Master School on Data Science and Geometry

INSTITUT DE MATHEMATIQUES DE TOULOUSE

2-26 july 2019

Third week PROGRAM 15-19 july

	Monday	Tuesday	Wednesday	Thursday	Friday
9h00-10h30	Optimal Transport	Statistics		Statistics	
room	MIP	MIP		MIP	
11h00-12h30	Optimal Transport	Statistics		Statistics	
room	MIP	MIP		MIP	
14h00-15h30	Statistics	Optimal Transport		Optimal Transport	Statistics
room	MIP	MIP		MIP	MIP14h-15h00
16h00-17h30	Statistics			Optimal Transport	Optimal Transport
room	MIP			MIP 16h-18h	MIP15h30-17h30

Lectures of the week

GEOMETRY (10h) : Wasserstein geometry and optimal transport

Max FAHTI

- Lecture 1 Introduction to the optimal transport problem on Euclidean space. Formulations of Monge and Kantorovitch, history, applications. Explicit solution in dimension one. Existence of solutions to the Kantorovitch problem.
- Lecture 2 Kantorovitch duality, existence of a transport map solving the Monge problem. Connection with the Monge-Ampere PDE. Extension to Riemannian manifolds.
- Lecture 3 Transport cost as a distance on the space of probability measures, and applications in statistics.
- Lecture 4 The geometry of optimal transport: Benamou-Brenier formula and Riemannian structure of the space of probability measures. Application: gradient flow structure of the heat equation.
- Lecture 5 Long-time behavior of stochastic processes, and applications to numerical schemes.

STATISTICS (10h): Information Geometry

Alice LE BRIGANT

Lecture 1 Statistical models, parametric estimation, sufficient statistics.

- Lecture 2 Fisher information, Kullback-Leibler divergence, search for the best estimator.
- Lecture 3 Fisher geometry of parametric statistical models, Fisher vs Wasserstein geometry of univariate Gaussian distributions, computing barycenters of probability distributions.
- Lecture 4 Dual connections, dual geometry of exponential families, divergences.
- Lecture 5 Dual connections, dual geometry of exponential families, divergences.

References: Shun-ichi Amari and Hiroshi Nagaoka, Methods of Information Geometry, American Mathematical Society, 2007.