\partial_{\mathbf{n}} w_{M}+i \sum_{j=0}^{M-1} O p\left(\lambda_{1 / 2-j / 2}^{+}\right) w_{M}=0, \quad \text { on } \Sigma_{T}
$$

Artificial boundary conditions

Identification of The involved Terms
Thanks to $\partial_{x} \Lambda^{+}=O p\left(\partial_{x} \Lambda^{+}\right)+\Lambda^{+} \partial_{x}$, we have

- $L=\partial_{x}^{2}+A \partial_{x}+i \partial_{t}+B$
- $\left(\partial_{x}+i \Lambda^{-}\right)\left(\partial_{x}+i \Lambda^{+}\right)=$

Artificial boundary conditions

Identification of The involved Terms
Thanks to $\partial_{x} \Lambda^{+}=O p\left(\partial_{x} \Lambda^{+}\right)+\Lambda^{+} \partial_{x}$, we have

- $L=\partial_{x}^{2}+A \partial_{x}+i \partial_{t}+B$
- $\left(\partial_{x}+i \Lambda^{-}\right)\left(\partial_{x}+i \Lambda^{+}\right)=\partial_{x}^{2}$

Artificial boundary conditions

Identification of the involved Terms
Thanks to $\partial_{x} \Lambda^{+}=O p\left(\partial_{x} \Lambda^{+}\right)+\Lambda^{+} \partial_{x}$, we have

- $L=\partial_{x}^{2}+A \partial_{x}+i \partial_{t}+B$
- $\left(\partial_{x}+i \Lambda^{-}\right)\left(\partial_{x}+i \Lambda^{+}\right)=\partial_{x}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{x}$

Artificial boundary conditions

Identification of the involved Terms
Thanks to $\partial_{x} \Lambda^{+}=O p\left(\partial_{x} \Lambda^{+}\right)+\Lambda^{+} \partial_{x}$, we have

- $L=\partial_{x}^{2}+A \partial_{x}+i \partial_{t}+B$
- $\left(\partial_{x}+i \Lambda^{-}\right)\left(\partial_{x}+i \Lambda^{+}\right)=\partial_{x}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{x}+i O p\left(\partial_{x} \lambda^{+}\right)-\Lambda^{-} \Lambda^{+}$

Artificial boundary conditions

Identification of the involved terms
Thanks to $\partial_{x} \Lambda^{+}=O p\left(\partial_{x} \Lambda^{+}\right)+\Lambda^{+} \partial_{x}$, we have

- $L=\partial_{x}^{2}+A \partial_{x}+i \partial_{t}+B$
- $\left(\partial_{x}+i \Lambda^{-}\right)\left(\partial_{x}+i \Lambda^{+}\right)=\partial_{x}^{2}+i\left(\Lambda^{+}+\Lambda^{-}\right) \partial_{x}+i O p\left(\partial_{x} \lambda^{+}\right)-\Lambda^{-} \Lambda^{+}$
- Identification of the coefficients (up to R)

$$
\begin{aligned}
& i\left(\Lambda^{-}+\Lambda^{+}\right)=A \\
& i O p\left(\partial_{x} \lambda^{+}\right)-\Lambda^{-} \Lambda^{+}=i \partial_{t}+B
\end{aligned}
$$

- Symbolic system

$$
\begin{aligned}
& i\left(\lambda^{-}+\lambda^{+}\right)=a \\
& i \partial_{x} \lambda^{+}-\sum_{\alpha=0}^{\infty} \frac{(-i)^{\alpha}}{\alpha!} \partial_{\tau}^{\alpha} \partial_{t}^{\alpha} \lambda^{+}=-\tau+b
\end{aligned}
$$

- Since $\lambda^{ \pm} \sim \sum_{j=0}^{+\infty} \lambda_{1 / 2-j / 2}^{ \pm}$, we compute $\lambda_{1 / 2-j / 2}^{ \pm}$by identification of the terms of same order in the system.

Artificial boundary conditions $\mathscr{V}=V(x, t)$

The principal symbol with negative real part characterizes the outgoing wave of u

- Strategy 1: Case $A=f$ and $B=g$. We choose

$$
\lambda_{1 / 2}^{+}=-\sqrt{-\tau}(S 1)
$$

- Strategy 2: Case $A=0$ and $B=V$. We choose

$$
\lambda_{1 / 2}^{+}=-\sqrt{-\tau+V}(S 2) .
$$

Remark: for the second strategy, we could also have chosen $\lambda_{1 / 2}^{+}=-\sqrt{-\tau}$. This choice would lead to a less accurate $A B C$ since it would give some symbols which are approx. of $-\sqrt{-\tau+V}$ when $|\tau| \rightarrow+\infty$.

ARTIFICIAL BOUNDARY CONDITIONS $\mathscr{V}=V(x, t)$

Strategy 1: Gauge change $v=e^{-i \mathcal{V}} u$

$$
\lambda_{1 / 2}^{+}=-\sqrt{-\tau}, \quad \lambda_{0}^{+}=\partial_{x} \mathcal{V}, \quad \lambda_{-1 / 2}^{+}=0, \quad \lambda_{-1}^{+}=\frac{i \partial_{x} V}{4 \tau}
$$

- Interpretation of symbols

$$
\begin{gathered}
O p(-\sqrt{-\tau})=e^{-3 i \pi / 4} \partial_{t}^{1 / 2} \\
O p\left(\frac{i \partial_{x} V}{4 \tau}\right)=\frac{\partial_{\mathbf{n}} V}{4} I_{t} \quad \text { or } \quad \operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} I_{t}
\end{gathered}
$$

Strategy 2: Direct Method $A=0, B=V$

$$
\lambda_{1 / 2}^{+}=-\sqrt{-\tau+V}, \quad \lambda_{0}^{+}=0, \quad \lambda_{-1 / 2}^{+}=0, \quad \lambda_{-1}^{+}=-\frac{i}{4} \frac{\partial_{x} V}{-\tau+V}
$$

- Interpretation of symbols

$$
\begin{gathered}
O p(-\sqrt{-\tau+V})=\sqrt{i \partial_{t}+V} \bmod O P S^{-3 / 2} \\
O p\left(\frac{\partial_{x} V}{-\tau+V}\right)=\partial_{\mathbf{n}} V\left(i \partial_{t}+V\right)^{-1} \bmod O P S^{-5 / 2}
\end{gathered}
$$

Comparison for $V(x, t)=x$

$$
\lambda^{+}=e^{2 i \pi / 3} \frac{\operatorname{Ai}^{\prime}\left((x-\tau) e^{-i \pi / 3}\right)}{\operatorname{Ai}\left((x-\tau) e^{-i \pi / 3}\right)}
$$

with

$$
\lambda=i \lambda_{1 / 2}^{+}+i \lambda_{-1}^{+}=-i \sqrt{-\tau+x}+\frac{1}{4} \frac{1}{-\tau+x}
$$

Abramowitz-Stegun : $\lambda^{+,(2)}$ is actually the asymptotic expansion of λ^{+}for large enough τ.

ARTIFICIAL BOUNDARY CONDITIONS $\mathscr{V}=V(x, t)$

- Strategy 1: ABC is $\partial_{\mathbf{n}} v+i \Lambda^{+} v=0$ on $\boldsymbol{\Sigma}_{\mathrm{T}}$. But $v(x, t)=e^{-i \mathcal{V}(x, t)} u(x, t)$. Therefore, for u, retaining the M first symbols, we have

$$
\partial_{\mathbf{n}} u-i\left(\partial_{x} \mathcal{V}\right) u+i e^{i \nu} \sum_{j=0}^{M-1} O p\left(\lambda_{1 / 2-j / 2}^{+,(1)}\right)\left(e^{-i \mathcal{V}} u\right)=0, \quad \text { on } \Sigma_{T},
$$

- Strategy 2: ABC is $\partial_{\mathbf{n}} u+i \Lambda^{+} u=0$

$$
\partial_{\mathbf{n}} u+i \sum_{j=0}^{M-1} O p\left(\lambda_{1 / 2-j / 2}^{+,(2)}\right) u=0 \quad \text { on } \Sigma_{T}
$$

ARTIFICIAL BOUNDARY CONDITIONS $\mathscr{V}=V(x, t)$

－Strategy 1：For reason of symmetry and to get adequate estimates，the $A B C$ of $4^{\text {th }}$ order $A B C_{1}^{4}$ is

$$
\begin{aligned}
\partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}(x, t)} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}(x, t)} u\right) & \left(\mathrm{ABC}_{1}^{2}\right) \\
& +i \operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{i \mathcal{V}(x, t)} I_{t}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{-i \mathcal{V}(x, t)} u\right)=0
\end{aligned}
$$

－Strategy 2：The $A B C$ of $4^{\text {th }}$ order $A B C_{2}^{4}$ is

$$
\partial_{\mathbf{n}} u+i \sqrt{i \partial_{t}+V} u\left(\mathrm{ABC}_{2}^{2}\right)+\frac{i}{4} \partial_{\mathbf{n}} V\left(i \partial_{t}+V\right)^{-1} u=0
$$

ARTIFICIAL BOUNDARY CONDITIONS $\mathscr{V}=V(x, t)$

Proposition Let $u_{0} \in L^{2}(\Omega)$ s.t. $\operatorname{Supp}\left(u_{0}\right) \subset \Omega$. Let $V \in \mathcal{C}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{+}, \mathbb{R}\right)$ and u a solution of

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+V u=0, \quad \text { in } \Omega_{T} \\
\partial_{\mathbf{n}} u+\Lambda_{1}^{M} u=0, \quad \text { on } \Sigma_{T} \\
u(x, 0)=u_{0}(x), \quad \forall x \in \Omega
\end{array}\right.
$$

where

$$
\Lambda_{1}^{2}\left(x, t, \partial_{t}\right) u=e^{-i \pi / 4} e^{i \mathcal{V}(x, t)} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}(x, t)} u\right)
$$

and

$$
\Lambda_{1}^{4}\left(x, t, \partial_{t}\right) u=\Lambda_{1}^{2}\left(x, t, \partial_{t}\right) u+i \operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{i \mathcal{V}(x, t)} I_{t}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{-i \mathcal{V}(x, t)} u\right)
$$

Then, u fulfils the following energy bound

$$
\forall t>0, \quad\|u(t)\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}
$$

for $M=2$ and for $M=4$ if $\operatorname{sg}\left(\partial_{\mathbf{n}} V\right)$ is constant on Σ_{T}, which implies the uniqueness of the solution.

ARTIFICIAL BOUNDARY CONDITIONS $\mathscr{V}=V(x, t)$

In the case of strategy 2, we have

$$
\partial_{\mathbf{n}} u+\Lambda_{2}^{M} u=0, \quad \text { on } \Sigma_{T},
$$

with

$$
\Lambda_{2}^{2}\left(x, t, \partial_{t}\right) u=O p(-i \sqrt{-\tau+V}) u
$$

and

$$
\Lambda_{2}^{4}\left(x, t, \partial_{t}\right) u=\Lambda_{2}^{2}\left(x, t, \partial_{t}\right) u+\frac{1}{4} O p\left(\frac{\partial_{x} V}{-\tau+V}\right) u
$$

If $V(x, t)=V(x), A B C_{2}^{M}$ and $A B C_{1}^{M}$ are strictly equivalent.

Conclusion

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+V u=0, \quad \text { in } \Omega_{T} \\
u(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

with ABC on Σ_{T}, for $M=2$ or 4

Strategy 1

$$
\begin{array}{ll}
A B C_{1}^{2} & \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}} u\right)=0 \\
A B C_{1}^{4} & \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}} u\right) \\
& +i \operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{i \mathcal{V}(x, t)} I_{t}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{-i \mathcal{V}(x, t)} u\right)=0
\end{array}
$$

or

Strategy 2

$$
\begin{array}{ll}
A B C_{2}^{2} & \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u=0 \\
A B C_{2}^{4} & \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u \\
& +\operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2}\left(i \partial_{t}+V\right)^{-1}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} u\right)=0
\end{array}
$$

Numerical schemes

Let $\Delta t=T / N$ be the time step and let us set $t_{n}=n \Delta t$ and u^{n} stands for an approximation of $u\left(t_{n}\right)$.

- Time approximation Semi-discrete Crank-Nicolson symmetrical scheme

$$
i \frac{u^{n+1}-u^{n}}{\Delta t}+\partial_{x}^{2}\left(\frac{u^{n+1}+u^{n}}{2}\right)+\frac{V^{n+1}+V^{n}}{2} \frac{u^{n+1}+u^{n}}{2}=0
$$

for $n=0, \ldots, N-1$.
Implementation

$$
2 i \frac{v^{n+1}}{\Delta t}+\partial_{x}^{2} v^{n+1}+W^{n+1} v^{n+1}=2 i \frac{u^{n}}{\Delta t}
$$

with $v^{n+1}=\left(u^{n+1}+u^{n}\right) / 2=u^{n+1 / 2}, W^{n+1}=\left(V^{n+1}+V^{n}\right) / 2=V^{n+1 / 2}$.
The symmetry is fundamental to guarantee the stability of the numerical scheme.

- Space approximation Finite Element Method
- ABC_{1}^{M} : discrete convolutions
- ABC_{2}^{M} : rational approximation of the square root (Padé)

Numerical schemes : $A B C_{1}^{M}$

Strategy 1

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+V u=0, \quad \text { in } \Omega_{T} \\
\partial_{\mathbf{n}} u+\Lambda_{1}^{M} u=0, \quad \text { on } \Sigma_{T}, \text { for } M=2 \text { ou } 4 \\
u(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

with

$$
\begin{array}{ll}
A B C_{1}^{2} & \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}} u\right)=0 \\
A B C_{1}^{4} & \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}} u\right) \\
& +i \operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{i \mathcal{V}(x, t)} I_{t}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} e^{-i \mathcal{V}(x, t)} u\right)=0
\end{array}
$$

Numerical schemes

Numerical scheme for ABC_{1}^{M} : Discrete convolutions

Approximations of $\partial_{t}^{1 / 2}, I_{t}^{1 / 2}$ and I_{t} in agreement with the Crank-Nicolson scheme \Rightarrow trapezoidal formula [Schmidt-Yevick (97), Antoine-Besse (03)]

$$
\begin{aligned}
\partial_{t}^{1 / 2} f\left(t^{n}\right) & \approx \sqrt{\frac{2}{\Delta t}} \sum_{k=0}^{n} \beta_{n-k} f^{k} \\
I_{t}^{1 / 2} f\left(t^{n}\right) & \approx \sqrt{\frac{\Delta t}{2}} \sum_{k=0}^{n} \alpha_{n-k} f^{k} \\
I_{t} f\left(t^{n}\right) & \approx \frac{\Delta t}{2} \sum_{k=0}^{n} \gamma_{n-k} f^{k}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)=\left(1,1, \frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \ldots\right) \\
\beta_{k}=(-1)^{k} \alpha_{k}, \quad \forall k \geq 0 \\
\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots\right)=(1,2,2, \ldots)
\end{array}\right.
$$

Proposition

Let u^{n} be the solution to the problem with the boundary conditions ABC_{1}^{M} discretized with discrete convolutions. For $M=2$, we have

$$
\forall n \in\{0, \cdots, N\}, \quad\left\|u^{n}\right\|_{L^{2}(\Omega)} \leq\left\|u^{0}\right\|_{L^{2}(\Omega)},
$$

and if $\partial_{\mathrm{n}} W^{k}$ has a constant sign, also true for $M=4$.
\Rightarrow The unconditional stability of the scheme is preserved.

Numerical schemes : $A B C_{2}^{M}$

Strategy 2

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+V u=0, \quad \text { in } \Omega_{T} \\
\partial_{\mathbf{n}} u+\Lambda_{2}^{M} u=0, \quad \text { on } \Sigma_{T}, \text { for } M=2 \text { or } 4 \\
u(\cdot, 0)=u_{0}, \quad \text { in } \Omega
\end{array}\right.
$$

with

$$
\begin{array}{ll}
A B C_{2}^{2} & \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u=0 \\
A B C_{2}^{4} & \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u \\
& +\operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2}\left(i \partial_{t}+V\right)^{-1}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} u\right)=0 .
\end{array}
$$

NUMERICAL SCHEMES

Numerical scheme for ABC_{2}^{M}
The square root is approximated by Padé approximants of order m :

$$
\sqrt{z} \approx R_{m}(z)=\sum_{k=0}^{m} a_{k}^{m}-\sum_{k=1}^{m} \frac{a_{k}^{m} d_{k}^{m}}{z+d_{k}^{m}}
$$

with $a_{0}^{m}=0 \quad, \quad a_{k}^{m}=\frac{1}{m \cos ^{2}\left(\frac{(2 k+1) \pi}{4 m}\right)} \quad, \quad d_{k}^{m}=\tan ^{2}\left(\frac{(2 k+1) \pi}{4 m}\right)$.
For the conditions ABC_{2}^{M} :

$$
\begin{gathered}
\sqrt{i \partial_{t}+V} \leadsto R_{m}\left(i \partial_{t}+V\right) \\
\Rightarrow \sqrt{i \partial_{t}+V} \approx\left(\sum_{k=0}^{m} a_{k}^{m}\right) u-\sum_{k=1}^{m} a_{k}^{m} d_{k}^{m} \underbrace{\left(i \partial_{t}+V+d_{k}^{m}\right)^{-1} u}_{\varphi_{k}}
\end{gathered}
$$

Lindmann's trick (85) : introduction of auxiliary functions

$$
i \partial_{t} \varphi_{k}+\left(V+d_{k}^{m}\right) \varphi_{k}=u, \quad \text { pour } 1 \leq k \leq m, \text { in } x=x_{l, r}
$$

with $\varphi_{k}(x, 0)=0$.

The ABC becomes for the semi-discrete scheme

$$
\left\{\begin{array}{l}
\partial_{\mathbf{n}} v^{n+1}-i \sum_{k=0}^{m} a_{k}^{m} v^{n+1}+i \sum_{k=1}^{m} a_{k}^{m} d_{k}^{m} \varphi_{k}^{n+1 / 2}=0 \\
i \frac{\varphi_{k}^{n+1}-\varphi_{k}^{n}}{\Delta t}+\left(W^{n+1}+d_{k}^{m}\right) \varphi_{k}^{n+1 / 2}=v^{n+1} \\
\varphi_{k}^{0}=0
\end{array}\right.
$$

For $A B C_{2}^{4}$

$$
\partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u+\operatorname{sg}\left(\partial_{\mathbf{n}} V\right) \frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2}\left(i \partial_{t}+V\right)^{-1}\left(\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} u\right)=0
$$

we introduce an auxiliary function ψ s.t.

$$
\left(i \partial_{t}+V\right) \psi=\frac{\sqrt{\left|\partial_{\mathbf{n}} V\right|}}{2} u
$$

No stability results

Applications $\mathscr{V}=x^{2}$

Exact solutions profile
Gaussian initial data $u_{0}(x)=e^{-x^{2}+i k_{0} x}, k_{0}=10$.

$$
\begin{gathered}
V(x)=x^{2} \\
\Omega_{T}=[-5 ; 15] \times[0,1] \\
\text { repulsive potential }
\end{gathered}
$$

Evolution for different times

Plot of $|u|$ in plane (x, t)

Applications $\mathscr{V}=x^{2}$

Applications $\mathscr{V}=x^{2}$

ABC^{0}

ABC^{2}

Applications $\mathscr{V}=x(2+\cos (2 t))$
Application to a potential $V(x, t): \mathscr{V}=x(2+\cos (2 t))$
Computational domain $\Omega_{T}=[-5 ; 15] \times[0 ; 2.5]$
$\Delta x=2.5 \cdot 10^{-3}, \Delta t=10^{-3}, 50$ Padé functions,

Reference solution computed on a wide domain [-25; 115]

Truncated reference solution

$\mathrm{ABC}_{1}^{2} \quad 10^{-4}$

$\mathrm{ABC}_{2}^{2} \quad 10^{-4}$

Logarithmic scale

$\mathrm{ABC}_{1}^{4} \quad 10^{-4}$

$\mathrm{ABC}_{2}^{4} \quad 10^{-5.5}$

Applications $\mathscr{V}=x(2+\cos (2 t))$
Application to a potential $V(x, t): \mathscr{V}=x(2+\cos (2 t))$
Computational domain $\Omega_{T}=[-5 ; 15] \times[0 ; 2.5]$

TBC $10^{-1.5}$

Truncated reference solution

$\mathrm{ABC}_{1}^{2} \quad 10^{-4}$

$\mathrm{ABC}_{2}^{2} \quad 10^{-4}$

Logarithmic scale

$\mathrm{ABC}_{2}^{4} \quad 10^{-5.5}$

Transparent conditions in linear case

- $\mathscr{V}=0$ WITHOUT POTENTIAL

$$
\partial_{\mathbf{n}} u+e^{-i \pi / 4} \partial_{t}^{1 / 2} u=0, \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V$ CONSTANT

$$
\partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i t V} \partial_{t}^{1 / 2}\left(e^{-i t V} u\right)=0, \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V(t):$ GAUGE CHANGE

Setting $v(x, t)=u(x, t) e^{-i \mathcal{V}(t)} \quad$ with $\quad \mathcal{V}(t)=\int_{0}^{t} V(s) d s$,
then v is solution of the free-potential equation.

$$
\partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}(t)} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}(t)} u\right)=0, \quad \text { on } \Sigma_{T}
$$

Transparent conditions in linear case

- $\mathscr{V}=0$ WITHOUT POTENTIAL

$$
\partial_{\mathbf{n}} u+e^{-i \pi / 4} \partial_{t}^{1 / 2} u=0, \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V$ CONSTANT

$$
\partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i t V} \partial_{t}^{1 / 2}\left(e^{-i t V} u\right)=0, \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V(t):$ GAUGE CHANGE

Setting $v(x, t)=u(x, t) e^{-i \mathcal{V}(t)} \quad$ with $\quad \mathcal{V}(t)=\int_{0}^{t} V(s) d s$,
then v is solution of the free-potential equation.

$$
\partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}(t)} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}(t)} u\right)=0, \quad \text { on } \Sigma_{T}
$$

Transparent conditions in linear case

- $\mathscr{V}=0$ WITHOUT POTENTIAL

$$
\partial_{\mathbf{n}} u-i O p(\sqrt{-\tau}) u=0, \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V$ CONSTANT

$$
\partial_{\mathbf{n}} u-i e^{i t V} O p(\sqrt{-\tau})\left(e^{-i t V} u\right)=0 \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V(t):$ GAUGE CHANGE

Setting $v(x, t)=u(x, t) e^{-i \mathcal{V}(t)} \quad$ with $\quad \mathcal{V}(t)=\int_{0}^{t} V(s) d s$,
then v is solution of the free-potential equation.

$$
\partial_{\mathbf{n}} u-i e^{i \mathcal{V}(t)} O p(\sqrt{-\tau})\left(e^{-i \mathcal{V}(t)} u\right)=0, \quad \text { on } \Sigma_{T}
$$

Transparent conditions in linear case

- $\mathscr{V}=0$ WITHOUT POTENTIAL

$$
\partial_{\mathbf{n}} u-i O p(\sqrt{-\tau}) u=0, \quad \text { on } \Sigma_{T} .
$$

- $\mathscr{V}=V$ CONSTANT

$$
\partial_{\mathbf{n}} u-i e^{i t V} O p(\sqrt{-\tau})\left(e^{-i t V} u\right)=0 \quad \text { on } \Sigma_{T}
$$

$$
\partial_{\mathbf{n}} u-i O p(\sqrt{-\tau+V})(u)=0, \quad \text { on } \Sigma_{T}
$$

- $\mathscr{V}=V(t):$ GAUGE CHANGE

Setting $v(x, t)=u(x, t) e^{-i \mathcal{V}(t)} \quad$ with $\quad \mathcal{V}(t)=\int_{0}^{t} V(s) d s$,
then v is solution of the free-potential equation.

$$
\partial_{\mathbf{n}} u-i e^{i \mathcal{V}(t)} O p(\sqrt{-\tau})\left(e^{-i \mathcal{V}(t)} u\right)=0, \quad \text { on } \Sigma_{T}
$$

General potential $V=V(x, t)$

1) Gauge change

- $v(x, t)=e^{-i \mathcal{V}(x, t)} u(x, t), \quad$ with $\quad \mathcal{V}(x, t)=\int_{0}^{t} V(x, s) d s$.
- No longer exact
- Involves operators $e^{i \mathcal{V}(x, t)} O p(\sqrt{-\tau})\left(e^{-i \mathcal{V}(x, t)} u\right)$

$$
A B C_{1}^{4}: \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{\nu}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{\nu}} u\right)+i \frac{\partial_{\mathbf{n}} V}{4} e^{i \mathcal{\nu}} I_{t}\left(e^{-i \mathcal{\nu}} u\right)=0
$$

2) Direct method

- No gauge change
- Involves operators $O p(\sqrt{-\tau+V(x, t)})(u)$

$$
\widetilde{A B C_{2}^{4}}: \quad \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u+\frac{1}{4} \partial_{\mathbf{n}} V\left(i \partial_{t}+V\right)^{-1} u=0
$$

- Strategies equivalent for $V=V(x)$, non equivalent for $V=V(x, t)$
- In both cases, approximate boundary conditions, of different orders M.

Nonlinearity $f(u)=g\left(|u|^{2}\right)$

- Cubic $f(u)=q|u|^{2} /$ quintic $f(u)=q|u|^{4}$
- $f(u)=n_{2}|u|^{2}+n_{4}|u|^{4}, f(u)=\frac{|u|^{2}}{1+\sigma|u|^{2}}$
- Mixed: $\mathscr{V}=\alpha x^{2}+\beta|u|^{2}$

ABCs For a potential $V(x, t)$

$$
\begin{array}{ll}
A B C_{1}^{4}: & \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \nu} \partial_{t}^{1 / 2}\left(e^{-i \nu} u\right)+i \frac{\partial_{\mathbf{n}} V}{4} e^{i \nu} I_{t}\left(e^{-i \nu} u\right)=0 \\
\widetilde{A B C_{2}^{4}}: & \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+V} u+\frac{1}{4} \partial_{\mathbf{n}} V\left(i \partial_{t}+V\right)^{-1} u=0
\end{array}
$$

with the phase function: $\mathcal{V}(x, t)=\int_{0}^{t} V(x, s) d s$

NONLINEARITY $f(u)=g\left(|u|^{2}\right)$

- Cubic $f(u)=q|u|^{2} /$ quintic $f(u)=q|u|^{4}$
- $f(u)=n_{2}|u|^{2}+n_{4}|u|^{4}, f(u)=\frac{|u|^{2}}{1+\sigma|u|^{2}}$
- Mixed: $\mathscr{V}=\alpha x^{2}+\beta|u|^{2}$

ABCs FOR A NONLINEARITY

$N L A B C_{1}^{4}: \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{\nu}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{\nu}} u\right)+i \frac{\partial_{\mathbf{n}} f(u)}{4} e^{i \nu} I_{t}\left(e^{-i \nu} u\right)=0$
$\widetilde{N L A B C_{2}^{4}}: \quad \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+f(u)} u+\frac{1}{4} \partial_{\mathbf{n}} f(u)\left(i \partial_{t}+f(u)\right)^{-1} u=0$
New phase function: $\mathcal{V}(x, t, u)=\int_{0}^{t} f(x, u(x, s)) d s$

A PRIORI ESTIMATES

Proposition (NLABC ${ }_{1}^{2}$)

Let $u_{0} \in L^{2}(\Omega)$ be compactly supported in Ω, and let $f \in C(\mathbb{R} ; \mathbb{R})$.
Assume that there exists a solution $u \in C^{1}(] 0 ; T\left[; H^{1}(\Omega)\right)$ of the problem:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+f(u) u=0, \quad \text { in } \Omega_{T} \tag{1}\\
\partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{\nu}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{\nu}} u\right)=0, \quad \text { on } \Sigma_{T} \\
u(x, 0)=u_{0}(x), \quad \text { on } \Omega
\end{array}\right.
$$

where $\mathcal{V}(x, t, u)=\int_{0}^{t} f(x, u)(x, s) d s$.
Then, u satisfies:

$$
\forall t>0, \quad\|u(t)\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)} .
$$

Fixed point method

Duràn-SANZ-SERNA SCHEME

$$
i \frac{u^{n+1}-u^{n}}{\Delta t}+\partial_{x}^{2} \frac{u^{n+1}+u^{n}}{2}+f\left(\frac{u^{n+1}+u^{n}}{2}\right) \frac{u^{n+1}+u^{n}}{2}=0
$$

Scheme

$$
\begin{cases}\frac{2 i}{\Delta t} v^{n+1}+\partial_{x}^{2} v^{n+1}+f\left(v^{n+1}\right) v^{n+1}=\frac{2 i}{\Delta t} u^{n}, & \text { on } \Omega_{T}, \\ \partial_{\mathbf{n}} v^{n+1}+\Lambda_{p}^{M, n+1} v^{n+1}=0, & \text { on } \Sigma_{T}, \quad p=1,2 \\ + \text { I.C. } & \end{cases}
$$

with $v^{n+1}=u^{n+1 / 2}=\frac{u^{n+1}+u^{n}}{2}$.
Discretized ABC

- discrete convolution (gauge change)
- or Padé approximants (direct method)

RELAXATION METHOD

- Principle: Solve the equation $i \partial_{t} u+\Delta u+f(u) u=0$ through the resolution of the system:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u+\Upsilon u=0, \quad \text { on } \Omega_{T} \\
\Upsilon=f(u), \quad \text { on } \Omega_{T}
\end{array}\right.
$$

- SEMI DISCRETIZATION

$$
\begin{cases}i \frac{u^{n+1}-u^{n}}{\Delta t}+\Delta u^{n+1 / 2}+\Upsilon^{n+1 / 2} u^{n+1 / 2}=0, \\ \Upsilon^{n+3 / 2}+\Upsilon^{n+1 / 2} & \text { for } 0 \leq n \leq N\end{cases}
$$

where $\Upsilon^{n+1 / 2}=\frac{\Upsilon^{n+1}+\Upsilon^{n}}{2}, \Upsilon^{-1 / 2}=\Upsilon^{1 / 2}=f\left(u^{0}\right)$.

- Interests : Speed: equivalent to one fixed point iteration

Simplicity: same code as for a space- and timedepending potential $V(\mathbf{x}, t)$
Preservation of the invariants: mass, energy

Cubic potential $\mathscr{V}=q|u|^{2}$

Initial datum $u_{0}=\sqrt{\frac{2 a}{q}} \cdot \operatorname{sech}(\sqrt{a} x) \exp \left(i \frac{c}{2} x\right)$ (soliton) with $q=1, a=2, c=15$
$\Omega_{T}=[-10 ; 10] \times[0 ; 2], \Delta x=5 \cdot 10^{-3}, \Delta t=10^{-3}, 50$ Padé functions

PML

$N L A B C_{2}^{2}$

$N L A B C_{2}^{4}$

Relative L^{2} ERror for $\mathscr{V}=|u|^{2}$

Relative L^{2} error $\frac{\left\|u(t)-u_{e x}(t)\right\|_{L^{2}(\Omega)}}{\left\|u_{e x}(t)\right\|_{L^{2}(\Omega)}}$ for linear and nonlinear ABCs

- Schrödinger : Szeftel (06) (paradifferential technique), Zheng (06) : use of inverse scattering for cubic NLS, exact TBC
- modified KdV : Zheng (06)

$$
u_{t} \pm 6 u^{2} u_{x}+u_{x x x}=0
$$

Use of inverse scattering to get exact TBC. Example (Zheng) : solitary waves generated by an initial Gaussian profile $u_{0}(x)=\exp \left(-1.5 x^{2}\right)$.

ABCs in 2 D

Schrödinger 2D

$$
\begin{cases}i \partial_{t} u+\partial_{x}^{2} u+\partial_{y}^{2} u+V(x, y, t) u=0, & (x, y) \in \mathbb{R}^{2}, t>0 \\ u(x, y, 0)=u_{0}(x, y), & (x, y) \in \mathbb{R}^{2}\end{cases}
$$

with $\operatorname{Supp}\left(u_{0}\right) \subset \Omega$.
$\mathscr{V}=V(t):$ GAUGE CHANGE
Setting $\mathcal{V}(t)=\int_{0}^{t} V(s) d s$ and $v(x, y, t)=e^{-i \mathcal{V}(t)} u(x, y, t)$,
then v is solution of $i \partial_{t} v+\partial_{x}^{2} v+\partial_{y}^{2} v=0$.
Profile of solutions

In one dimension of space
－Domain $\Omega_{T}=\left[x_{\ell} ; x_{r}\right] \times[0 ; T]$
－Boundary $\Sigma=\left\{x_{\ell} ; x_{r}\right\}$
－Outwardly directed normal n directed according to x
－Fourier transform w．r．t．t（ x fixed）

In dimension two with straight boundary
－Domain：half－plane $\Omega=\{x<0\}$
－Normal n directed according to x
－Partial Fourier transform w．r．t．(t, y) （ x fixed）

$$
\partial_{x}^{2}+i \partial_{t}+\partial_{y}^{2}=0
$$

$i \partial_{t}+\partial_{y}^{2}$ plays the role of $i \partial_{t}$ in 1D
$\partial_{x}^{2} \quad$ plays the role of ∂_{x}^{2}

FACTORIZATION

- 1D without potential: $\partial_{x}^{2}+i \partial_{t}=\left(\partial_{\mathbf{n}}+i \sqrt{i \partial_{t}}\right)\left(\partial_{\mathbf{n}}-i \sqrt{i \partial_{t}}\right)$
- 1D with variable potential:

$$
\partial_{x}^{2}+i \partial_{t}+V=\left(\partial_{\mathbf{n}}+i \sqrt{i \partial_{t}+V}\right)\left(\partial_{\mathbf{n}}-i \sqrt{i \partial_{t}+V}\right)+R
$$

- 2D with straight boundary:

$$
\partial_{x}^{2}+i \partial_{t}+\partial_{y}^{2}+V=\left(\partial_{\mathbf{n}}+i \sqrt{i \partial_{t}+\partial_{y}^{2}+V}\right)\left(\partial_{\mathbf{n}}-i \sqrt{i \partial_{t}+\partial_{y}^{2}+V}\right)+R
$$

Transparent boundary condition when $\left.V\right|_{\{x \geq 0\}}=0$:

$$
\partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+\partial_{y}^{2}} u=0, \quad \text { on } \Sigma_{T} .
$$

FACTORIZATION

- 1D without potential: $\partial_{x}^{2}+i \partial_{t}=\left(\partial_{\mathbf{n}}+i \sqrt{i \partial_{t}}\right)\left(\partial_{\mathbf{n}}-i \sqrt{i \partial_{t}}\right)$
- 1D with variable potential:

$$
\partial_{x}^{2}+i \partial_{t}+V=\left(\partial_{\mathbf{n}}+i \sqrt{i \partial_{t}+V}\right)\left(\partial_{\mathbf{n}}-i \sqrt{i \partial_{t}+V}\right)+R
$$

- 2D with straight boundary:

$$
\partial_{x}^{2}+i \partial_{t}+\partial_{y}^{2}+V=\left(\partial_{\mathbf{n}}+i \sqrt{i \partial_{t}+\partial_{y}^{2}+V}\right)\left(\partial_{\mathbf{n}}-i \sqrt{i \partial_{t}+\partial_{y}^{2}+V}\right)+R
$$

Transparent boundary condition when $\left.V\right|_{\{x \geq 0\}}=0$:

$$
\partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+\partial_{y}^{2}} u=0, \quad \text { on } \Sigma_{T} .
$$

Bounded domain with straight boundary:
Singularities caused by corners

- Consideration of the geometry: convex domain of general, smooth boundary; curvature κ.

- Local parametrization of the boundary normal variable r, curvilinear abscissa s

$$
\Delta=\partial_{r}^{2}+\kappa_{r} \partial_{r}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)
$$

$\kappa_{r}=h^{-1} \kappa$: curvature on the parallel surface Σ_{r} to Σ $h(r, s)=1+r \kappa$

$$
\begin{gathered}
L=i \partial_{t}+\Delta+V \\
\Rightarrow \quad L=\partial_{r}^{2}+i \partial_{t}+\kappa_{r} \partial_{r}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)+V
\end{gathered}
$$

- Consideration of the geometry: convex domain of general, smooth boundary; curvature κ.

- Local parametrization of the boundary normal variable r, curvilinear abscissa s

$$
\Delta=\partial_{r}^{2}+\kappa_{r} \partial_{r}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)
$$

$\kappa_{r}=h^{-1} \kappa$: curvature on the parallel surface Σ_{r} to Σ $h(r, s)=1+r \kappa$

$$
\begin{gathered}
L=i \partial_{t}+\Delta+V \\
\Rightarrow \quad L=\partial_{r}^{2}+i \partial_{t}+\kappa_{r} \partial_{r}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)+V \\
L=\partial_{x}^{2}+i \partial_{t}+\partial_{y}^{2}+V
\end{gathered}
$$

- Partial Fourier transform w.r.t. (s, t); covariables (ξ, τ)

PSEUDODIFFERENTIAL OPERATORS IN 2D

$u(r, s, t)$

- Pseudodifferential operator $P\left(r, s, t, \partial_{s}, \partial_{t}\right)$ defined through its total symbol $p(r, s, t, \xi, \tau)$ in Fourier space for $\mathscr{F}_{(s, t)} \quad(\xi$ and τ covariables of s and $t)$

$$
\begin{aligned}
P\left(r, s, t, \partial_{s}, \partial_{t}\right) u(r, s, t) & =\mathscr{F}_{(s, t)}^{-1}(p(r, s, t, \xi, \tau) \hat{u}(r, \xi, \tau)) \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} p(r, s, t, \xi, \tau) \hat{u}(r, \xi, \tau) e^{i s \xi} e^{i t \tau} d \xi d \tau
\end{aligned}
$$

PSEUDODIFFERENTIAL OPERATORS IN 2D

$u(r, s, t)$

- Pseudodifferential operator $P\left(r, s, t, \partial_{s}, \partial_{t}\right)$ defined through its total symbol $p(r, s, t, \xi, \tau)$ in Fourier space for $\mathscr{F}_{(s, t)} \quad(\xi$ and τ covariables of s and $t)$

$$
\begin{aligned}
P\left(r, s, t, \partial_{s}, \partial_{t}\right) u(r, s, t) & =\mathscr{F}_{(s, t)}^{-1}(p(r, s, t, \xi, \tau) \hat{u}(r, \xi, \tau)) \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} p(r, s, t, \xi, \tau) \hat{u}(r, \xi, \tau) e^{i s \xi} e^{i t \tau} d \xi d \tau
\end{aligned}
$$

- Composition rule: $\sigma(A B) \sim \sum_{|\alpha|=0}^{+\infty} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_{(\xi, \tau)}^{\alpha} \sigma(A) \partial_{(s, t)}^{\alpha} \sigma(B)$
- Homogeneity according to the couple $\left(\xi^{2}, \tau\right): \sqrt{-\tau-\xi^{2}}$ is of order 1

Order $m: \quad f\left(r, s, t, \lambda \xi, \lambda^{2} \tau\right)=\lambda^{m} f(r, s, t, \xi, \tau)$

- Asymptotic expansion in homogeneous symbols: $P \in O P S^{m}$ if:

$$
p(r, s, t, \xi, \tau) \sim \sum_{j=0}^{+\infty} p_{m-j}(r, s, t, \xi, \tau)
$$

where p_{m-j} is homogeneous of order $m-j ; p_{m}$ is the principal symbol.

Two strategies

1 - Gauge change

- Change of unknown (which solve the case $\mathscr{V}=V(t)$)

$$
v=e^{-i \mathcal{V}} u \text { avec } \mathcal{V}(r, s, t)=\int_{0}^{t} V(r, s, \sigma) d \sigma
$$

- We work on the equation written for v :

$$
i \partial_{t} v+\partial_{r}^{2} v+\left(\kappa_{r}+F\right) \partial_{r} v+h^{-1} \partial_{s}\left(h^{-1} \partial_{s} v\right)+G v=0
$$

2 - Direct method

- We work directly on the original equation (with local coordinates)

$$
i \partial_{t} u+\partial_{r}^{2} u+\kappa_{r} \partial_{r} u+h^{-1} \partial_{s}\left(h^{-1} \partial_{s} u\right)+V u=0
$$

Two strategies

1 - Gauge change

- Change of unknown (which solve the case $\mathscr{V}=V(t)$)

$$
v=e^{-i \mathcal{V}} u \text { avec } \mathcal{V}(r, s, t)=\int_{0}^{t} V(r, s, \sigma) d \sigma
$$

- We work on the equation written for v :

$$
i \partial_{t} v+\partial_{r}^{2} v+\left(\kappa_{r}+F\right) \partial_{r} v+h^{-1} \partial_{s}\left(h^{-1} \partial_{s} v\right)+G v=0
$$

2 - Direct method

- We work directly on the original equation (with local coordinates)

$$
i \partial_{t} u+\partial_{r}^{2} u+\kappa_{r} \partial_{r} u+h^{-1} \partial_{s}\left(h^{-1} \partial_{s} u\right)+V u=0
$$

\Rightarrow Absorbing boundary condition for
$L w=i \partial_{t} w+\partial_{r}^{2} w+\left(\kappa_{r}+A\right) \partial_{r} w+h^{-1} \partial_{s}\left(h^{-1} \partial_{s} w\right)+B w=0, \quad$ with

- $A=F(r, s, t)$ and $B=G(r, s, t)$ if $w=v=e^{-i \nu_{u}}$
- $A=0 \quad$ and $B=V(r, s, t)$ if $w=u$,

Unification of both strategies: General Schrödinger operator:

$$
L=i \partial_{t}+\partial_{r}^{2}+\left(\kappa_{r}+A\right) \partial_{r}+h^{-1} \partial_{s}\left(h^{-1} \partial_{s}\right)+B
$$

Factorization of Nirenberg-type of operator L

$$
L=\left(\partial_{r}+i \Lambda^{-}\right)\left(\partial_{r}+i \Lambda^{+}\right)+R \quad \text { on } \Sigma_{r},
$$

where :
$\Lambda^{ \pm}\left(r, s, t, \partial_{s}, \partial_{t}\right) \in O P S^{1}$ is a pseudodifferential operator of order 1 , $R \in O P S^{-\infty}$,
and Λ^{+}admits the asymptotic expansion in homogeneous symbols:

$$
\sigma\left(\Lambda^{+}\right)=\lambda^{+} \sim \sum_{j=0}^{+\infty} \lambda_{1-j}^{+}=\lambda_{1}^{+}+\lambda_{0}^{+}+\lambda_{-1}^{+}+\lambda_{-2}^{+}+\ldots
$$

with λ_{1-j}^{+}homogeneous of order $1-j$ according to the couple $\left(\xi^{2}, \tau\right)$.
The knowledge of the symbols $\left(\lambda_{j}^{+}\right)$describes entirely the operator Λ^{+}.
Back on the surface Σ :

$$
\begin{gathered}
\widetilde{\Lambda^{+}}=\Lambda^{+}{ }_{\mid r=0} \\
\widetilde{\lambda}_{j}=\left(\lambda_{j}^{+}\right)_{\mid r=0}
\end{gathered}
$$

Absorbing boundary condition which expresses that the wave is outgoing:

$$
\begin{aligned}
\partial_{\mathbf{n}} w+i \widetilde{\Lambda^{+}} w & =0 \quad \text { where } \widetilde{\Lambda^{+}}
\end{aligned}=O p\left(\sum_{j=0}^{+\infty} \widetilde{\lambda}_{1-j}\right)
$$

Identification of the principal symbol λ_{1}^{+}
Outgoing wave $\operatorname{Im}\left(\lambda_{1}^{+}(s, t, \xi, \tau)\right) \leq 0, \quad$ for $|\tau| \gg 1$
Strategy $1 \quad \lambda_{1}^{+}=-\sqrt{-\tau-h^{-2} \xi^{2}}$
Strategy $2 \quad \lambda_{1}^{+}=-\sqrt{-\tau-h^{-2} \xi^{2}+i h^{-1}\left(\partial_{s} h^{-1}\right) \xi+V}$
Asymptotic expansion: $\widetilde{\lambda}_{j}$ are functions of $\sqrt{-\tau-\xi^{2}}$ (resp. $\sqrt{-\tau-\xi^{2}+V}$).
\Longrightarrow non local operators w.r.t to time AND space

Absorbing boundary condition which expresses that the wave is outgoing:

$$
\begin{aligned}
\partial_{\mathbf{n}} w+i \widetilde{\Lambda^{+}} w & =0 \quad \text { where } \quad \widetilde{\Lambda^{+}}
\end{aligned}=O p\left(\sum_{j=0}^{+\infty} \widetilde{\lambda}_{1-j}\right)
$$

Approximate condition of order M

Identification of the principal symbol λ_{1}^{+}
Outgoing wave $\operatorname{Im}\left(\lambda_{1}^{+}(s, t, \xi, \tau)\right) \leq 0, \quad$ for $|\tau| \gg 1$
Strategy $1 \quad \lambda_{1}^{+}=-\sqrt{-\tau-h^{-2} \xi^{2}}$
Strategy $2 \quad \lambda_{1}^{+}=-\sqrt{-\tau-h^{-2} \xi^{2}+i h^{-1}\left(\partial_{s} h^{-1}\right) \xi+V}$
Asymptotic expansion: $\widetilde{\lambda}_{j}$ are functions of $\sqrt{-\tau-\xi^{2}}$ (resp. $\sqrt{-\tau-\xi^{2}+V}$).
$\Longrightarrow \quad$ non local operators w.r.t to time AND space

LOCALIZATION: "TAYLOR" APPROACH

Approach valid for both strategies.

- Taylor expansion of the symbols, under the assumption $|\tau| \gg \xi^{2}$.

$$
-\tau-\xi^{2}+b=-\tau\left(1+\frac{\xi^{2}}{\tau}-\frac{b}{\tau}\right)
$$

Thereby:

$$
\sqrt{-\tau-\xi^{2}+b} \approx \sqrt{-\tau}\left(1+\frac{\xi^{2}}{2 \tau}-\frac{b}{2 \tau}\right)=\sqrt{-\tau}-\frac{\xi^{2}}{2} \frac{1}{\sqrt{-\tau}}+\frac{b}{2} \frac{1}{\sqrt{-\tau}}
$$

- Then

$$
\begin{array}{ll}
O p(\sqrt{-\tau})=e^{i \pi / 4} \partial_{t}^{1 / 2}, & O p(\xi)=-i \partial_{s}, \\
O p\left(\frac{1}{\sqrt{-\tau}}\right)=e^{-i \pi / 4} I_{t}^{1 / 2}, & O p\left(\xi^{2}\right)=-\partial_{s}^{2}=-\Delta_{\Sigma}, \\
O p\left(\frac{1}{\tau}\right)=i I_{t} &
\end{array}
$$

\Longrightarrow The operators are localized in space only

Localization using Padé approximants

We approximate $A B C_{2}^{1}$ (direct method) : $\partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+\Delta_{\Sigma}+V} u=0, \quad$ on Σ_{T}.

PADÉ APPROXIMANTS OF ORDER m

$$
\sqrt{z} \approx R_{m}(z)=\sum_{k=1}^{m} \frac{a_{k}^{m} z}{z+d_{k}^{m}}=\sum_{k=0}^{m} a_{k}^{m}-\sum_{k=1}^{m} \frac{a_{k}^{m} d_{k}^{m}}{z+d_{k}^{m}}
$$

$A B C_{2}^{1}$ becomes $A B C_{2, P}^{1}: \quad \partial_{\mathbf{n}} u-i R_{m}\left(i \partial_{t}+\Delta_{\Sigma}+V\right) u=0$

$$
\partial_{\mathbf{n}} u-i\left(\sum_{k=0}^{m} a_{k}^{m}\right) u+i \sum_{k=1}^{m} a_{k}^{m} d_{k}^{m} \underbrace{\left(i \partial_{t}+\Delta_{\Sigma}+V+d_{k}^{m}\right)^{-1} u}_{\varphi_{k}}=0
$$

We introduce m auxiliary functions defined on Σ

$$
\left(i \partial_{t}+\Delta_{\Sigma}+V+d_{k}^{m}\right) \varphi_{k}=u, \quad 1 \leq k \leq m
$$

We get a coupling between u and $\left(\varphi_{k}\right)_{1 \leq k \leq m}$ on Σ

$$
\left\{\begin{array}{l}
\left(\sum_{k=0}^{m} a_{k}^{m}\right) u-\sum_{k=1}^{m} a_{k}^{m} d_{k}^{m} \varphi_{k} \\
i \partial_{t} \varphi_{k}+\Delta_{\Sigma} \varphi_{k}+\left(V+d_{k}^{m}\right) \varphi_{k}=u, \quad 1 \leq k \leq m
\end{array}\right.
$$

\Longrightarrow The operators are localized in space AND time

Expression of the ABCs: Taylorapproach

- Gauge change
$\mathrm{ABC}_{1, T}^{2} \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{\nu}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{\nu}} u\right)+\frac{\kappa}{2} u$
$\mathrm{ABC}_{1, T}^{3}$

$$
\begin{aligned}
& -e^{i \pi / 4} e^{i \mathcal{V}}\left(\frac{\kappa^{2}}{8}+\frac{\Delta_{\Sigma}}{2}+i \partial_{s} \mathcal{V} \partial_{s}+\frac{1}{2}\left(i \partial_{s}^{2} \mathcal{V}-\left(\partial_{s} \mathcal{V}\right)^{2}\right)\right) I_{t}^{1 / 2}\left(e^{-i \mathcal{V}} u\right) \\
& +i e^{i \mathcal{V}}\left(\frac{\partial_{s}\left(\kappa \partial_{s}\right)}{2}+\frac{\kappa^{3}+\partial_{s}^{2} \kappa}{8}+\frac{i \partial_{s} \kappa \partial_{s} \mathcal{V}}{2}\right) I_{t}\left(e^{-i \mathcal{V}} u\right) \\
& -i \frac{\operatorname{sg}\left(\partial_{\mathbf{n}} V\right)}{4} \sqrt{\left|\partial_{\mathbf{n}} V\right|} e^{i \mathcal{V}} I_{t}\left(\sqrt{\left|\partial_{\mathbf{n}} V\right|} e^{-i \mathcal{\nu}} u\right)=0
\end{aligned}
$$

- Direct method
$\mathrm{ABC}_{2, T}^{2} \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} \partial_{t}^{1 / 2} u+\frac{\kappa}{2} u$
$\mathrm{ABC}_{2, T}^{3} \quad-e^{i \pi / 4}\left(\frac{\kappa^{2}}{8}+\frac{\Delta_{\Sigma}}{2}\right) I_{t}^{1 / 2} u-e^{i \pi / 4} \frac{\operatorname{sg}(V)}{2} \sqrt{|V|} I_{t}^{1 / 2}(\sqrt{|V|} u)$
$\mathrm{ABC}_{2, T}^{4}$

$$
+i\left(\frac{\partial_{s}\left(\kappa \partial_{s}\right)}{2}+\frac{\kappa^{3}+\partial_{s}^{2} \kappa}{8}\right) I_{t} u-i \frac{\operatorname{sg}\left(\partial_{\mathbf{n}} V\right)}{4} \sqrt{\left|\partial_{\mathbf{n}} V\right|} I_{t}\left(\sqrt{\left|\partial_{\mathbf{n}} V\right|} u\right)=0
$$

Expression of the ABCs: Padé approach

- Gauge change

$$
\begin{array}{rlrl}
\mathrm{ABC}_{1, P}^{1} & \partial_{\mathbf{n}} u & -i e^{i \nu} \sqrt{i \partial_{t}+\Delta_{\Sigma}}\left(e^{-i \nu} u\right) \\
\mathrm{ABC}_{1, P}^{2} & & +\frac{\kappa}{2} u+\partial_{s} \mathcal{V} e^{i \nu} \partial_{s}\left(i \partial_{t}+\Delta_{\Sigma}\right)^{-1 / 2}\left(e^{-i \mathcal{\nu}} u\right) \\
& -\frac{\kappa}{2} e^{i \nu}\left(i \partial_{t}+\Delta_{\Sigma}\right)^{-1} \Delta_{\Sigma}\left(e^{-i \nu} u\right)=0
\end{array}
$$

- Direct method

$$
\begin{aligned}
\mathrm{ABC}_{2, P}^{1} & \partial_{\mathbf{n}} u & -i \sqrt{i \partial_{t}+\Delta_{\Sigma}+V} u \\
\mathrm{ABC}_{2, P}^{2} & & +\frac{\kappa}{2} u-\frac{\kappa}{2}\left(i \partial_{t}+\Delta_{\Sigma}+V\right)^{-1} \Delta_{\Sigma} u=0
\end{aligned}
$$

A PRIORI ESTIMATES

For conditions $A B C_{1, T}^{M}$ and $A B C_{2, T}^{M}$ (Taylor)

Proposition

Let $u_{0} \in L^{2}(\Omega)$ s.t. $\operatorname{Supp}\left(u_{0}\right) \subset \Omega$. Let $V \in C^{\infty}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}, \mathbb{R}\right)$ and u a solution of

$$
\left\{\begin{array}{l}
i \partial_{t} u+\partial_{x}^{2} u+V u=0, \quad \text { in } \Omega_{T}, \\
\partial_{\mathbf{n}} u+\Lambda_{j, T}^{M} u=0, \quad \text { on } \Sigma_{T}, \quad j=1,2, \\
u(x, 0)=u_{0}(x), \quad \forall x \in \Omega .
\end{array}\right.
$$

We assume that we are in the quasi-hyperbolic area $\mathcal{H}=\left\{-\tau-\xi^{2}>0\right\}$.
Then, u fulfills the following energy bound

$$
\begin{equation*}
\forall t>0, \quad\|u(t)\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}, \tag{EI}
\end{equation*}
$$

- for $M=2$,
- for $M=3$ if V is positive on $\Sigma\left(A B C_{2, T}^{3}\right)$ or if V and Ω are radially symmetrical $\left(A B C_{1, T}^{3}\right)$,
- for $M=4$ if $\partial_{\mathbf{n}} V$ is of constant sign on Σ, and if furthermore $\partial_{\mathbf{n}} V$ is positive on $\Sigma\left(A B C_{2, T}^{4}\right)$ or if the problem is radially symmetrical $\left(A B C_{1, T}^{4}\right)$,
which implies the uniqueness of the solution.

Time step $\Delta t=T / N, \quad t_{n}=n \Delta t$,
$u^{n}(r, s) \approx u\left(r, s, t_{n}\right)$ for $0 \leq n \leq N$.

Interior equation:

Semi discrete Crank-Nicolson scheme: symmetrical, inconditionally stable

$$
i \frac{u^{n+1}-u^{n}}{\Delta t}+\Delta \frac{u^{n+1}+u^{n}}{2}+\frac{V^{n+1}+V^{n}}{2} \frac{u^{n+1}+u^{n}}{2}=0
$$

for $n=0, \ldots, N-1$.
Implementation:

$$
\frac{2 i}{\Delta t} v^{n+1}+\Delta v^{n+1}+V^{n+1 / 2} v^{n+1}=\frac{2 i}{\Delta t} u^{n}
$$

with $v^{n+1}=u^{n+1 / 2}=\frac{u^{n+1}+u^{n}}{2}, \quad V^{n+1 / 2}=\frac{V^{n+1}+V^{n}}{2}$.
Space discretization : Finite Element Method

ABCs of TAYLOR APPROACH

$$
\begin{gathered}
A B C_{1, T}^{2}: \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \mathcal{V}} \partial_{t}^{1 / 2}\left(e^{-i \mathcal{V}} u\right)+\frac{\kappa}{2} u=0, \quad \text { on } \Sigma_{T} \\
\partial_{\mathbf{n}} v^{n+1}+e^{-i \pi / 4} e^{i \mathscr{W}^{n+1}} \sqrt{\frac{2}{\Delta t}} \sum_{k=0}^{n+1} \beta_{n+1-k} e^{-i \mathscr{W}^{k}} v^{k}+\frac{\kappa}{2} v^{n+1}=0, \quad n \geq 0 . \\
\partial_{\mathbf{n}} v^{n+1}+\left(e^{-i \pi / 4} \beta_{0}+\frac{\kappa}{2}\right) v^{n+1}+e^{-i \pi / 4} e^{i \mathscr{W}^{n+1}} \sqrt{\frac{2}{\Delta t}} \sum_{k=0}^{n} \beta_{n+1-k} e^{-i \mathscr{W}^{k}} v^{k}=0 .
\end{gathered}
$$

Proposition

For discretized boundary conditions $A B C_{1, T}^{M}$ or $A B C_{2, T}^{M}$, we have

$$
\begin{equation*}
\forall n \in\{0, \ldots, N\}, \quad\left\|u^{n}\right\|_{L^{2}(\Omega)} \leq\left\|u^{0}\right\|_{L^{2}(\Omega)} \tag{2}
\end{equation*}
$$

under the semi discrete assumptions equivalent to those of the continuous case.
The inconditional stability of the scheme is preserved.

ABCs of the Padé approach

System associated to the boundary condition $A B C_{2, P}^{1}$:
$\partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+\Delta_{\Sigma}+V} u=0$

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u+V u=0, \quad \text { on } \Omega_{T}, \\
\partial_{\mathbf{n}} u-i\left(\sum_{k=0}^{m} a_{k}^{m}\right) u+i \sum_{k=0}^{m} a_{k}^{m} d_{k}^{m} \varphi_{k}=0, \quad \text { on } \Sigma_{T}, \\
\left(i \partial_{t}+\Delta_{\Sigma}+V+d_{k}^{m}\right) \varphi_{k}=u, \quad \text { on } \Sigma_{T}, \quad \text { pour } 1 \leq k \leq m
\end{array}\right.
$$

Crank-Nicolson scheme $(m+1$ equations $)$:

$$
\left\{\begin{array}{l}
\frac{2 i}{\Delta t} u^{n+1 / 2}+\Delta u^{n+1 / 2}+V^{n+1 / 2} u^{n+1 / 2}=\frac{2 i}{\Delta t} u^{n}, \quad \text { on } \Omega, \\
\partial_{\mathbf{n}} u^{n+1 / 2}-i\left(\sum_{k=0}^{m} a_{k}^{m}\right) u^{n+1 / 2}+i \sum_{k=0}^{m} a_{k}^{m} d_{k}^{m} \varphi_{k}^{n+1 / 2}=0, \quad \text { on } \Sigma, \\
\frac{2 i}{\Delta t} \varphi_{k}^{n+1 / 2}+\Delta_{\Sigma} \varphi_{k}^{n+1 / 2}+V^{n+1 / 2} \varphi_{k}^{n+1 / 2}+d_{k}^{m} \varphi_{k}^{n+1 / 2}=u^{n+1 / 2}+\frac{2 i}{\Delta t} \varphi_{k}^{n}, \quad \text { on } \Sigma .
\end{array}\right.
$$

- System in $\left(u^{n+1 / 2}, \varphi_{1}^{n+1 / 2}, \ldots, \varphi_{m}^{n+1 / 2}\right)$, coupled through the boundary Σ.
- Entirely local / No stability result

Numerical examples

Initial datum: $u_{0}(x, y)=e^{-\left(x^{2}+y^{2}\right)-i k_{0} x}$,
with $k_{0}=10$
$\Delta t=10^{-3}, \quad T=1$
Disk meshed with 1700000 triangles
25 Padé functions
Logarithmic levels, threshold 10^{-4}
Domains: disk / mediator / "smoothed square"

Potential on disk

Profile of an approximate SOLUTION

$$
\begin{aligned}
& V(r)=5 r^{2} \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

TAYLOR APPROACH

Condition without potential

Padé approach

Gauge change

$A B C_{1, T}^{4}$

$A B C_{1, P}^{2}$

DIRECT METHOD

$A B C_{2, T}^{4}$

$A B C_{2, P}^{2}$

Initial Datum
Profile of the POTENTIAL

$$
V(x, y)=5 \sqrt{x^{2}+y^{2}}
$$

Potential at $t=0$

$$
\begin{gathered}
V(x, y, t)= \\
5\left(x^{2}+y^{2}\right)(1+\cos (4 \pi t))
\end{gathered}
$$

$$
-3
$$

$A B C_{2, P}^{2}$
$A B C_{1, T}^{4}$

Extension to nonlinearities (2D CASE)

$$
\mathcal{V}(x, y, t)=\int_{0}^{t} f(u)
$$

- Taylor approach, gauge change
$N L A B C_{1, T}^{2} \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} e^{i \nu} \partial_{t}^{1 / 2}\left(e^{-i \nu} u\right)+\frac{\kappa}{2} u=0$
- TAYLOR APPROACH, DIRECT METHOD
$N L A B C_{2, T}^{2} \quad \partial_{\mathbf{n}} u+e^{-i \pi / 4} \partial_{t}^{1 / 2} u+\frac{\kappa}{2} u$
$N L A B C_{2, T}^{3} \quad-e^{i \pi / 4}\left(\frac{\kappa^{2}}{8}+\frac{\Delta_{\Sigma}}{2}\right) I_{t}^{1 / 2} u-e^{i \pi / 4} \frac{\operatorname{sg}(f(u))}{2} \sqrt{|f(u)|} I_{t}^{1 / 2}(\sqrt{|f(u)|} u)$
$N L A B C_{2, T}^{4}$

$$
\begin{aligned}
+i\left(\frac{\partial_{s}\left(\kappa \partial_{s}\right)}{2}\right. & \left.+\frac{\kappa^{3}+\partial_{s}^{2} \kappa}{8}\right) I_{t} u \\
& -i \frac{\operatorname{sg}\left(\partial_{\mathbf{n}} f(u)\right)}{4} \sqrt{\left|\partial_{\mathbf{n}} f(u)\right|} I_{t}\left(\sqrt{\left|\partial_{\mathbf{n}} f(u)\right|} u\right)=0
\end{aligned}
$$

- Padé approach, direct method
$N L A B C_{2, P}^{1} \quad \partial_{\mathbf{n}} u-i \sqrt{i \partial_{t}+\Delta_{\Sigma}+f(u)} u$
$N L A B C_{2, P}^{2}$

$$
+\frac{\kappa}{2} u-\frac{\kappa}{2}\left(i \partial_{t}+\Delta_{\Sigma}+f(u)\right)^{-1} \Delta_{\Sigma} u=0
$$

Time discretization

Fixed point method

- Interior equation: Duràn - Sanz-Serna scheme

$$
i \frac{u^{n+1}-u^{n}}{\Delta t}+\Delta \frac{u^{n+1}+u^{n}}{2}+f\left(\frac{u^{n+1}+u^{n}}{2}\right) \frac{u^{n+1}+u^{n}}{2}=0
$$

- Energy bound: $\left\|u^{n}\right\|_{L^{2}(\Omega)} \leq\left\|u^{0}\right\|_{L^{2}(\Omega)}$
- for $N L A B C_{2, T}^{2}$ and $N L A B C_{1, T}^{2}$
- for $N L A B C_{2, T}^{3}$ when $f(u) \geq 0$.

Relaxation method

$$
\left\{\begin{array}{l}
i \frac{u^{n+1}-u^{n}}{\Delta t}+\Delta u^{n+1 / 2}+\Upsilon^{n+1 / 2} u^{n+1 / 2}=0, \\
\frac{\Upsilon^{n+3 / 2}+\Upsilon^{n+1 / 2}}{2}=f\left(u^{n+1}\right),
\end{array} \quad \text { for } 0 \leq n \leq N\right.
$$

with $\Upsilon^{n+1 / 2}=\frac{\Upsilon^{n+1}+\Upsilon^{n}}{2}, \Upsilon^{-1 / 2}=f\left(u^{0}\right)$.

Cubic equation

- Cubic equation $i \partial_{t}+\Delta u+q|u|^{2} u=0$
- Numerical construction of the soliton: the search of stationary solutions leads to

$$
\left\{\begin{array}{l}
\partial_{r}^{2} \psi+\frac{1}{r} \partial_{r} \psi-\psi+q|\psi|^{2} \psi=0, \quad 0<r<R, \\
\psi^{\prime}(0)=0, \quad \psi(0)=\beta,
\end{array}\right.
$$

solved by a shooting method [Di Menza 09]

$\left|u_{0}\right|$ in logarithmic scale on $R=15$

Without potential

Gauge change

$N L A B C_{1, T}^{2}$

Initial datum: soliton
Domain: disc of radius 10
$\Delta t=2 \times 10^{-3}$
1700000 triangles
$k_{0}=5$
$T=2$
Logarithmic scale

Direct method

$N L A B C_{2, P}^{2}$

Evolution of the L^{∞} NORM w.r.t. TIME

L^{∞} norm associated to different ABCs (logarithmic scale)

Gaussian initial datum

$$
u_{0}(x, y)=e^{-\frac{x^{2}+y^{2}}{0.5^{2}}-10 i x}
$$

Circular domain, $R=2.5$

$$
\mathscr{V}=|u|^{2}
$$

$$
\mathscr{V}=x^{2}+y^{2}+|u|^{2}
$$

$A B C_{0}$

$N L A B C_{2, P}^{2}$

