Master School on Data Science and Geometry

INSTITUT DE MATHEMATIQUES DE TOULOUSE

2-26 july 2019

Third week PROGRAM 15-19 july

	Monday	Tuesday	Wednesday	Thursday	Friday
9h00-10h30	Optimal Transport	Statistics room	MIP	MIP	
$11 \mathrm{~h} 00-12 \mathrm{~h} 30$	Optimal Transport	Statistics	MIP		
room	MIP	MIP		Statistics	
$14 \mathrm{~h} 00-15 \mathrm{~h} 30$	Statistics	Optimal Transport		MIP	
room	MIP	MIP		Optimal Transport	Statistics MIP14h-15h00
16 h00-17h30 room	Statistics	MIP		Optimal Transport	Optimal Transport

Lectures of the week

GEOMETRY (10h) : Wasserstein geometry and optimal transport

Max FAHTI

Lecture 1 Introduction to the optimal transport problem on Euclidean space. Formulations of Monge and Kantorovitch, history, applications. Explicit solution in dimension one. Existence of solutions to the Kantorovitch problem.

Lecture 2 Kantorovitch duality, existence of a transport map solving the Monge problem. Connection with the Monge-Ampere PDE. Extension to Riemannian manifolds.

Lecture 3 Transport cost as a distance on the space of probability measures, and applications in statistics.
Lecture 4 The geometry of optimal transport: Benamou-Brenier formula and Riemannian structure of the space of probability measures. Application: gradient flow structure of the heat equation.

Lecture 5 Long-time behavior of stochastic processes, and applications to numerical schemes.

STATISTICS (10h): Information Geometry

Alice LE BRIGANT

Lecture 1 Statistical models, parametric estimation, sufficient statistics.
Lecture 2 Fisher information, Kullback-Leibler divergence, search for the best estimator.
Lecture 3 Fisher geometry of parametric statistical models, Fisher vs Wasserstein geometry of univariate Gaussian distributions, computing barycenters of probability distributions.

Lecture 4 Dual connections, dual geometry of exponential families, divergences.
Lecture 5 Dual connections, dual geometry of exponential families, divergences.

References: Shun-ichi Amari and Hiroshi Nagaoka, Methods of Information Geometry, American Mathematical Society, 2007.

