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INTRODUCTION
TYPICAL EQUATIONS

THE SCHRODINGER EQ. IN R

iOup + Oop + V(xz,t)p =0, (z,t) €Rx [0;T]

(S) I Ilin-!l— U(z,t) =0, t € [0;7]
P(z,0) = o(x), zeR

e ¢(x,t): wave function, complex
o real potential, ¥ = V(z,t) € C*°(R% x RT,R)

@ 1o compact support in
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DO

o Laplace transform
,,Zg(u)(as,w):/ u(z, t)e” ' dt
0

with the covariable w = o + i1, 0 > 0

e Fourier transform :

m

Fi(u)(z,7) = 0(x,7) = % /Ru(% £)e~" dt.

o Z(0w)(z,w) = wLi(u)(z,w) — u(z,0)

o Fi(0w)(x,7) = irFi(u)(z,T)
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DO

PSEUDODIFFERENTIAL OPERATORS IN 1D

o A pseudodifferential operator P(z,t,d;) is described by its total symbol
p(z,t,7) in the Fourier space (7 is the covariable of t)

P(xz,t,0:) u(z,t) = ﬂ{l(p(w?tﬁ) ﬁ(x,T)) = /p(;L‘.,t.,T) ﬁ(x,T)ei”dT

R

Notations: P = Op(p) , p(z,t,7) = o(P(z,t,0:))

o Let @ € R and the open set = C R. Symbol class: S*(E x E) vector space of
functions a(z,t,7) € C*(EX E X R) s.t. VK CE x Z and 3, 9, 7,
3 Cps(K) sit.

020787 a(x,t,7)| < Cps(K) (1 +|7])*",
V(z,t) € K and 7 € R.

@ The order of P is the homogeneity order of its symbol w.r.t 7.

P(z,t,0;) homogeneous of order m if and only if for u > 0,
p(x7 t? [LT) = /“L‘n]/p(x’ t’ T)
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DO

ASYMPOTIC EXPANSION IN HOMOGENEOUS SYMBOLS
P is said to be of order M , M € Z/2, if:

pm = principal symbol of P

400
z,t,T) ~ _ielx,t, 1),
P, t,7) ;Z’M 2@6T) b OpS™ and pe ST

where pa;_;/2 is homogeneous of order 2M — j and Py_j/o : H® — HstM=i/2,

m
Meaning of ~ : Vm €N, p— ZPM*J'/Z e §M=(mE1)/2
j=0

Symbolic calculus

COMPOSITION RULE

R GO TP
o(AB) = ——0%0(A)07 o (B)

If Ac OPS™ and B € OPS", then AB € OPS™".
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DO

EXAMPLES

1/2 2
THE FRACTIONAL OPERATORS 8 / o/

1/2 1 ! f(s)
o/ ft) = V- 8t/ — ds Nonlocal w.r.t time

convolution operator
Ia/2 a/2 1 d
¢ f(D) @ /2) f(s)ds

AND I,

Operator Ot 82/2 Itl/2 1
{ 1 1
im /4
. —in/4 [/ e 1
Symbol T e VT e o
Class oPS* ops'/? ops~'?  ops!
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DO

PROPERTIES W.R.T DERIVATIVES

o Let Ac OPS™: 9.A € OPS™ 1, Oz A € OPS™
e 9, P = Op(0zp) + POy, 0(0zP) = 0zp + o (P3Ox)

FRACTIONAL OPERATOR 9,/% BT I/?
1 ‘ s —im
a/2 _ ; t a/2-1 a2y 1 a/2 e
L = I'(a/2) /0 &5 f(s9)ds, o(I;'") = (T> €S
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DO

o CASE ¥V =0 ‘
TBC: Oath + e "™/40}/%p =0, on Tr.

o CASE CONSTANT v =V _
TBC: 8at) +e ™4V, /% (7)) =0,  on Tr.
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DO

o CASE ¥V =0 ‘
TBC: Oath + e "™/40}/%p =0, on Tr.

Ont) —iO0p (V=7)1 =0, on Xr. J

o CASE CONSTANT{"// =V A
TBC: 0Ont — ie”VOp (\/—7') (eﬂtvw) =0, on Y.
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DO

o CASE ¥V =0 ‘
TBC: Oath + e "™/40}/%p =0, on Tr.

Ont) —iO0p (V=7)1 =0, on Xr. J

o CASE CONSTANT{"// =V A
TBC: 0Ont — ie”VOp (\/—7') (eﬂtvw) =0, on Y.

Ontp = i0p (V=7 +V) () =0, on Zr. J

LEMMA
If a is a symbol belonging to S™ independent of ¢, and V = V/(z), then

Op(alr — V(@) ¥ = " D0p (a() (= )
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DO

e CASE 7V =0 ‘
TBC: Ont) + e ™/40}/?p =0, on Sr.

Ont) —iO0p (V=7)1 =0, on Xr. J

o CASE CONSTANT{"// =V A
TBC: 0Ont — ie”VOp (\/—7') (eﬂtvw) =0, on Y.

Ontp = i0p (V=7 +V) () =0, on Zr. J

LEMMA
If a is a symbol belonging to S™ independent of ¢, and V = V/(z), then

Op(alr — V(@) ¥ = " D0p (a() (= )

o CASE ¥ =V (t) : GAUGE CHANGE [& Antoine, Besse et Descombes, 2006

XY, _ieiv(t) Op ( /_7_) (efiV(t) w) =0, on Xr. J
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REMARKS AND NOTATIONS

If # =V (x,t) =, by Fourier transform, the Eq. i0yu + 0%u + zu = 0 becomes
the Airy Eq.
D2+ (-7 +x)a =0

So o = Ai ((:c — T)e_i"/s) and we have the TBC

Ai ((Jc - T)eii”/?’)
Ai((x —7)eim/3)

a4 ™% Op (u) = 0.
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REMARKS AND NOTATIONS

If # =V (x,t) =, by Fourier transform, the Eq. i0yu + 0%u + zu = 0 becomes
the Airy Eq.
D2+ (-7 +x)a =0

So o = Ai ((:c — T)e‘“’“) and we have the TBC

Ai ((x - T)eii"/:i)
Ai((x —7)eim/3)

a4 €22 Op (u) = 0.

In a first approximation
Ai’ ((x - T)e_“r/?’)
Ai ((z — T)e~im/3)
and one has the ABC

~—e Y r T

Onu+i0p (- ¥V=7+2z) (u) =0, (z,t) €Sr J
which leads to
Onu + eit””(f”/‘l(f/2 (eiitmu) =0, (z,t)€eXr J
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REMARKS AND NOTATIONS

REMARK there exists a change of unknown s.t. if v is solution to i9:v + 8%v = 0,
then

) 3
u(z,t) = eﬂ(*am+%|o“2)v(x —t?a,t)

is solution to
10u + 0§u + azu = 0.

Therefore, one can work on the free Schrédinger equation.

Changes of unknown are also available for the cases V(2) = &2 by lens transform
(LIR. Carles (05)).
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REMARKS AND NOTATIONS

PARTIAL CONCLUSION
@ We have factorized the operator

10+ 02 +V = (0a +iv/iB + V) (02— iv/iB + V)
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REMARKS AND NOTATIONS

PARTIAL CONCLUSION
o We have factorized the operator

10+ 02 +V = (0a +iv/iB + V) (02— iv/iB + V)
o TBCs and ABCs are written through a DtN op.

Onu+i0p (—/=7) (u) =0 on Ir

or

Onu+i0p (= /=7 + V) (u) =0 on Xr
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REMARKS AND NOTATIONS

PARTIAL CONCLUSION
o We have factorized the operator

10+ 02 +V = (0a +iv/iB + V) (02— iv/iB + V)
o TBCs and ABCs are written through a DtN op.

Onu+i0p (—/=7) (u) =0 on Ir J
or
Onu+i0p (= /=7 + V) (u) =0 on Xr J

e if ¥ = V(t), the change of unknowns v(z,t) = e~ ®u(z, t) with
V(t) = fot V (s)ds reduces the Schrodinger Eq. with potential to a free Schrodinger
Eq. and the TBC is

Onu(w,t) + ¢ F V092 (7O (2,6) =0 on Ty J
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

1D SCHRODINGER EQ. ¥ =V (x,t)

0+ 03+ VY =0, (x,t) ERy x [0;T],
(Systl)  lim|g|—oo ¥(z,t) =0,
Y(z,0) = (), z €ER,.

In the general case V (z,t), we can not expect to derive a TBC.

Use the symbolic calculus to determine ABCs.

High frequency solution: Engquist-Majda method
Admissible potentials class: repulsive potentials

REPULSIVE POTENTIAL
V smooth and 29,V (z,t) > 0 for z € Q, ¢t > 0. J

Ex: V(z,t) = 2°
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

Two strategies

GAUGE CHANGE (STRATEGY 1)
o Change of unknown (this solves the case ¥ = V(t)): v = e~ "Yu with
V(z,t) = /t V(z,s)ds where f = 2i0,V et g =02V — (0. V).

o We work wi?ch the equation for v :

i&w—&—@iv—l—f@zv—kgv:ﬂ

DIRECT METHOD (STRATEGY 2)

@ One works directly on the original equation

i@tu—l—@iu—&—Vu:O

= Boundary conditions for i9;w + 02w + A d,w + Bw = 0, with
e A=0and B=V(z,t) if w=u,
o A= f(x,t) and B = g(,t) if w = ve Vu.

General Schrédinger operator: L = id; + 92 + A0, + B

[m] = =
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

FACTORIZATION OF THE OPERATOR L (NIRENBERG)

L=i0 +824 A0, + B= (0. +iA7)(0s +iAT) + R

A* € OPSY/? and R € OPS™
AT has an asymptotic expansion in homogeneous symbols:

A+ =" ZA1/2 iz = 1/2+)‘g+>‘t1/2+)‘t1+"'

with )\1/2 _j /2 homogeneous of order 1/2 — j/2.

ARTIFICIAL CONDITION : Opw + iAtTw =0

+oo
Onw + 1% Z Op (AT/ij/Q) w=0, onZXr
3=0

APPROXIMATED CONDITION OF ORDER M:

anM—i-zZOp( 1/2— 1/2) wy =0, on Xr

v
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ARTIFICIAL BOUNDARY CONDITIONS

IDENTIFICATION OF THE INVOLVED TERMS
Thanks to 9; AT = Op(8,A™) + AT 9., we have

o L =202 + A9, +id, +B
0 (8 +iN7)(0x +iNT) =
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ARTIFICIAL BOUNDARY CONDITIONS

IDENTIFICATION OF THE INVOLVED TERMS
Thanks to 9; AT = Op(8,A™) + AT 9., we have

o L =202 +Ad, +id, +B
o (0y +iN) (s +iNT) = 02
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ARTIFICIAL BOUNDARY CONDITIONS

IDENTIFICATION OF THE INVOLVED TERMS
Thanks to 9; AT = Op(8,A™) + AT 9., we have

o L =202 +Ad, +id, +B
0 (0x +iN)(0x +iNT) = 02 +i(AT +A7)0a
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ARTIFICIAL BOUNDARY CONDITIONS

IDENTIFICATION OF THE INVOLVED TERMS
Thanks to 9; AT = Op(8,A™) + AT 9., we have

o L =02 + 40, +ib:+ B
0 (0x +iN)(0x +iNT) = 82 +i(AT +A7)0x +i0p(0:AT) — ATAT
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ARTIFICIAL BOUNDARY CONDITIONS

IDENTIFICATION OF THE INVOLVED TERMS
Thanks to 9; AT = Op(8,A™) + AT 9., we have

o L =202 + A9, +i0, + B
0 (0 +iNT)(0s +iNT) = 02 +i(AT +AT)Dy +iO0Op(0:2T) — A"AT
o lIdentification of the coefficients (up to R)

(A~ +AT) =4
i0p(0: A7) — A~AT =i0; + B

Symbolic system
iA+ AN =a
it =3 Egegenr - 14y

ol

a=0

—+oo
e Since AT ~ Z)‘li/%j/?’ we compute )‘?/2—3'/2 by identification of the terms
3=0
of same order in the system.
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

The principal symbol with negative real part characterizes the outgoing wave of u

@ STRATECY 1: Case A = f and B = g. We choose
Mjp = —V/=7 (81)

@ STRATEGY 2: Case A =0 and B =V. We choose
1/2 =—V-T+V (52).

Remark: for the second strategy, we could also have chosen AT/2 = —+/—7. This
choice would lead to a less accurate ABC since it would give some symbols which
are approx. of —v/—7 + V when |7| — +o0.
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

STRATEGY 1: GAUGE CHANGE v = e~ Vu
° o
Ma=—vr, A =0V, A, ,,=0, 3= ’i’”TV
o Interpretation of symbols
Op (_\/:) _ e—siw/4atl/2
5

j OV | \/10aV
Op(zazv) _0 v se(0nV) VI0nV] 1/|0nV|

ar 1 or

2 2

Iy
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

STRATECY 2: DIRECT METHOD A=0, B=V
]

0.V
—T74+V

Mo=—v—71+V, M =0, X, ,=0, ’\1__1

o Interpretation of symbols

Op (—\/—r T v) — Vi0, + V mod OPS~3/2

0,V . : 1 —5/2
Op (_T = V) = 0nV(10: + V)" mod OPS

Comparison for V(z,t) = z

Ai ((m - T)eii"/S)
Ai((z —1)e~in/3)

)\+ _ 62177/3

with

1
— oyt ot
A=A, +id = — \/—'r—i—x—l—i =

Abramowitz-Stegun A1) is actually the asymptotic expansion of AT for large

enough 7.

[m] = =
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

o STRATEGY 1: ABC is Onv + iATv =0 on Xr. But v(z,t) = e~V @Dy(x, t).
Therefore, for u, retaining the M first symbols, we have

M—1
Onu — 1(0zV) u + e’V Z Op (Af/éi)j/2> (e_wu> =0, onXrp,

Jj=0

@ STRATEGY 2: ABC is Oqu + iATu =0

M—1
Ont + 1 Z Op ()\f/’éz_)jm) u=0 onXr.
j=0
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

@ STRATEGY 1: For reason of symmetry and to get adequate estimates, the
ABC of 4™ order ABC{ is

anu+e—i7r/4eiv(:c,t)at1/2 (e—iv(w,t)u) (ABC%)

WV OnV| _ivie
—i—isg(anV)V'Z |ezV(z,t)It<\/|2 |e V( ,t)u> 0

e STRATEGY 2: The ABC of 4™ order ABC3 is

Onti + VB, + Vu (ABC3) + $0aV (s + V) u =0 J
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

PROPOSITION Let ug € L*(Q) s.t. Supp(uo) C Q. Let V € C*°(R x R™,R) and u
a solution of
i@tu—i—azu—i—Vu:O, in Qr,

Ont + AV u = 0, on X,
u(z,0) = uo(x), Vo € Q,

where ‘ } _
A%(JJ, t, at) o= 6727r/4ezv(:v,t)813/2 (e—zv(m,t)u>

and

V00V ivia V|0V _ivis
A‘f(m,m Bt)u:Af(:c,t,at)u+isg(0n\/)7|2 |6‘V(”’t>lt <|2 |e ‘V("”t)u>

Then, u fulfils the following energy bound
Ve >0, |[u(t)llr29) < lluollr2e),

for M = 2 and for M = 4 if sg(0nV) is constant on X1, which implies the
uniqueness of the solution.
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ARTIFICIAL BOUNDARY CONDITIONS ¥ = V(x,t)

In the case of strategy 2, we have

Onu+ AYu =0, on 27,

with

Ag(x,t, 0¢)u = Op (—i\/ -7+ V) U

and

—-T+V

Ad(z,t,00) u = A2(x,£,0) u + iop< 8.V )u

If V(z,t) = V(z), ABC2Y and ABC are strictly equivalent.
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CONCLUSION

i@tu—kaiu—l—Vu:O, in Qr
u(-,0) = ug, inQ

with ABC on X, for M =2 or 4
STRATEGY 1
ABC?  Onu+ e ™*eV9}? (e V) =0,

ABCt  Oau+ efi"/‘lewatlm(e’wu)
+isg(0aV) Y2Vl ivEn , <7\’|82"V|6_W(""t)u> =0.

or

STRATEGY 2
ABC2  9nu — iVid; + Vu = 0,
ABC3  Onu— iVi0 + Vu

\/ l‘lV . - n
—i—sg(anV)%(zat +V) 1( |82 v u) =0.

E
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NUMERICAL SCHEMES

Let At = T/N be the time step and let us set ¢, = nAt and u" stands for an
approximation of u(ty).

o Time approximation Semi-discrete Crank-Nicolson symmetrical scheme

iun+1 _ un + 83(un-!—l +un) + Vn+1 4 Vn un+1 +un
At 2 2 2

forn=0,...,N — 1.
Implementation

:07

,Un+1

27

2 n+l n+1 n1 .un
B — 21—
~ + Ozv + W A J

with vn+1 _ (un+1 +un)/2 — un+1/2y Wn+1 — (Vn+1 + Vn)/2 — Vn+1/2.

The symmetry is fundamental to guarantee the stability of the numerical scheme.

e Space approximation Finite Element Method

o ABCHM: discrete convolutions

o ABCY: rational approximation of the square root (Padé)
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NUMERICAL SCHEMES : ABCM

STRATEGY 1

i@tu—l—aiu—l—‘/u:O, in Qr
8nu+A{VIu:O, on Xy, for M =2 ou 4
u(+,0) = up, in Q

with

ABC?  Onu + e_i"/4eiv3tl/2(e_ivu) =0,
ABC% anu+e—iw/4 iVal/Q(e—iV )

+isg(8aV) YVl eivEn <V'a" lg=1v(.t) >_0.
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NUMERICAL SCHEMES

NUMERICAL SCHEME FOR ABC: DISCRETE CONVOLUTIONS

1/2 71/2

Approximations of 9,’“, I,”“ and I; in agreement with the Crank-Nicolson scheme
= trapezoidal formula [Schmidt—Yevick (97), Antoine-Besse (03)]

9, ft") ~ \/ Zﬂn o

1133
n ) E) 3eee) = 1’17777’7779"
L) ~ \/ Zan kf* (@0,a1,02,..) = (L1, 5,5, 5. 5 -)
Be = (=D*ay, Vk2>0,
n (v0, 71,725 ) = (1,2,2,...)
I f(t") =~ ?Z'Yn kf
k=0

PROPOSITION

Let u™ be the solution to the problem with the boundary conditions ABC}
discretized with discrete convolutions. For M = 2, we have

vne {0, N}, lu"ll20) < 1’2oy,

and if 9,WF has a constant sign, also true for M = 4.

= The unconditional stability of the scheme is preserved.
o = =
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NUMERICAL SCHEMES : ABC}M

STRATEGY 2

iatu—l—a;‘;u—i—Vu:O, in Qr

Ontu+AYu=0, onXp, for M =2or4
u(-,0) = up, inQ

with

ABC2  Onu —iVid; + Vu = 0,
ABCY  Oqu — iVid: + Vu

VI8V, IVIENY
+sg(8nV)%(28t+V) 1( | |u)=o.
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NUMERICAL SCHEMES

NUMERICAL SCHEME FOR ABCY!
The square root is approximated by Padé approximants of order m:
m a};n d,l::n

V() = 3o -3 L

k=0 k=1

with ag' =0 a?zé . d = tan® (M
@ ((2164-‘-1)#) dm
m

For the conditions ABCY! :

Vioy +V ~ R, (zf)t —+ V)
=Vio+V =~ (Z a}c") u— Za’kn dp (@0 +V +d7") " tu
k=0 =il
Pk

)

Lindmann’s trick (85) : introduction of auxiliary functions
iOrpr + (V +di )or =u, pourl <k<m, inz=ux,,

with ¢k (z,0) = 0.

4

o = =
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NUMERICAL SCHEMES : ABC}M

The ABC becomes for the semi-discrete scheme

z: 2: 12
n —Z am n+l+l ak dm n+/

‘PnH — ¥k 1/2
k k +(Wn+1 +d'lrcn)so;;%i»/ :Un+1

At

I

w%

For ABC3

Onu — V10 + Vu + sg(0nV) 7~|(’;HV\ (30¢ + V)71 (7~|02,,V|u) =0,

we introduce an auxiliary function ¥ s.t.

(z‘@t P V)1/) = Mu.

2
No stability results
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APPLICATIONS ¥ = 22

Exact solutions profile
S 22 iko
Gaussian initial data ug(x) = e~ 707 ko = 10.

V()=2
= [=5;15] x [0,1]

repulsive potential

Plot of |u| in plane (z,t)

Evolution for different times
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APPLICATIONS ¥ = 22

2 “
ABC2 ABCG

Reference solution
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APPLICATIONS ¥ = 22




APPLICATIONS ¥ = z(2 + cos(2t))
Application to a potential V/(x,t): ¥ = x(2 + cos(2t))
Computational domain Q7 = [-5; 15]x[0; 2.5]
Ax =25-1073, At =103 50 Padé functions,  Logarithmic scale

Reference solution computed
on a wide domain [-25; 115]

B

Truncated reference solution ABC3 10~* ABC; 107°°
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APPLICATIONS ¥ = z(2 + cos(2t))
Application to a potential V/(x,t): ¥ = x(2 + cos(2t))
Computational domain Q7 = [-5; 15]x[0; 2.5]
Ax =25-1073, At =103 50 Padé functions,  Logarithmic scale

05

bbb oA oLL

Truncated reference solution ABC; 10755
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TRANSPARENT CONDITIONS IN LINEAR CASE
REMINDER

e ¥ =0 WITHOUT POTENTIAL

Onu + e_”/481/2 =0, onXr. J

e ¥ =V CONSTANT

Bt 4 e~/ itV 9L/ (67itVu) =0, onXr. J

e ¥ =V(t): GAUGE CHANGE
Setting v(z,t) = u(z, t)e P with V(¢ / V(s)d

then v is solution of the free-potential equation.

Bt + e~/ VO g1/ (e—iV(t) u) —0, on3Zr. J
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TRANSPARENT CONDITIONS IN LINEAR CASE
REMINDER

e ¥ =0 WITHOUT POTENTIAL

Onu + e_”/481/2 =0, onXr. J

e ¥ =V CONSTANT

ot 4 e~/ itV 9L/ (67itVu) =0, onXr. J

e ¥ =V(t): GAUGE CHANGE
Setting v(z,t) = u(z, t)e P with V(¢ / V(s)d

then v is solution of the free-potential equation.

Bt + =7/ VO g1/ (e—iV(t) u) —0, on3Zr. J
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TRANSPARENT CONDITIONS IN LINEAR CASE
REMINDER

e 7 = (0 WITHOUT POTENTIAL

anu—iOp(\/—T)u:O, on Y. J

@ ¥ =V CONSTANT

Onu —ie™ Op (\/ —7') (e_itvu) =0 on Xr. J

e ¥ =V(t): GAUGE CHANGE
‘ ¢
Setting v(z,t) = u(z, t)e Y™ with V(t) = / V(s)ds,
0

then v is solution of the free-potential equation.

Ont — 1 eV® Op (\/ —7') (eiiy(t) u) =0, on Xp. J

o =2 E 2016/01/28



TRANSPARENT CONDITIONS IN LINEAR CASE
REMINDER

e 7 = (0 WITHOUT POTENTIAL

anu—iOp(\/—T)u:O, on Y. J

@ ¥ =V CONSTANT

Onu —ie™ Op (\/ —7') (e_itvu) =0 on Xr. J

Onu —iOp (\/ -7 + V) (u) =0, on 7.
e ¥ =V(t): GAUGE CHANGE

} ¢
Setting v(z,t) = u(z, t)e Y™ with V(t) = / V(s)ds,
0

then v is solution of the free-potential equation.

Ont — 1 eV® Op (\/ —7') (eiiy(t) u) =0, on Xp. J

o =2 E 2016/01/28



GENERAL POTENTIAL V = V(x,t)
REMINDER

1) GAUGE CHANGE
t
o v(z,t) = e @Dy, 1), with  V(z,t) =/ V(z,s)ds.
0
@ No longer exact

o Involves operators  ¢'” " 0Op (V-1) (e_w(x"t) u)

ABCt: Oau+e ™ 1eVo}/? (e_wu> +i &“Tvew[t (e_wu> =0

2) DIRECT METHOD
o No gauge change

o Involves operators Op( -7 + V(m,t))(u)

ABC# : 8nufi\/i8t+Vu+%8nV(i8t+V)7lu:O

Strategies equivalent for V = V (), non equivalent for V = V(z,t)

In both cases, approximate boundary conditions, of different orders M.
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NONLINEAR CASE

NONLINEARITY f(u) = g(|u|?)

o Cubic f(u) = q|ul* / quintic f(u) = qlu|*
o F(u) = naful? + nalult, f(u) = L

o Mixed: ¥ = ax® + Blul?

ABCS FOR A POTENTIAL V (z,t)
4 —in/4 iV al/2 [ —iv . OnV 4y v\ _
ABCYy: Onu+te e’ 0, (e u) +1 1 eI (e u) 0
A/éggl: 8nu—i\/i6t+Vu+ianV(iat—i—V)_lu:O

t
with the phase function: V(z,t) = / V(z,s)ds
0
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NONLINEAR CASE

NONLINEARITY f(u) = g(|u|?)

o Cubic f(u) = qlu|* / quintic f(u) = qlu|*

u 2
o f(u) = nalul? + malul, f(u) = b

o Mixed: ¥ = ax? + Blul?

ABCS FOR A NONLINEARITY
NLABCY :  Oau+ e‘”/‘*e“’a,}” (e_wu) +1 Mewh (e_wu) =0
4
NLABCS :  8au—iv/iB + f(w) u+ ia,,f(u)(iat +Fw) =0

t
New phase function: V(z, ¢, u) :/ flz,u(z, s))ds
0

= =2 = 2016/01/28



A PRIORI ESTIMATES

PROPOSITION (NLABC?)

Let uo € L*(Q2) be compactly supported in ©, and let f € C(R;R).
Assume that there exists a solution u € C*(]0; T'[; H*(Q)) of the problem:

i0u + 2u + f(u)u =0, in Qr,
Onu + (fiTr/‘leW(?tl/2 (eiivu) =0, onXr, (1)
u(z,0) = uo(x), on £,

where V(z,t,u) = /t f(z,u)(z, s) ds.
0

Then, u satisfies:
YVt >0, Jlu()lr2@) < lluollL2(o)-
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FIXED POINT METHOD

DURAN-SANZ-SERNA SCHEME

n+l _ . n n+1 n n+1 n ntl n
U S it s Y (e s Wi s
At 2 Z 2
SCHEME
%anrl + 02" 4 fom )t = %u”, on Qr,
8n11"+1 + AIZJV[,n+1'Un+1 = 0> ol ET’ p= 1’27
+ 1.C.
with o™t = /2 — M

2

DiscreTiZED ABC
o discrete convolution (gauge change)

@ or Padé approximants (direct method)
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RELAXATION METHOD

e PRINCIPLE: Solve the equation i0iu + Au+ f(u)u =0 through the
resolution of the system:

i0u+ Au+YTu=0, onQrp,
T = f(u), on Qr.

@ SEMI DISCRETIZATION
1
un-&-At_ u™ N Ay /2 i /2, nt1/2 _ 0,
Tn+3/2 + Tn+1/2 Y
f = f(u )’

7
for0<n<N

/2 _ D

5 T_1/2 _ TI/Q — f(uO)_

where
o INTERESTS : Speed: equivalent to one fixed point iteration

Simplicity: same code as for a space- and time-
depending potential V(x,t)

Preservation of the invariants: mass, energy
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CUBIC POTENTIAL ¥ = qlul?

Initial datum wg = 1/2—6’ -sech(v/ax) exp(isx) (soliton) withg=1,a=2,¢c=15

Qr —10;10] x [0;2], Az =5- 1073, At =102, 50 Padé functions
ABCO NLAB01 NLABCl

0

PML NLABC?2 NLABCQ
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RELATIVE L? ERROR FOR ¥ = |ul?

0.02
— Reference [
0.018H - — -ABC s R
_ _ _NLABC? I N
0.016 . I
_ _NLABC] |
0.014F 2 |
NLABC, g, | |
4
0.012F NLABC; ¢, };
0.01H PML I
|
0.008 - "
0.006 - !
0.004
Voo
0.002 Vo e e
0 ‘ ‘ ‘ ‘
0 0.5 1 15 2

U(t) — Uex (T
lu(®) ( )HLQM) for linear and nonlinear ABCs
ez (t)l 22 (0

Relative L? error
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OTHER APPROACHES

o Schrddinger : Szeftel (06) (paradifferential technique), Zheng (06) : use of
inverse scattering for cubic NLS, exact TBC

e modified KdV : Zheng (06)
up £ 6 Uy + Uppe = 0

Use of inverse scattering to get exact TBC.
Example (Zheng) : solitary waves generated by an initial Gaussian profile
uo(x) = exp (—1.52%).
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ABCs IN 2D

SCHRODINGER 2D
i0vu + Ozu + Ogu + V(z,y,t)u=0, (z,y) ER? t>0
u(z,y,0) = uo(x,y), (z,y) € R?

with Supp(uo) C Q.

¥ =V(t): GAUGE CHANGE
t
Setting V(t) = / V(s)ds and v(z,y,t) = eV Ou(z,y,t),
0
then v is solution of 9w + 82v + 8511 =0.

PROFILE OF SOLUTIONS
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IN ONE DIMENSION OF SPACE
e Domain Qr = [x¢; 2] X [0; 7]

e Boundary ¥ = {z/; 2, }

o Outwardly directed normal n
directed according to x

o Fourier transform w.r.t. ¢ (z fixed) 4

IN DIMENSION TWO WITH STRAIGHT BOUNDARY

e Domain: half-plane Q = {z < 0}
o Normal n directed according to =

o Partial Fourier transform w.r.t. (¢,y)
(z fixed)

2 +i0,+0; =0

i0r + 0 plays the role of iJ; in 1D
2 plays the role of &2
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FACTORIZATION

o 1D without potential: 35 4+ 10¢ = (On + 1V10¢) (On — Vi)
@ 1D with variable potential:

02 +i0; +V = (On + iVid; + V) (0n — iVi0; + V) + R

o 2D with straight boundary:

02 +i0:+ 0y +V = (0n +3/i0s + 5 +V) (0a —iyfi0s + B+ V) + R

TRANSPARENT BOUNDARY CONDITION when V|{zZO} = (0

Onu —iy/i0; + 02u =0, on Xr.
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FACTORIZATION

o 1D without potential: 35 4+ 10¢ = (On + 1V10¢) (On — Vi)
@ 1D with variable potential:

02 +i0; +V = (On + iVid; + V) (0n — iVi0; + V) + R

o 2D with straight boundary:

02 +i0:+ 0y +V = (0n +3/i0s + 5 +V) (0a —iyfi0s + B+ V) + R

TRANSPARENT BOUNDARY CONDITION when V|{120} = (0
Onu —iy/i0; + 02u =0, on Xr.

BOUNDED DOMAIN WITH STRAIGHT BOUNDARY:

7

n
problems »

Singularities caused by corners
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o CONSIDERATION OF THE GEOMETRY: convex domain of general, smooth
boundary; curvature «.

o LOCAL PARAMETRIZATION of the boundary
normal variable r, curvilinear abscissa s

A =0+ K0y +h 0 (h10s)

kr = h™1k: curvature on the parallel surface &, to &
h(r,s) =147k

L=i0,+A+V
= L=0]+i0 +K:0r +h™'0s (h7'0s) +V

8]
w
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o CONSIDERATION OF THE GEOMETRY: convex domain of general, smooth
boundary; curvature «.

o LOCAL PARAMETRIZATION of the boundary
normal variable r, curvilinear abscissa s

A =0+ K0y +h 0 (h10s)

kr = h™1k: curvature on the parallel surface &, to &
h(r,s) =147k
L=i0,+A+V
= L=0]+i0 +r:0r +h 05 (h7'0:) +V

L=32+i0+0.+V
o Partial Fourier transform w.r.t. (s,t); covariables (&, 7)
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PSEUDODIFFERENTIAL OPERATORS IN 2D

u(r, s, t)

o Pseudodifferential operator P(r, s,t,ds,0:) defined through its total symbol
p(r,s,t,&, ) in Fourier space for %, ;) (£ and T covariables of s and t)

P(r,5,t,05, 80)u(r, 5,1) = F5 Ly ((r,5, 1,6, 1)l €, 7))

- / / p(r, 5,6, €, 7)a(r, £, 7)€ S dedr
RJR
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PSEUDODIFFERENTIAL OPERATORS IN 2D

u(r, s, t)
o Pseudodifferential operator P(r, s,t,ds,0:) defined through its total symbol
p(r,s,t,&, ) in Fourier space for %, ;) (£ and T covariables of s and t)

P(ﬁ S, t, 857 8,5)’&(7”, S t) = ?(;,lt) (p(T'/ s, 1, 57 T)ﬂ(’l", 57 7-))

= //p(’r: Svtv§7T)a(ra577—)(3isgeit‘rdfd’7
R JR

oo pylal
e Composition rule: o(AB) ~ Z (;7)'8(0‘5,T)0(A) 0(s,o(B)
|| =0 ’

o Homogeneity according to the couple (¢2,7) : \/—7 — €2 is of order 1
Order m : f(r, s, 6, \e, X%7) = A f(r, 5,t,€,7)

o Asymptotic expansion in homogeneous symbols: P € OPS™ if:
+oo
p(”) S, t7 57 T) ~ mefj (Tﬂ S, t’ 57 T)?
j=0

where p,,—; is homogeneous of order m — j; pm, is the principal symbol.

[m] = =
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TWO STRATEGIES

1 - GAUGE CHANGE
o Change of unknown (which solve the case ¥ = V(t))

. t
v=e Yu avec V(rs,t)= / V(r,s,o0)do
0

o We work on the equation written for v:

10t + 831) + (kr + F)Orv + hilas(hflasv) +Gv=0

2 - DIRECT METHOD

o We work directly on the original equation (with local coordinates)

i0su + OPu + KO+ B 05 (M Osu) + V=0
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TWO STRATEGIES

1 - GAUGE CHANGE
o Change of unknown (which solve the case ¥ = V(t))

. t
v=e Yu avec V(rs,t)= / V(r,s,0)do
0

o We work on the equation written for v:

10t + 831) + (kr + F)Orv + hilas(hflasv) +Gv=0

2 - DIRECT METHOD

o We work directly on the original equation (with local coordinates)

i0su + OPu + KO+ B 05 (M Osu) + V=0

= Absorbing boundary condition for
Lw = 10w + 8311) + (kr + A)Orw + h o, (hilasw) 4+ Bw =0, with
o A= F(rst) and B=G(r,st) if w=v=e""Yu

e A=0 and B=V(r,s,t) if w=nu,

[m] = =
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UNIFICATION OF BOTH STRATEGIES: General Schrodinger operator:

L=i8; 4+ 82 + (kr + A)dr + h™'0:(h'8,) + B

FACTORIZATION OF NIRENBERG-TYPE OF OPERATOR L

L= (8 +iA7)@+iAT)+ R  on %,
where :
AE(r,s,t,05,0;) € OPS" is a pseudodifferential operator of order 1,
Re OPS™,
and AT admits the asymptotic expansion in homogeneous symbols:

c(AT)=AT ~ Z)\ SN A A

with )\f_j homogeneous of order 1 — j according to the couple (£2, 7).

The knowledge of the symbols (Aj) describes entirely the operator A™.

BACK ON THE SURFACE X:
At +
At =A |r=0

X=()

|r=0

2016/01/28



ABSORBING BOUNDARY CONDITION which expresses that the wave is outgoing:

+oo
Onw+iATw =0 where At =Op (Z /\1_]-)

=0
+oo

OnW +iZOp(X1_j)w =0, onXr
=0

IDENTIFICATION OF THE PRINCIPAL SYMBOL A}
Outgoing wave Im(Af (s,t,€,7)) <0, for || > 1
Strategy 1 )\ = ,\/m
Strategy 2 A = —/—7 — h 282 +ih - 1(O;h 1)E+V
Asymptotic expansion: Xj are functions of \/—7 — €2 (resp. \/—7 — €2 + V).

= non local operators w.r.t to time AND space

2016,/01/28



ABSORBING BOUNDARY CONDITION which expresses that the wave is outgoing:

+oo
Ohw+i1ATw=0 where AT =Op <Z /\1]~>
=0
M—1

Onwnr + 4 Z Op (3\{17]') wy =0, onXr
j=0
Approximate condition of order M

IDENTIFICATION OF THE PRINCIPAL SYMBOL |
Outgoing wave Im(A\ (s,t,€&,7)) <0, for |7| > 1
Strategy 1 A\ = —/—7 — h—2¢2
Strategy 2 A = —\/—7 — h 262 4 ih L (Dsh 1)E+ V

Asymptotic expansion: X]- are functions of \/—7 — &2 (resp. \/—7 — &2+ V).

= non local operators w.r.t to time AND space
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LOCALIZATION: “TAYLOR” APPROACH
Approach valid for both strategies.

o Taylor expansion of the symbols, under the assumption |7| > £2.

,ng2+b:77<1+§,9)

p=
Thereby:
(1 ) v e L
@ Then
Op (\/TT) = e”/48tl/2, Op (§) = —i0s,
Op (\/;) = e /AL, Op (&) = -0 = —Asx,

T

= The operators are localized in space only
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LOCALIZATION USING PADE APPROXIMANTS
We approximate ABC3 (direct method) : Onu —iVid; + As + Vu =0, on Zr.

PADE APPROXIMANTS OF ORDER m

m mm

Zz+dm Z“’“_Zz+dkm

k=1

ABC3 becomes ABCQI’p: Ont — i Ry (10 + A +V)u =0
8,,u—z<Zak>u+zZakdk (10 + As + V +di") "~ w=0
k=0 k=1
Pk

We introduce m auxiliary functions defined on X
(0 +As+V +di)or=u, 1<k<m

We get a coupling between u and (¢x)1<k<m on X

m m
(z ) w3
k=0 k=1

i0rpr + Aspr + (V + di) ok = u, 1<k<m.

= The operators are localized in space AND time
2016,/01/28
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EXPRESSION OF THE ABCS: TAYLORAPPROACH

o GAUGE CHANGE

ABC}
ABCS

ABC] 7

Onu + e_i"/4ewatl/2 (e_wu) + gu

inja v (K- | As . 712 (g=iv
— e %e ( —|———|—zd VOs + (ZOSV (0sV) )) (e ' u)

v 0s(k0s) KP4+ 02k  i05kOsV _iv
+ e < > + 3 + > 1 (e u)

(GaV)

—ﬁiq—ﬂﬁmvwthAmvwﬁﬁozo

o DIRECT METHOD

ABGC; 1
ABC} 1

ABC; ¢

Ontt + e_”/461/2u + gu
X 2
B e
& 2
+¢<35(;35) 45 *‘Sas“)ztu V) /i3.v11 (VigaVIu) =0
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ExPRESSION OF THE ABCS: PADE APPROACH

o GAUGE CHANGE
ABCi,p Onu — ie'VVi0, + Ax; (e_ivu)

ABC? T gu + 0,VeVd, (i0; + Ag) ™2 (e*%)

— geiv(i&g +As) ' As (efivu) =0
e DIRECT METHOD

ABCyp  Onu — iVidi + As +Vu

ABCZ » 4+ By g(i@t—f—Az—l—V)_lAzu:O

N | &
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A PRIORI ESTIMATES
For conditions ABC{%. and ABC3%. (Taylor)

PROPOSITION
Let up € L*(Q) s.t. Supp(ug) C Q. Let V € C=(R? x RT,R) and u a solution of

10w + Bzu +Vu=0, inQp,
8nu 4+ A%TU = 0, on ZT7 ] = 17 27
u(z,0) = uo(z), Ve Q.

We assume that we are in the quasi-hyperbolic area H = {—7 — £ > 0}.
Then, u fulfills the following energy bound

V>0, lult)llrz@) < lluollrz@), (EN)

o for M =2,

o for M =3 if V is positive on ¥ (ABC3 ) or if V and Q are radially
symmetrical (ABCf’,T),

o for M =4 if OnV is of constant sign on X, and if furthermore 0,V is positive
on ¥ (ABCj 1) or if the problem is radially symmetrical (ABCY 1),

which implies the uniqueness of the solution.
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SEMI DISCRETIZATION IN TIME

Time step At =T/N, t, = nAt,
u”™(r,s) = u(r,s,t,) for 0 <n < N.

INTERIOR EQUATION:

Semi discrete Crank-Nicolson scheme: symmetrical, inconditionally stable

iun+1 o ’LLTL + A un+1 +un N Vn+1 + Vn un+1 +un
At 2 2 2

forn=0,...,N — 1.

=0

IMPLEMENTATION:

21 2
Kzt ot +A s + Vn+1/2 A Klt u™

1 1
+1_ /2 w4 un yrt/z yrtt pyn

ith v"
with v 5 s 2

SPACE DISCRETIZATION : Finite Element Method
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ABCSs oF TAYLOR APPROACH

ABCIZ’T : Onu + 671‘“/46“/(9,/1/2 (eiivu> + gu =0, onXr

n+1
— n+1 . k K
8nvn+1 +e /4 \/ E Bn+i-ke B < 51)”“ =0, n=z0

k 0
i , Cina it [ 2 O s :
anvn+1+ (6 z7r/4ﬁ0+g) vn+1 e z7r/4ez“/ﬁ +1 EZBnJﬁlike szUk _o
k=0

PROPOSITION
For discretized boundary conditions ABC{\’/IT or ABC’%T, we have

vn € {0,...,N}, ||Un||L2(Q) < ||UO||L2(Q)a (2)

under the semi discrete assumptions equivalent to those of the continuous case.

The inconditional stability of the scheme is preserved.
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ABCs oF THE PADE APPROACH

System associated to the boundary condition ABCzl,p:

Ontt — V10 + As +Vu=20
i+ Au+Vu=0, onQrp,

Ont — 1 (Z a?) U —l—iZa?ng@k =0, onZXr,
k=0

k=0
(10t + As +V +di" ) o =u, on Xp, pourl<k<m.
CRANK-NICOLSON SCHEME (m + 1 EQUATIONS):

21 . 21
éun+1/2 + Aun+l/2 + Vn+1/2un+l/2 _ Kltun7

m m
12 . 12 - 1/2
Onu™ % — 4 (E a?) w2 4 E apdport /2=0, onx,
k=0 k=0

22 n n n n m n n
Ko Bagp T RGN g = R

on €,

2 .,

LD on X.

on+1/2  n+1/2 n+1/2
(un / a‘tol b

e System in ey Om ), coupled through the boundary X.

o Entirely local /  No stability result
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NUMERICAL EXAMPLES

2 2 :
Initial datum: wo(z,y) = e~ (@ T¥ ) ~ikoz

with ko = 10
At=10"3% T =1 . A
Disk meshed with 1700000 triangles -

25 Padé functions
Logarithmic levels, threshold 10~*

DomAINS:  disk / mediator / “smoothed
square”

140 .
120
100 -

Vixy)

POTENTIAL ON DISK

PROFILE OF AN APPROXIMATE
SOLUTION
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VTT)::5r2 (GAUGE CHANGE DIRECT METHOD

r= VT

TAYLOR AP-
PROACH

Condition without
potential

PADE APPROACH
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INITIAL DATUM PROFILE OF THE ABC
POTENTIAL

Potential at t =0

) Vgx, Y, t) =
5(a® +y*)(1 + cos(4rt))
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EXTENSION TO NONLINEARITIES (2D CASE)

@ TAYLOR APPROACH, GAUGE CHANGE
—i i 1/2 —i K
NLABC: Onu + € ”/46“78/ (e Wu) + Su= 0
e TAYLOR APPROACH, DIRECT METHOD

NLABCQZ,T Onu + 67“\-/46;/2’[1 + gu

. 2 A
NLABCS 1 — i/t (% + 72) TPy, — Pl se(f(w) \/7[1/2 (\/—u)

0s(k0s) K>+ 0%k
s g )l

M\/\a )| I (\/Ianf(U)W) =0

e PADE APPROACH, DIRECT METHOD

NLABCj ¢ +i (

NLABC;p  Oau — iy/i0: + As + f(u)u

NLABCZ p + gu - g (i0: + As + f(u) * Agu=0
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TIME DISCRETIZATION

FIXED POINT METHOD

o Interior equation: Duran - Sanz-Serna scheme

un+1 _ un un+1 + un un+1 + un un+1 + un
. A _
A T 7 ( 2 ) 2 0
o Energy bound:  [[u"[|2(0) < [[u°]lL2(q)
o for NLABC3 r and NLABCS 1
o for NLABCS3 r when f(u) > 0.
RELAXATION METHOD
o
1
i U"L+At_ u™ i Aun+1/2 + Tn+1/2un+1/2 =0,
for0<n<N
Tn+3/2 Tn+1/2 S =
LSRR S
n+1 n
with otz = X0 FYT e g0y

2
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CUBIC EQUATION

o Cubic equation i0; + Au + qlul*u =0

@ Numerical construction of the soliton: the search of stationary solutions leads

to
1
024 + ;8T1/)—zl)—|—q|1/1|21/):0, 0<r<R,

P'(0) =0, %(0)=04,
solved by a shooting method [Di Menza 09]

22
2

o
18

Tie
25-
14
2-

12

2
3
| 4
/18os
05- e 5
y 0.4
P W o s
e 02
-10 5 — o
v 75

o S
5 o 10

|ug| on R =10 |uo| in logarithmic scale on R = 15
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¥ = |u|?, SLICE REPRESENTATION

WITHOUT POTENTIAL GAUGE CHANGE

Initial datum: soliton
Domain: disc of radius 10
At=2x 1073

1700000 triangles

ko=5

T=2

Logarithmic scale

DIRECT METHOD
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EVOLUTION OF THE L°° NORM W.R.T. TIME

T
3
— ABCO,T

2
o5k _ 7NLABC1’T |

]

o

o
T

|
T

log g [u(t)lle

2"

02 04 06 08 1 12 14 16 18 2
L®° norm associated to different ABCs (logarithmic scale)
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(GAUSSIAN INITIAL DATUM

_224y?  0ig . .
uo(z,y) = e o052 Circular domain, R = 2.5

¥V =’ + 4% + |uf?

NLABC3 p
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