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Abstract
We show that, dealing with appropriate basis, the cumulants for N×N randommatrices

(A1, . . . , An), we previously de�ned in [2] and [3], are the coordinates of E{Π(A1 ⊗ · · · ⊗
An)}, where Π denotes the orthogonal projection of A1⊗· · ·⊗An on the space of invariant
vectors of M⊗n

N under the natural action of the unitary, respectively orthogonal, group.
In that way the paper makes the connection between [5] and [2], [3]. We also give a new
proof in that context of the properties satis�ed by these matricial cumulants.
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1 Introduction
For any N × N complex matrix X, we constructed matricial cumulants (CU

n (X))n≤N in [2]
(resp. (CO

n (X))n≤N in [3]) such that if X, Y are N ×N independent complex matrices and U
(resp. O) is a Haar distributed unitary (resp. orthogonal) N × N matrix independent with
X,Y , then for any n ≤ N ,

CU
n (X + UY U∗) = CU

n (X) + CU
n (Y ),

CO
n (X + OY Ot) = CO

n (X) + CO
n (Y ).

We de�ned the CU
n (X) (resp. CO

n (X)) as the value on the single cycle (1 . . . n) of a cumulant
function CU(X) (resp. CO(X)) on the symmetric group Sn (resp. S2n) of the permutations
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on {1, . . . , n} (resp. {1, . . . , n, 1̄, . . . , n̄}). Note that we de�ned more generally cumulant func-
tions for a n-tuple (X1, . . . , Xn) of N × N complex matrices. The aim of this paper is to
give a geometrical interpretation of the values of the cumulant function CU(X1, . . . , Xn) (resp.
CO(X1, . . . , Xn)). It derives from the necessary confrontation of our results with the work of
Collins and Sniady on the �Integration with respect to the Haar measure on unitary, orthogonal
and symplectic group", see [5].
Let us roughly explain the key ideas of this interpretation and �rst introduce brie�y some no-
tations. Let π be a permutation in Sn, denote by C(π) the set of all the disjoint cycles of π and
by γn(π) the number of these cycles. Let ε = (ε1, . . . , εn) ∈ {−1, 1}n. We set for any n-tuple
X = (X1, . . . , Xn) of N ×N complex matrices

rπ(X) = rπ(X1, . . . , Xn) :=
∏

C∈C(π)

Tr

(∏
j∈C

Xj

)
. (1)

and
M±

X(g(ε,π)) := rπ(Xε1
1 , . . . , Xεn

n ).

In this last expression we set X−1 for the transpose X t of the matrix X and g(ε,π) denotes some
particular permutation on the symmetric group S2n we will precise in section 3.1.
These n-linear forms rπ, π ∈ Sn or M±(g(π,ε)), π ∈ Sn, ε ∈ {−1, 1}n, introduced on Mn

N for any
integer n ≥ 1, are respectively invariant under the action of the unitary group UN for the �rst
ones and the orthogonal group ON for the second ones. From the point of view of [5], they
canonically de�ne linear forms on the tensorial product M⊗n

N which also are invariant under
the corresponding action of UN , respectively ON . As M⊗n

N is naturally endowed with a non
degenerate quadratic form (u, v) 7→ 〈u, v〉, these linear forms correspond in the �rst case to
vectors uπ, π ∈ Sn, of M⊗n

N which are UN -invariant, and in the second one to vectors uη(gε,π),
ε ∈ {−1; 1}n, π ∈ Sn, which are ON -invariant (η will be de�ned in section 3.3). They thus
satisfy

rπ(X1, . . . , Xn) = 〈X1 ⊗ . . .⊗Xn, uπ〉
respectively

M+
X(g(ε,π)) = 〈X1 ⊗ . . .⊗Xn, uη(gε,π)〉.

Actually, for n ≤ N , {uπ ; π ∈ Sn} forms a basis of the space [M⊗n
N ]UN of UN -invariant

vectors, while a basis of the space [M⊗n
N ]ON of ON -invariant vectors can be extracted from

{uη(gε,π); ε ∈ {−1; 1}n, π ∈ Sn}. Note that this last one needs the double parametrization by
Sn and some ε in {−1, 1}n. This is the reason why, contrary to the unitary case where the
adjoints are not involved, the transposes of matrices naturally occur in the orthogonal case.
We then prove that our matricial cumulants CU(X1, . . . , Xn) (respectively CO(X1, . . . , Xn))
are the coordinates in this appropriate basis of E

{∫
UX1U

∗ ⊗ . . .⊗ UXnU∗dU
}
(respectively

E
{∫

OX1O
t ⊗ . . .⊗OXnOtdO

}
), where the integration is taken with respect to the Haar mea-

sure on UN (resp. ON).
The paper is split in two parts. The �rst one concerns the matricial U-cumulants and the

second one is devoted to the O-cumulants. In each part we �rst recall the de�nition and funda-
mental properties satis�ed by these cumulants (sections 2.1, 2.2 and similarly 3.1, 3.2). Then
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we describe a basis of [M⊗n
N ]G in each case (G = UN in section 2.3 and G = ON in section 3.3)

before giving the geometrical interpretation of our cumulants and ending with a new proof in
that context of the properties they satisfy (sections 2.4 and 3.4).
Note that the same development as for the orthogonal group can be carried out for the sym-
plectic group Sp(N). We just provide the corresponding basis of Sp-invariant vectors of M⊗n

N

in a last section at the end of the paper without anymore details.
Throughout the paper, we suppose N ≥ n.

Before starting we would like to underline that the description of the subspace of invariant
vectors relies on the following ideas. Note this �rst simple remark :

Lemma 1.1 Let G and G′ be two groups acting on a vector space V through the actions ρ and
ρ′ and let [V ]G denote the subspace of G-invariant vectors of V . Then, when ρ and ρ′ commute,
for any vector v 6= 0 in [V ]G, {ρ′(g′) · v ; g′ ∈ G′} ⊂ [V ]G.

Hence [V ]G is well-known as soon as we can �nd a suitable group G′ and some vector v in [V ]G

for which we get {ρ′(g′) ·v ; g′ ∈ G′} = [V ]G. For the considered groups, the Schur-Weyl duality
leads to the right G′. Thus for G = GL(N,C) and UN , G′ is chosen equal to Sn. For G = ON

or Sp(N), G′ is S2n. The description is well done in [8], see Theorem 4.3.1 for GL(N,C) and
Theorem 4.3.3 or Proposition 10.1.1 for ON and Sp(N). As UN is concerned, note that any
analytic function which is invariant by UN is invariant by GL(N,C) too (see Weyl's Theorem
about analytic functions on GL(N,C), [9]). For any u ∈ [M⊗n

N ]UN , the analytic function on
V , A 7→ 〈A, u〉 is UN -invariant, hence is GL(N,C)-invariant. Thus, for any A in M⊗n

N and
any G ∈ GL(N,C), 〈A, u〉 = 〈A,G−1uG〉 and hence u ∈ [M⊗n

N ]GL(N,C). It readily comes that
[M⊗n

N ]GL(N,C) = [M⊗n
N ]UN .

2 Matricial U-cumulants
We refer the reader to [2] where the present section is developed and we just recall here the
fundamental results.

2.1 De�nition and �rst properties
Denote by ∗ the classical convolution operation on the space of complex functions on Sn,

f ∗ g(π) =
∑
σ∈Sn

f(σ)g(σ−1π) =
∑
ρ∈Sn

f(πρ−1)g(ρ),

and by id the identity of Sn. Recall that the ∗-unitary element is

δid := π →
{

1 if π = id
0 else ,
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that is f ∗ δid = δid ∗ f = f for all f . The inverse function of f for ∗, if there exists, is denoted
by f (−1) and satis�es f ∗ f (−1) = f (−1) ∗ f = δid. In particular the function π 7→ xγn(π) is
∗-invertible for n − 1 < |x| (see [6]). Moreover, since γn is central (that is, constant on the
conjugacy classes), xγn and thus (xγn)(−1) commute with any function f de�ned on Sn.
Let us recall the de�nition of the U-cumulants introduced in [2].

De�nition 2.1 For n ≤ N , for any n-tuple X = (X1, . . . , Xn) of random N × N complex
matrices, the n-th U-cumulant function CU(X) : Sn → C, π 7→ CU

π (X) is de�ned by the relation

CU(X) := E(r(X)) ∗ (Nγn)(−1).

The U-cumulants of X are the CU
π (X) for single cycles π of Sn.

For a single matrix X, CU(X) where X = (X, · · · , X) will be simply denoted by CU(X).

For example, if trN = 1
N

Tr,

CU
(1)(X) = E(trN(X))

CU
(1)(2)(X1, X2) =

NE{Tr(X1)Tr(X2)} − E{Tr(X1X2)}
N(N2 − 1)

CU
(1 2)(X1, X2) =

−E{Tr(X1)Tr(X2)}+ NE{Tr(X1X2)}
N(N2 − 1)

.

Here are some basic properties remarked in [2]. First, for each π in Sn, (X1, . . . , Xn) 7→
CU

π ((X1, . . . , Xn)) is obviously n-linear. Moreover it is clear that for any unitary matrix U ,

CU
π (U∗X1U, . . . , U∗XnU) = CU

π (X1, . . . , Xn).

Now,

1. For any π and σ in Sn,

CU
π ((Xσ(1), . . . , Xσ(n))) = CU

σπσ−1((X1, . . . , Xn)). (2)

2. CU
π (X) depends only of the conjugacy class of π.

Thus the cumulants CU
π (X) of a matrix X for single cycles π of Sn are all equal so that

we denote by CU
n (X) this common value. We call it cumulant of order n of the matrix X.

In particular, CU
1 (X) = E(trNX) and CU

2 (X) = N
N2−1

[E{trN(X2)} − E{(trNX)2}]. We also
proved the following

Proposition 2.1 For any k < n ≤ N , any π in Sn, then

CU
π (X1, . . . , Xk, IN , . . . , IN) =

{
CU

ρ (X1, . . . , Xk) if π = (n) . . . (k + 1)ρ for some ρ ∈ Sk,
0 else.

Now let us recall the fundamental properties we proved in [2] and that motivated the terminol-
ogy of cumulants.
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2.2 Fundamental properties
2.2.1 Mixed moments of two independent tuples
In [2] we have proved the following theorem with great analogy with the results of [10] about
the multiplication of free n-tuples.

Theorem 2.1 Let X = (X1, . . . , Xn) and B = (B1, . . . , Bn) two independent n-tuple of N ×N
random complex matrices such that the distribution of X is invariant under unitary conjuga-
tions, namely ∀U ∈ UN , L(UX1U

∗, . . . , UXnU∗) = L(X1, . . . , Xn). Then we have for any π in
Sn:

E (rπ(B1X1, . . . , BnXn)) = {E(r(B)) ∗ CU(X)}(π) = {CU(B) ∗ E(r(X))}(π)

From Theorem 2.1 we readily get the following convolution relation which has to be related to
Theorem 1.4 in [10].

Corollary 2.1 With the hypothesis of Theorem 2.1,

CU(X1B1, . . . , XnBn) = CU(X) ∗ CU(B).

If X = (X1, . . . , Xn) and B = (B1, . . . , Bn) are two independent n-tuple of N × N ran-
dom complex matrices such that the distribution of X is invariant under orthogonally con-
jugations, namely ∀O ∈ ON , L(OX1O

t, . . . , OXnOt) = L(X1, . . . , Xn), the mixed moments
E (rπ(B1X1, . . . , BnXn)) can still be expressed by a convolution relation but on S2n; we were
led in consequence to introduce in [3] another cumulant function CO : S2n → C we recall in
section 3.

2.2.2 Linearizing property
Proposition 2.1 together with Corollary 2.1 imply that the cumulants CU

n (X1, . . . , Xn) vanish
as soon as the involved matrices (X1, . . . , Xn) are taken in two independent sets, one having
distribution invariant under unitary conjugation; therefore they do linearize the convolution,
namely if X1, X2 are two independent matrices such that L(UX1U

∗) = L(X1), ∀U ∈ UN , then

CU
n (X1 + X2) = CU

n (X1) + CU
n (X2).

2.2.3 Asymptotic behavior
We refer the reader to [12] for noncommutative probability space and freeness and to [11]
and [10] for free cumulants. Let (A, Φ) be a noncommutative probability space. For any
noncommutative random variables (a1, . . . , an) in (A, Φ) and for any π =

∏r
i=1 πi in Sn with

πi = (li,1, li,2, . . . , li,ni
), we write

φπ(a1, . . . , an) :=
r∏

i=1

φ(ali,1ali,2 · · · ali,ni
),
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kπ(a1, . . . , an) :=
r∏

i=1

kni
(ali,1 , ali,2 , . . . , ali,ni

),

where (kn)n∈N stand for the free cumulants. For any n-tuple (X1, . . . , Xn) of N ×N matrices,
we de�ne the normalized generalized moments E(r

(N)
π (X1, . . . , Xn)) where π is in Sn by setting

E(r(N)
π (X1, . . . , Xn)) =

1

Nγn(π)
E(rπ(X1, . . . , Xn)) = E


 ∏

C∈C(π)

1

N
Tr(

∏
j∈C

Xj)


 .

We also de�ne the normalized cumulants by

(CU
π )(N)(X1, . . . , Xn) := Nn−γn(π)CU

π (X1, . . . , Xn).

In [2] we prove the following equivalence.

Proposition 2.2 Let (X1, . . . , Xn) be a n-tuple of N × N matrices. Let (x1, . . . , xn) be non
commutative variables in (A, φ). The following equivalence holds,

E(r(N)
π (X1, . . . , Xn)) −→

N → +∞
φπ(x1, . . . , xn), ∀ π ∈ Sn

⇔ (CU
π )(N)(X1, . . . , Xn) −→

N → +∞
kπ(x1, . . . , xn), ∀ π ∈ Sn.

2.3 Action of the unitary group on the space of complex matrices
We �rst need to precise some basic generalities and notations. Let (e1, . . . , eN) be the canonical
basis of CN . Endow CN with the usual hermitian product 〈∑i uiei,

∑
i viei〉CN =

∑
i uivi. Thus

the dual space (CN)∗ is composed by the linear forms v∗ : CN → C, u 7→ 〈u, v〉CN with v ∈ CN .
Let (e∗1, . . . , e

∗
N) be the dual basis. Let us �rst consider the tensorial product CN ⊗ (CN)∗ with

orthonormal basis ei ⊗ e∗j , i, j = 1, . . . , N with respect to the hermitian product

〈u1 ⊗ v∗1, u2 ⊗ v∗2〉CN⊗(CN )∗ = 〈u1, u2〉CN 〈v2, v1〉CN .

The unitary group UN acts on CN ⊗ (CN)∗ as follows:

ρ̃(U)(ei ⊗ e∗j) = Uei ⊗ (Uej)
∗.

Now let us consider MN with canonical basis (Ea,b)a,b=1,...,N de�ned by (Ea,b)ij = δa,iδb,j, and
hermitian product 〈A, B〉MN

= Tr(AB∗). It is well-known that MN and CN ⊗ (CN)∗ are
isomorphic hermitian vector spaces when we identify any M = (Mij)1≤i,j≤N ∈ MN with M̃ =∑

1≤i,j≤N Mijei ⊗ e∗j (and hence Ẽa,b = ea ⊗ e∗b). Besides the action ρ̃ corresponds on MN to

ρ(U)(M) = UMU∗.

Note also that the inner product AB in MN corresponds to the product de�ned by

(u1 ⊗ v∗1).(u2 ⊗ v∗2) = 〈u2, v1〉CN u1 ⊗ v∗2,
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and the adjoint A∗ to the following rule: (u⊗ v∗)∗ = v ⊗ u∗.
More generally, for any n, the tensorial products M⊗n

N and (CN ⊗ (CN)∗)⊗n are isomorphic
through the map : A = A1 ⊗ . . .⊗ An 7→ Ã = Ã1 ⊗ . . .⊗ Ãn and with hermitian product

〈A1 ⊗ . . .⊗ An, B1 ⊗ . . .⊗Bn〉M⊗n
N

=
n∏

i=1

Tr(AiB
∗
i ) =

n∏
i=1

〈Ãi, B̃i〉CN⊗(CN )∗

= 〈Ã1 ⊗ . . .⊗ Ãn, B̃1 ⊗ . . .⊗ B̃n〉(CN⊗(CN )∗)⊗n .

Here again the following actions of UN are equivalent:

on (CN ⊗ (CN)∗)⊗n ρ̃n(U)(ei1 ⊗ e∗i1̄ ⊗ · · · ⊗ ein ⊗ e∗in̄) = Uei1 ⊗ (Uei1̄)
∗ ⊗ · · · ⊗ Uein ⊗ (Uein̄)∗,

on M⊗n
N ρn(U)(A1 ⊗ . . .⊗ An) = UA1U

∗ ⊗ . . .⊗ UAnU∗.

Let us denote by [V ]UN the subspace of UN -invariant vectors of V with V = M⊗n
N or (CN ⊗

(CN)∗)⊗n. Clearly [M⊗n
N ]UN and [(CN ⊗ (CN)∗)⊗n]UN are isomorphic too. Consequently from

now on we identifyM⊗n
N and (CN⊗(CN)∗)⊗n. We also simply denote the hermitian product by

〈., .〉 from now on throughout section 2. Note lastly that the inner product in M⊗n
N is de�ned

by
(A1 ⊗ . . .⊗ An).(B1 ⊗ . . .⊗Bn) = A1B1 ⊗ . . .⊗ AnBn,

and the adjunction by (A1 ⊗ . . .⊗ An)∗ = A∗
1 ⊗ . . .⊗ A∗

n. They satisfy for any u, v, w ∈M⊗n
N :

〈u.v, w〉 = 〈v, u∗.w〉 = 〈u, w.v∗〉. (3)

In the following proposition we determine a basis of [M⊗n
N ]UN . We use the previous identi�cation

in the proof.

Proposition 2.3 For any permutation σ in Sn, de�ne

uσ :=
∑

i1,...,in

Eiσ−1(1)i1
⊗ · · · ⊗ Eiσ−1(n)in

.

Then {uσ ; σ ∈ Sn} generates [M⊗n
N ]UN . Moreover when N ≥ n, it is a basis of [M⊗n

N ]UN .

Proof: The �rst part of Proposition 2.3 derives from Theorem 4.3.1 in [8]. Let us brie�y
recall how this set is introduced before showing that it forms a basis of [M⊗n

N ]UN . We work
on (CN ⊗ (CN)∗)⊗n where we consider another group action and a speci�c invariant vector in
order to apply lemma 1.1. De�ne

Θn := IN ⊗ . . .⊗ IN︸ ︷︷ ︸
n times

=
∑

i1,...,in

ei1 ⊗ e∗i1 ⊗ · · · ⊗ ein ⊗ e∗in .

It is clear that Θn ∈ [M⊗n
N ]UN . Consider now the natural action ρ′ of Sn×Sn on (CN⊗(CN)∗)⊗n

de�ned for any permutations σ and τ in Sn acting respectively on {1, . . . , n} and {1̄, . . . , n̄} by

ρ′((σ, τ))(ei1 ⊗ e∗i1̄ ⊗ · · · ⊗ ein ⊗ e∗in̄) = eiσ−1(1)
⊗ e∗iτ−1(1̄)

⊗ · · · ⊗ eiσ−1(n)
⊗ e∗iτ−1(n̄)

.
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The actions ρ̃n and ρ′ obviously commute. Hence, according to Lemma 1.1, for all (σ, τ) in
Sn × Sn, ρ′((σ, τ)) · Θn belongs to [M⊗n

N ]UN . Note that, since (σ, τ) = (στ−1, id)(τ, τ) and
ρ′((τ, τ)) ·Θn = Θn, then

{ρ′((σ, τ)) ·Θn ; (σ, τ) ∈ Sn × Sn} = {ρ′((σ, id)) ·Θn ; σ ∈ Sn}.
Thus we simply denote ρ′((σ, id)) by ρ′(σ) and we set

uσ = ρ′(σ) ·Θn.

Remark that uid = Θn. Note also that uσ corresponds to ρN
Sn

(σ) in [5].
From Theorem 4.3.1 in [8], the set {ρ′(σ) · Θn ; σ ∈ Sn} generates [M⊗n

N ]GL(N,C) = [M⊗n
N ]UN

(see [9]). We now prove that it is a basis when N ≥ n.
One can easily see that the adjoint of ρ′((σ, τ)) satis�es ρ′((σ, τ))∗ = ρ′((σ−1, τ−1)) so that

〈uσ, uσ′ 〉 = 〈Θn, uσ−1σ′ 〉 = 〈uσ′−1σ, Θn〉
Now from (1) we get :

〈Θn, uσ〉 =
∑

i1,...,in

n∏

l=1

δil,iσ(l)
=

∑
i1,...,in

rσ(Ei1,i1 , . . . , Ein,in) = rσ(IN , . . . , IN) = Nγ(σ),

so that
〈uσ, uσ′ 〉 = Nγ(σ−1σ

′
).

Let G = (〈uσ, uσ′ 〉)σ,σ′∈Sn×Sn
be the Gramm matrix of {uσ ; σ ∈ Sn}. Let a = (aσ)σ∈Sn and

b = (bσ)σ∈Sn be in Cn!. We have :

Ga = b ⇔
∑

σ
′∈Sn

〈uσ, uσ′ 〉aσ′ = bσ ∀σ ∈ Sn

⇔
∑

σ′∈Sn

Nγ(σ
′−1

σ)aσ′ = bσ ∀σ ∈ Sn

⇔ b = a ∗Nγ

⇔ a = b ∗ (Nγ)(−1)

when N ≥ n since in that case Nγ is ∗-invertible. Therefore G is invertible when N ≥ n and
{uσ ; σ ∈ Sn} is a free system of vectors of [(MN)⊗n]UN . ¤

Here are some basic properties satis�ed by the uσ, σ ∈ Sn, which can be easily proved. For any
σ and τ in Sn and A1, . . . , An ∈MN ,

u∗σ = uσ−1 , (4)
uσ.uτ = uστ , (5)

〈uσ.(A1 ⊗ · · · ⊗ An), uτ 〉 = 〈A1 ⊗ · · · ⊗ An, uσ−1τ 〉, (6)
〈(A1 ⊗ · · · ⊗ An).uσ, uτ 〉 = 〈A1 ⊗ · · · ⊗ An, uτσ−1〉,
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the two last ones coming from (3), (4) and (5).
Moreover, for any k < n, if π in Sn is such that π = (n) · · · (k + 1)ρ for some ρ in Sk, then

uπ = uρ ⊗ IN ⊗ . . .⊗ IN︸ ︷︷ ︸
n−k times

(7)

and more generally, if π = ρ1ρ2 with ρ1 ∈ S{1, . . . , k} and ρ2 ∈ S{k + 1, . . . , n}, then

uπ = uρ1 ⊗ uρ2 . (8)

Lastly note the following straightforward equality :

ρ′((σ, σ)) · uπ = uσπσ−1 . (9)

Here is an immediate interpretation of the generalized moments in terms of hermitian products
with the uπ.

Lemma 2.1 For any A1 ⊗ · · · ⊗ An in M⊗n
N and any π ∈ Sn

rπ(A1, . . . , An) = 〈A1 ⊗ . . .⊗ An, uπ〉. (10)

Proof: We have:

〈A1 ⊗ . . .⊗ An, uπ〉 =
∑

i1,...,in

Tr(A1Ei1iπ−1(1)
) · · ·Tr(AnEiniπ−1(n)

)

=
∑

i1,...,in

(A1)iπ−1(1)i1
· · · (An)iπ−1(n)in

=
∑

j1,...,jn

(A1)j1jπ(1)
· · · (An)jnjπ(n)

= rπ(A1, . . . , An).

¤

2.4 Geometrical interpretation of the U-cumulants
In [5] the authors introduce the linear map Π ofM⊗n

N on [M⊗n
N ]UN de�ned for any A1⊗· · ·⊗An

by :

Π(A1 ⊗ . . .⊗ An) :=

∫

UN

UA1U
∗ ⊗ . . .⊗ UAnU

∗dU =

∫

UN

ρn(U)(A1 ⊗ · · · ⊗ An)dU

where the integration is taken with respect to the Haar measure on UN . Note that they call it
the conditional expectation onto [M⊗n

N ]UN and denote it by E(A1 ⊗ . . .⊗An) but we prefer to
adopt the previous notation Π(A1 ⊗ . . .⊗ An) in order to stay faithful to our notations of the
expectation in [1] and [3] and also to underline the property of orthogonal projection mentioned
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in [5] instead of conditional expectation. Indeed it is easy to verify that for any B ∈ [M⊗n
N ]UN

and any A ∈M⊗n
N ,

〈Π(A),B〉 =

∫

UN

〈ρn(U)(A),B〉dU =

∫

UN

〈A, ρn(U∗)(B)〉dU = 〈A,B〉.

We �rst get the following proposition in the same spirit as formula (10) in [5]. It will be one of
the key tools in the recovering of the properties of section 2.2.
Proposition 2.4 Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two independent sets of
N × N matrices such that the distribution of A is invariant under unitary conjugation i.e
for any deterministic unitary matrix U , (UA1U

∗, . . . , UAnU
∗) and (A1, . . . , An) are identically

distributed.Then

E (Π(A1B1 ⊗ . . .⊗ AnBn)) = E (Π(A1 ⊗ . . .⊗ An)) .E (Π(B1 ⊗ . . .⊗Bn)) . (11)

Proof:

E (Π(A1B1 ⊗ . . .⊗ AnBn)) = E
(∫

U1A1B1U
∗
1 ⊗ . . .⊗ U1AnBnU

∗
1 dU1

)

(a)
=

∫
E

(∫
U1U2A1U

∗
2 B1U

∗
1 ⊗ . . .⊗ U1U2AnU∗

2 BnU
∗
1 dU1

)
dU2

(b)
= E

(∫ ∫
UA1U

∗U1B1U
∗
1 ⊗ . . .⊗ UAnU

∗U1BnU∗
1 dU1dU

)

(c)
= E (Π(A1 ⊗ . . .⊗ An)) .E (Π(B1 ⊗ . . .⊗Bn)) ,

where we used the invariance under unitary conjugaison of the distribution of A in (a), a change
of variable U for U1U2 in (b) and the independence of A and B in (c). ¤

Here is the main result of the section:
Theorem 2.2 Let A1, · · · , An be inMN , N ≥ n. Then the matricial U-cumulants of (A1, · · · , An),
CU

σ (A1, . . . , An) with σ ∈ Sn, are the coordinates of E (Π(A1 ⊗ . . .⊗ An)) in the basis {uσ, σ ∈
Sn}:

E (Π(A1 ⊗ . . .⊗ An)) =
∑
σ∈Sn

CU
σ (A1, . . . , An)uσ.

Proof: According to Proposition 2.3, there exist {C̃σ(A1, . . . , An), σ ∈ Sn} in C such that

Π(A1 ⊗ . . .⊗ An) =
∑
σ∈Sn

C̃σ(A1, . . . , An)uσ.

Then, using (10),

rπ(A1, . . . , An) = 〈Π(A1 ⊗ . . .⊗ An), uπ〉 =
∑
σ∈Sn

C̃σ(A1, . . . , An)〈uσ, uπ〉

=
∑
σ∈Sn

C̃σ(A1, . . . , An)Nγ(σ−1π) = C̃(A1, . . . , An) ∗Nγ(π).
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Thus,
E (rπ(A1, . . . , An)) = E

(
C̃(A1, . . . , An)

)
∗Nγ(π).

On the other hand, by de�nition of the CU(A1, . . . , An), we have

E (rπ(A1, . . . , An)) = CU(A1, . . . , An) ∗Nγ(π).

Since Nγ is invertible for the ∗-convolution, we can deduce that for any σ ∈ Sn,

E
(
C̃σ(A1, . . . , An)

)
= CU

σ (A1, . . . , An).

¤

The key properties of these cumulants taken from [2] and recalled in section 2.1 can be
recovered using this geometric interpretation.

• Proof of Formula (2) (or Lemma 3.1 in [2]):
Note that Aσ(1) ⊗ · · · ⊗ Aσ(n) = ρ′(σ−1, σ−1)(A1 ⊗ · · · ⊗ An). Thus since the actions ρn

and ρ′ commute we have Π(Aσ(1)⊗· · ·⊗Aσ(n)) = ρ′(σ−1, σ−1)Π(A1⊗· · ·⊗An). Using (9)
and Theorem 2.2, Formula (2) follows from the linear independence of the uπ, π ∈ Sn. ¤

• Proof of Proposition 2.1 :
On one hand, from Theorem 2.2 we have

E (Π(A1 ⊗ . . .⊗ Ak ⊗ IN ⊗ · · · ⊗ IN)) =
∑
σ∈Sn

CU
σ (A1, . . . , Ak, IN , . . . , IN)uσ.

On the other hand, we also have

E (Π(A1 ⊗ . . .⊗ Ak ⊗ IN ⊗ · · · ⊗ IN)) = E (Π(A1 ⊗ . . .⊗ Ak))⊗ IN ⊗ · · · ⊗ IN

= (
∑
ρ∈Sk

CU
ρ (A1, . . . , Ak) uρ)⊗ IN ⊗ · · · ⊗ IN

=
∑

σ ∈ Sn

σ = (n) · · · (k + 1)ρ
for some ρ ∈ Sk

CU
ρ (A1, . . . , Ak) uσ,

the last equality coming from (7). The result follows by the linear independence of all
the uσ. ¤

• From the two previous points we easily get Corollary 3.1 in [2] that we recall here:
Let V = {i ∈ {1, . . . , n}, Ai 6= IN} = {i1 < · · · < ik}. Then

CU
π (A1, . . . , An) =

{
CU

ρ (Ai1 , . . . , Aik) if π|V c = id and π|V = ρ,
0 else.
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• Proof of Theorem 2.1 :
Let us write :

E (rπ(A1B1, . . . , AnBn)) = E (〈Π(A1B1 ⊗ . . .⊗ AnBn), uπ〉)
(a)
= 〈E (Π(A1 ⊗ . . .⊗ An)) .E (Π(B1 ⊗ . . .⊗Bn)) , uπ〉
(b)
=

∑
σ∈Sn

CU
σ (A)〈uσ.E(Π(B1 ⊗ . . .⊗Bn)), uπ〉

(c)
=

∑
σ∈Sn

CU
σ (A)E(〈Π(B1 ⊗ . . .⊗Bn), uσ−1π〉)

=
∑
σ∈Sn

CU
σ (A)E(rσ−1π(B)),

where (a) comes from (11), (b) from Theorem 2.2 and (c) from (6). Similarly, developing
E (Π(B1 ⊗ . . .⊗Bn)), we also get

E (rπ(A1B1, . . . , AnBn)) =
∑
σ∈Sn

CU
σ (B)E(〈Π(A1 ⊗ . . .⊗ An), uπσ−1〉)

=
∑
σ∈Sn

CU
σ (B)E(rπσ−1(A)) =

∑
τ∈Sn

E(rτ (A))CU
τ−1π(B).

¤

• Proof of Corollary 2.1 :
Using (11), Theorem 2.2 and then (5), we get

E(Π(AB)) =
∑
σ,τ

CU
σ (A)CU

τ (B)uσ.uτ =
∑

π

(
∑

σ

CU
σ (A)CU

σ−1π(B))uπ.

The result follows from the linear independence of the uπ. ¤
Note that Theorem 2.1 or Corollary 2.1 enable to compute the coordinates of E {Π(AB)}
in the basis {uπ, π ∈ Sn}. This also was the aim of formula (10) in [5].

• The linearizing property followed from Proposition 5.1 in [2]. We propose here a slightly
modi�ed version of this proposition :

Proposition 2.5 Let A and B be two independent sets of N ×N matrices such that the
distribution of A is invariant under unitary conjugation. Let X1, . . . , Xn be in A∪B and
de�ne V = {i ∈ {1, . . . , n}, Xi ∈ A}. Denote Xi by Ai if i ∈ V and by Bi else. Denote
also by A|V the tuple composed by the Xi, i ∈ V and by B|V c the complementary tuple.
We assume that V 6= ∅ and V 6= {1, . . . , n}. Then

CU
π (X1, . . . , Xn) =

{
CU

π|V (A|V )CU
π|V c (B|V c) if π(V ) = V,

0 else.
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Proof : Without lost of generality, thanks to formula (2), we can assume that V =
{1, . . . , k}, 1 < k < n, so that (X1, . . . , Xn) = (A1, . . . , Ak, Bk+1, . . . , Bn). Then write

E (Π(X1 ⊗ . . .⊗Xn))

= E (Π(A1IN ⊗ . . .⊗ AkIN ⊗ INBk+1 ⊗ . . .⊗ INBn))
(a)
= E (Π(A1 ⊗ . . .⊗ Ak ⊗ IN ⊗ . . .⊗ IN)) .E (Π(IN ⊗ . . .⊗ IN ⊗Bk+1 ⊗ . . .⊗Bn))

= {E (Π(A1 ⊗ . . .⊗ Ak))⊗ IN ⊗ . . .⊗ IN} . {IN ⊗ . . .⊗ IN ⊗ E (Π(Bk+1 ⊗ . . .⊗Bn))}
= E (Π(A1 ⊗ . . .⊗ Ak))⊗ E (Π(Bk+1 ⊗ . . .⊗Bn))
(b)
=

∑

σ∈S{1,...,k},τ∈S{k+1,...,n}
CU

σ (A1, . . . , Ak) CU
τ (Bk+1, . . . , Bn) uστ

where (a), (b) respectively come from (11), (8). Thus the coordinates of E (Π(X1 ⊗ . . .⊗Xn))
in the basis {uπ, π ∈ Sn} are null unless π = στ with σ ∈ S{1, . . . , k}, τ ∈ S{k+1, . . . , n}.
In that case they are CU

σ (A1, . . . , Ak) CU
τ (Bk+1, . . . , Bn). ¤

In particular if π is a single cycle we have CU
σ (X1, . . . , Xn) = 0 from which the linearisation

property follows.

3 Matricial O-cumulants
In order to underline the parallel with the previous section, we �rst begin with a summary of
the de�nitions and main results of [3]. Note that this work [3] has been greatly inspired by the
paper of Graczyk P., Letac G., Massam H. [7].

3.1 De�nitions
Let us introduce some objects. Let S2n be the group of permutations of {1, . . . , n, 1̄, . . . , n̄}.
Denote by (i j) the transposition sending i onto j and j onto i. De�ne

θ :=
n∏

i=1

(i ī),

Hn = {h ∈ S2n, θh = hθ}.
Hn is the hyperoctahedral group. For ε = (ε1, · · · , εn) in {−1, 1}n, set

τε =
∏

i; εi=−1

(i ī).

For any π ∈ Sn, de�ne the permutation sπ ∈ S2n as follows: for all j = 1, . . . , n,

sπ(j) = π(j) sπ(j̄) = π(j).
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Note that Hn = {sπτε, (π, ε) ∈ Sn × {−1, 1}n}. If π ∈ Sn, we still denote by π its extension on
S2n which is equal to the identity on {1̄, · · · , n̄}. For ε in {−1, 1}n and π ∈ Sn, we de�ne

g(ε,π) := τεπτε.

Note that it is easy to deduce g(ε,π) from π, since one have just to put a bar on i if εi = −1 in
the writing of π.
Example: π = (134)(25), τ(1,−1,−1,1,1) = (22̄)(33̄) then g((1,−1,−1,1,1),(134)(25)) = (13̄4)(2̄5).
De�nition 3.1 A pair (ε, π) ∈ {−1; 1}n × Sn is particular if for any cycle c of π we have
εi = 1 when i is the smallest element of c. The permutation g(ε,π) is called particular too.

There are K = (2n)!
n!2n particular pairs (ε(l), πl) which de�ne K particular permutations gl =

g(ε(l),πl) and it is easy to deduce from Theorem 8 in [7] (see also [3]) that we have the partition

S2n�Hn =
K⋃

l=1

glHn.

We are going to extend the generalized moments (1) de�ned on Sn into two functions de�ned
on S2n, respectively Hn-right and Hn-left invariant:
De�nition 3.2 Let gl, l = 1 . . . , K be the particular permutations of S2n. For any n-tuple
X = (X1, . . . , Xn) of complex random matrices, let us set for any g ∈ S2n

M+
X(g) := rπl

(X
ε1(l)
1 , . . . , Xεn(l)

n ) when g ∈ glHn,

M+
X(g) := E{M+

X(g)},
M−

X(g) := rπl
(X

ε1(l)
1 , . . . , Xεn(l)

n ) when g ∈ Hngl,

M−
X(g) := E{M−

X(g)}.
Note that M+

(IN ,...,IN ) = M−
(IN ,...,IN ) and we will denote this Hn-biinvariant function by MIN

.
Note also that

MIN
(g(ε,π)) = Nγn(π). (12)

We denote by A− the space of Hn-left invariant functions on S2n, by A+ the space of Hn-right
invariant functions and by A0 the space of Hn-biinvariant functions. For any φ in A+ and any
ψ in A− let us de�ne the convolution ~ on A+ ×A− by

φ ~ ψ(g) :=
1

|Hn| φ ∗ ψ(g) =
K∑

l=1

φ(gl)ψ(g−1
l g),

where ∗ stands for the classical convolution on S2n.
We showed in [3] that MIN

is ~-invertible when n ≤ N and its ~-inverse relies on the Wein-
garten function Wg introduced in [5]. Denoting by (MIN

)~(−1) this inverse function, we intro-
duced two cumulant functions CO+

X , CO−
X : S2n → C by setting

CO+
X = M+

X ~ (MIN
)~(−1),
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CO−
X = (MIN

)~(−1) ~M−
X.

(We slightly modi�ed the notation CO±(X) we adopted in the introduction and for the U-
cumulant functions CU(X) in order to lighten the indices when we consider for instance
CO±

X (g(ε,π)), that seems more readable than CO±
g(ε,π)

(X)).)
Note that

CO+
X (g) = CO−

X (θg−1θ).

These functions are respectively Hn-right and Hn-left invariant and coincide on the g(ε,π),
(ε, π) ∈ {−1, 1}n × Sn.

De�nition 3.3 The functions CO+
X and CO−

X are respectively called the right and left O-cumulant
functions of order n.

Thus, for example,

CO+
X ((1)) =

1

N
E(Tr(X)) ,

CO+
(X1,X2)((1)(2)) =

(N + 1)E{Tr(X1)Tr(X2)} − E{Tr(X1X2)} − E{Tr(X1
tX2)}

N(N − 1)(N + 2)
,

CO+
(X1,X2)((1 2)) =

−E{Tr(X1)Tr(X2)}+ (N + 1)E{Tr(X1X2)} − E{Tr(X1
tX2)}

N(N − 1)(N + 2)
.

The analogue of formula (2) and Proposition 2.1 are the following :

Lemma 3.1 If Xε = (Xε1
1 , · · · , Xεn

n ) and if Xπ = (Xπ(1), · · · , Xπ(n)), then

M+
Xε(g) = M+

X(τεg) and M+
Xπ

(g) = M+
X(sπg).

CO+
Xε (g) = CO+

X (τεg) and CO+
Xπ

(g) = CO+
X (sπg). (13)

Proposition 3.1 Let X1, · · · , Xk be k N ×N matrices. Then

CO+
(X1,···,Xk,IN ,···,IN )(g) =

{
CO+

(X1,···,Xk)(g
′) if there exists g′ in S2k such that g ∈ g′Hn

0 else.

3.2 Fundamental properties
3.2.1 Mixed moments of independent tuples
In [3] we established the general convolution formula for mixed moments involving the cumulant
functions CO+ or CO−.

Theorem 3.1 Let X and B be two independent sets of N ×N random matrices such that B is
deterministic and X is random whose distribution is invariant under orthogonal conjugation.
Then for any 1 ≤ n ≤ N , X = (X1, . . . , Xn) a n-tuple in X , B = (B1, . . . , Bn) in B, and for
any (ε, ε′, π) ∈ {−1; 1}n × {−1; 1}n × Sn,

E{rπ(Bε1
1 X

ε′1
1 , . . . , Bεn

n Xε′n
n )} =

(
M+

B ~ CO−
X

)
(τεπτε′) =

(
CO+

B ~M−
X

)
(τεπτε′).
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In particular, we have

E{rπ(B1X1, . . . , BnXn)} =
(
M+

B ~ CO−
X

)
(π)

=
(
CO+

B ~M−
X

)
(π).

3.2.2 Linearizing property
Note that unlike the U-cumulants the O-cumulants CO±

X (π) of a matrix X do not depend
only on the class of conjugation of π (Nevertheless, when X is symmetric, M±

X and C±
X are

bi-invariant). Thus the linearizing property has the following meaning.

Proposition 3.2 Let A and B be two independent N ×N matrices such that the distribution
of A is invariant under orthogonal conjugation. Then for any single cycle π in Sn and any
ε ∈ {−1, 1}n,

CO+
A+B(g(ε,π)) = CO+

A (g(ε,π)) + CO+
B (g(ε,π)).

3.2.3 Asymptotic behavior
We now come to the asymptotic behavior of the moment and cumulant functions. We need the
following normalization:

De�nition 3.4 Let X be a n-tuple of N ×N complex random matrices. The functions de�ned
for all g ∈ S2n by:

M±(N)
X (g) :=

1

N γ̃n(g)
M±

X(g)

(CO±
X )(N)(g) := Nn−γ̃n(g)CO±

X (g)

where

γ̃n(g) = γn(π) if g ∈ g(ε,π)Hn

are respectively called the normalized right/left moment and O-cumulant functions of X on S2n.

Proposition 3.3 Let X = {Xi, i ∈ N∗} be a set of N × N complex random matrices and
let x = {xi, i ∈ N∗} be a set of noncommutative random variables in some noncommutative
probability space (A, φ). Denote by k the corresponding free cumulant functions. Then for all
n, i1, . . . , in ∈ N∗, the two following assertions are equivalent:

i) ∀ ε, π M±(N)
Xi1

,...,Xin
(g(ε,π)) −→

N →∞
φπ(xε1

i1
, . . . , xεn

in
),

ii) ∀ ε, π (CO±
Xi1

,...,Xin
)(N)(g(ε,π)) −→

N →∞
kπ(xε1

i1
, . . . , xεn

in
).
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3.3 Action of the orthogonal group on the space of complex matrices
We start again with some basic generalities and notations. Endow now CN with the sym-
metric non degenerate bilinear form B̃(

∑
i uiei,

∑
i viei) =

∑
i uivi so that (e1, . . . , eN) is B̃-

orthonormal. Then the tensorial product CN ⊗ CN is endowed with the bilinear form

B̃2(u1 ⊗ v1, u2 ⊗ v2) = B̃(u1, u2)B̃(v1, v2)

and ei ⊗ ej, i, j = 1, . . . , N is a B̃2-orthonormal basis of (CN)⊗2.
The orthogonal group ON acts on (CN)⊗2 as follows:

ρ̃(O)(ei ⊗ ej) = Oei ⊗Oej.

On the other hand endowMN now with the symmetric non degenerate bilinear form B(X,Y ) =
Tr(XY t). Here again, MN and CN ⊗ CN are isomorphic vector spaces when we identify any
X = (Xij)1≤i,j≤N ∈MN with X̃ =

∑
1≤i,j≤N Xijei ⊗ ej (and hence Ẽa,b = ea ⊗ eb). The action

ρ̃ gives on MN

ρ(O)(X) = OXOt.

Note also that the inner product XY in MN corresponds to the product de�ned by

(u1 ⊗ v1).(u2 ⊗ v2) = B̃(v1, u2) u1 ⊗ v2, (14)

and the transposition X t to the following rule: (u⊗ v)t = v ⊗ u.
Now for any n, the tensorial products M⊗n

N and (CN ⊗ CN)⊗n = (CN)⊗2n are isomorphic
through the map : X = X1 ⊗ . . .⊗Xn 7→ X̃ = X̃1 ⊗ . . .⊗ X̃n and with bilinear forms

Bn(X1 ⊗ . . .⊗Xn, Y1 ⊗ . . .⊗ Yn) =
n∏

i=1

Tr(XiY
t
i ) =

n∏
i=1

B̃2(X̃i, Ỹi)

= B̃2n(X̃1 ⊗ . . .⊗ X̃n, Ỹ1 ⊗ . . .⊗ Ỹn).

Here again the following actions of ON are equivalent:

on (CN)⊗2n ρ̃n(O)(ei(1) ⊗ ei(1̄) · · · ⊗ ei(n) ⊗ ei(n̄)) = Oei(1) ⊗Oei(1̄) ⊗ · · · ⊗Oei(n) ⊗Oei(n̄),
on M⊗n

N ρn(O)(X1 ⊗ . . .⊗Xn) = OX1O
t ⊗ . . .⊗OXnO

t.

Let us denote by [V ]ON the subspace of ON -invariant vectors of V with V = M⊗n
N or (CN)⊗2n.

Then [M⊗n
N ]ON and [(CN)⊗2n]ON are still isomorphic and we identify M⊗n

N and (CN)⊗2n. We
also simply denote the bilinear form Bn or B̃2n by 〈., .〉 (even if it is not a scalar nor an hermitian
product). Note lastly that the inner product in M⊗n

N is de�ned by

(X1 ⊗ . . .⊗Xn).(Y1 ⊗ . . .⊗ Yn) = X1Y1 ⊗ . . .⊗XnYn,

and the transposition by (X1⊗ . . .⊗Xn)t = X t
1⊗ . . .⊗X t

n. They satisfy for any u, v, w ∈M⊗n
N :

〈u.v, w〉 = 〈v, ut.w〉 = 〈u, w.vt〉. (15)
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In order to present a basis of [M⊗n
N ]ON in Proposition 3.4 below, we need to introduce the

second action of group. We always denote by

Θn := IN ⊗ . . .⊗ IN︸ ︷︷ ︸
n times

=
∑

i1,...,in

ei1 ⊗ ei1 ⊗ · · · ⊗ ein ⊗ ein

and we now consider the natural action ρ′ of S2n on (CN)⊗2n de�ned for any permutation g in
S2n acting on {1, . . . , n, 1̄, . . . , n̄} by

ρ′(g)(ei(1) ⊗ ei(1̄) ⊗ · · · ⊗ ei(n) ⊗ ei(n̄)) = ei(g−1(1)) ⊗ ei(g−1(1̄)) ⊗ · · · ⊗ ei(g−1(n)) ⊗ ei(g
−1(n̄)). (16)

Note �rst that
〈ρ′(g)u, v〉 = 〈u, ρ′(g−1)v〉. (17)

Now the actions ρ and ρ′ commute. Hence, according to Lemma 1.1,
{ρ′(g) ·Θn; g ∈ S2n} ⊂ [M⊗n

N ]ON .

But writing

ρ′(g) ·Θn =
∑

i(1),...,i(n),i(1̄),...,i(n̄)

(
n∏

l=1

δi(l)i(l̄)

)
ei(g−1(1)) ⊗ ei(g−1(1̄)) ⊗ . . . ei(g−1(n)) ⊗ ei(g−1(n̄)),

it is easy to see that

ρ′(g) ·Θn = Θn ⇐⇒ ∀l, g−1(l) = g−1(l̄) = θg−1θ(l) (where θ =
∏n

i=1(i ī).)
⇐⇒ θ = gθg−1

⇐⇒ g ∈ Hn,

so that g 7→ ρ′(g) · Θn is Hn-right invariant. Actually Theorem 4.3.4 in [8] precises this �rst
result :
Lemma 3.2 Let Ξn ⊂ S2n be a collection of representatives for the cosets S2n�Hn. Then

[M⊗n
N ]ON = Span{ρ′(g) ·Θn; g ∈ Ξn}.

We will use the parametrization of S2n�Hn by the subset P2n of S2n composed with the pairings
of {1, . . . , 2n}. Let

η : S2n → P2n

g 7→ η(g) = gθg−1 =
n∏

i=1

(g(i) g(̄i)).

Clearly η(g) = η(g′) ⇐⇒ g′ ∈ gHn. We thus get a bijection from S2n�Hn onto P2n (see
Proposition 17, [7] or Lemma 4.1, [2] for more details).
Therefore we set for any p ∈ P2n :

up = ρ′(g) ·Θn if η(g) = p. (18)
The vector up corresponds to ρB(p) in [5]. Note that η(id) = θ and uθ = ΘN .
The up, p ∈ P2n, satisfy the following properties :
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Lemma 3.3 1. For all A1, · · · , An in MN , for any π ∈ Sn and ε ∈ {−1, 1}n, we have:

rπ(Aε1
1 , · · · , Aεn

n ) = 〈A1 ⊗ · · · ⊗ An, uη(g(ε,π))〉,

and more generally:

M+
A(g) = 〈A1 ⊗ · · · ⊗ An, uη(g)〉 (19)

2.
〈Θn, uη(g(ε,π))〉 = Nγ(π) = MIN

(g(ε,π))

and hence

〈uη(g), uη(g′)〉 = 〈Θn, uη(g−1g′)〉 = MIN
(g−1g′). (20)

Proof: 1.) Let us write j = (j(1), · · · , j(n), j(1̄), · · · , j(n̄)) a 2n-tuple of integers in {1, . . . , N}
and

uη(g) =
∑

j

(
n∏

l=1

δj(l)j(l̄)

)
n⊗

l=1

(
ej(g−1(l)) ⊗ ej(g−1(l̄))

)
.

Thus

〈A1 ⊗ · · · ⊗ An, uη(g)〉

=
∑

i,j

(
n∏

k=1

(Ak)i(k)i(k̄)

)(
n∏

l=1

δj(l)j(l̄)

)
〈

n⊗

l=1

(
ei(l) ⊗ ei(l̄)

)
,

n⊗

l=1

(
ej(g−1(l)) ⊗ ej(g−1(l̄))

)〉

=
∑

i,j

(
n∏

k=1

(Ak)i(k)i(k̄)

)(
n∏

l=1

δj(l)j(l̄)

)(
n∏

l=1

δi(l)j(g−1(l))

)(
n∏

l=1

δi(l̄)j(g−1(l̄))

)
.

Thus for any s in {1, . . . , n, 1̄, . . . , n̄}, i(s) = j(g−1(s)) = j(θg−1(s)), and setting s = g(t) we
get i(g(t))) = i(gθ(t)) = j(t) for all t in {1, . . . , n, 1̄, . . . , n̄}. Hence

〈A1 ⊗ · · · ⊗ An, uη(g)〉 =
∑

i

(
n∏

k=1

(Ak)i(k)i(k̄)

)(
n∏

l=1

δi(g(l))i(g(l̄))

)

In particular for g = g(ε,π), this is formula (18) in [3] (or formula (2.10) in [7]) which gives
rπ(Aε1

1 , · · · , Aεn
n ). Now (19) comes from de�nition 3.2.

2.) The �rst line follows by taking the Ai equal to IN and from the de�nition of MIN
(see (12)).

The second one comes from (17). ¤

The following proposition is essential for our purpose. It relies on a result in [5] that we
found in a di�erent way in [3] from mixed moments.

Proposition 3.4 The set {up; p ∈ P2n} is a basis of [M⊗n
N ]ON (when N ≥ n).
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Proof: let pl = η(gl), l = 1, . . . , K and G = (〈upk
, upl

〉)K
k,l=1 be the Gramm-matrix of {up, p ∈

P2n}. It exactly corresponds to the matrix of the operator Φ̃ in [5] which is shown to be in-
vertible with inverse operator the Weingarten function Wg (see Proposition 3.10 in [5]). ¤

Here are some di�erences with the unitary case which can explain the intricate development
we did for the O-cumulants. We give the proof below.

1. We have ut
η(g(ε,π))

= uη(g−1
(ε,π)

). In particular

ut
η(π) = uη(π−1). (21)

But in general ut
η(g) 6= uη(g−1). Instead we have

ut
η(g) = uη(θg). (22)

In fact de�ne the transposition in P2n by setting pt = η(θg) for p = η(g). Then ut
p =

upt . Note that this corresponds to the parametrization of P2n by Hn�S2n =
⋃K

l=1 Hngl.
Indeed consider η− : g 7→ η−(g) := η(θg−1) from S2n on P2n. It induces a one-to-one
mapping from Hn�S2n onto P2n such that η−(g(ε,π)) = η(g(ε,π)). Then ut

η(g) = uη−(g−1).
Consequently

M−
A(g) = 〈A1 ⊗ · · · ⊗ An, uη−(g)〉 = 〈A1 ⊗ · · · ⊗ An, uη(θg−1)〉. (23)

2. In general uη(g1).uη(g2) 6= uη(g1g2), but

uη(π).uη(g) = uη(πg) and uη(g).uη(π) = uη(θπ−1θg). (24)

Here again this relation could be understood in introducing the inner product in C (P2n) =

{
∑

p∈P2n

app; ap ∈ C} described in [8] section 10.1.2, for which C (P2n) is called the Brauer

algebra. This product is of the form p.q = Nα(p,q)r(p, q) with α(p, q) ∈ N and r(p, q) ∈ P2n

and we get

up.uq = Nα(p,q)ur(p,q). (25)

As we do not use it in the following, we choose not to detail it here.

3.

〈uη(π).(A1 ⊗ · · · ⊗ An), uη(g)〉 = 〈A1 ⊗ · · · ⊗ An, uη(π−1g)〉 = M+
A(π−1g),

〈uη(g).(A1 ⊗ · · · ⊗ An), uη(π)〉 = 〈A1 ⊗ · · · ⊗ An, uη(θπ−1g)〉 (26)
= 〈A1 ⊗ · · · ⊗ An, uη−(g−1π)〉 = M−

A(g−1π).
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4. If p ∈ P({1, . . . , k, 1̄, . . . , k̄}), if θk =
∏n

l=n−k(l l̄), then
upθk

= up ⊗ IN · · · ⊗ IN (27)
and more generally if p ∈ P({1, . . . , k, 1̄, . . . , k̄}) and q ∈ P({k + 1, . . . , n, k + 1, . . . , n̄}),
then the juxtaposition pq is in P2n and

upq = up ⊗ uq. (28)

Proof: 1.) We simply write : ut
η(g) =

∑
j

(∏n
l=1 δj(l)j(l̄)

) ⊗n
l=1

(
ej(g−1(l̄)) ⊗ ej(g−1(l))

)
=

∑
j

(∏n
l=1 δj(l)j(l̄)

) ⊗n
l=1

(
ej(g−1θ(l)) ⊗ ej(g−1θ(l̄))

)
= uη(θg)

Now η(θg) = η(θgθ) 6= η(g−1) in general. For instance if g = (122̄), then θgθ = (1̄2̄2) and
η(θgθ) = (12̄)(1̄2). On the other hand g−1 = (12̄2) and η(g−1) = (12)(1̄2̄) 6= η(θgθ).
Nevertheless η(θg(ε,π)) = η(g−1

(ε,π)) since θg(ε,π)θ = τεθπθτε = τεπ
−1τε(τεsπτε) ∈ g−1

(ε,π)Hn.

2.) Take g = (12̄) so that g2 = id, η(g2) = θ and uθ = IN⊗IN . Now uη(g) =
∑

i1,i2
ei2⊗ei1⊗

ei2 ⊗ ei1 and therefore, with (14), uη(g).uη(g) =
∑

i1,i2,j1,j2
(δi1j2)ei2 ⊗ ej1 ⊗ ei2 ⊗ ej1 = Nuη(g) 6=

IN ⊗ IN .
Now write

uπ.uη(g) =


 ∑

i(1),...,i(n)

n⊗

l=1

ei(π−1(l)) ⊗ ei(l)


 .

(∑

j

(
n∏

l=1

δj(l)j(l̄)

)
n⊗

l=1

(
ej(g−1(l)) ⊗ ej(g−1(l̄))

)
)

=
∑

i(1),...,i(n),j

(
n∏

l=1

δj(l)j(l̄)

)(
n∏

l=1

δi(l)j(g−1(l))

)
n⊗

l=1

(
ei(π−1(l)) ⊗ ej(g−1(l̄))

)

=
∑

j

(
n∏

l=1

δj(l)j(l̄)

)
n⊗

l=1

(
ej(g−1π−1(l)) ⊗ ej(g−1(l̄))

)

= uη(πg).

For the second one we have

uη(g).uπ =

(∑

j

(
n∏

l=1

δj(l)j(l̄)

)
n⊗

l=1

(
ej(g−1(l)) ⊗ ej(g−1(l̄))

)
)

.


 ∑

i(1),...,i(n)

n⊗

l=1

ei(π−1(l)) ⊗ ei(l)




=
∑

i(1),...,i(n),j

(
n∏

l=1

δj(l)j(l̄)

)(
n∏

l=1

δj(g−1(l̄))i(π−1(l))

)
n⊗

l=1

(
ej(g−1(l)) ⊗ ei(l)

)

=
∑

j

(
n∏

l=1

δj(l)j(l̄)

)
n⊗

l=1

(
ej(g−1(l)) ⊗ ej(g−1(π(l)))

)

∑

j

(
n∏

l=1

δj(l)j(l̄)

)
n⊗

l=1

(
ej(g−1(l)) ⊗ ej(g−1(θπθ(l̄)))

)

= uη(θπ−1θg).

3.) comes from (15), (21) or (22), and (24). Finally Property 4.) is clear from the de�nition of
the up. ¤
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3.4 Geometrical interpretation of the O-cumulants
Consider now, as in [5], the orthogonal projection Π of M⊗n

N onto [M⊗n
N ]ON de�ned by

Π(A1 ⊗ . . .⊗ An) :=

∫

ON

OA1O
t ⊗ . . .⊗OAnOt dO =

∫

ON

ρn(O)(A1 ⊗ · · · ⊗ An)dO

where the integration is taken with respect to the Haar measure on ON . As for the unitary
case, it corresponds to the conditional expectation on [M⊗n

N ]ON (which is still denoted by E(A)
in [5]).
Note �rst that Π commutes with the action of ρ′: for any A in M⊗n

N and g in S2n,

ρ′(g)Π(A) = Πρ′(g)(A). (29)

Here is Proposition 2.4 we have completely translated for models invariant under orthogonal
conjugation. Its proof can be carried on in a very similar way.

Proposition 3.5 Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two independent sets of
N × N matrices such that the distribution of A is invariant under orthogonal conjugation.
Then

E (Π(A1B1 ⊗ . . .⊗ AnBn)) = E (Π(A1 ⊗ . . .⊗ An)) .E (Π(B1 ⊗ . . .⊗Bn)) . (30)

Now we get :

Theorem 3.2 Let gl, l = 1, . . . , K be all the particular permutations of S2n; denote by pl

the pairing η(gl). For any A1, · · · , An in MN , denote by CO
A(gl) the matricial O-cumulants

CO±
A (gl) of A = (A1, · · · , An). Then {CO

A(gl), l = 1, . . . , K} is the set of coordinates of
E (Π(A1 ⊗ . . .⊗ An)) in the basis {upl

, l = 1, . . . , K}:

E (Π(A1 ⊗ . . .⊗ An)) =
K∑

l=1

CO
A(gl)upl

. (31)

Proof: As {ul, l = 1, . . . , K} is a basis of [M⊗n
N ]ON , we can write E(Π(A1 ⊗ . . . ⊗ An)) =∑K

l=1 αl(A)upl
, and hence, using (19),

M+
A(gk) = E(〈Π(A1 ⊗ . . .⊗ An), upk

〉)

=
K∑

l=1

αl(A)〈upl
, upk

〉 =
K∑

l=1

αl(A)MIN
(g−1

l gk)

from (20). Let us de�ne C̃A on S2n by C̃A(g) = αl(A) if g ∈ glHn so that the previous equality
gives M+

A(gk) = C̃A ~MIN
(gk). Since MIN

is ~-invertible, it follows that C̃A = CO+
A and hence

αl(A) = CO
A(gl). ¤

We now review the properties of the O-cumulants expressed in sections 3.1 and 3.2.
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• Proof of lemma 3.1:
Note that Xε = ρ′(τε)X and Xπ = ρ′((sπ)−1)X. Then use (19), (17) and the de�nition
(18). We get the expression of M+

Xε(g) and M+
Xπ

(g). Then use (29) in writing

E {Π(Xε)} = ρ′(τε)E {Π(X)} =
K∑

l=1

CO+
X (gl)ρ

′(τε)upl
=

K∑

l=1

CO+
X (gl)uη(τεgl) (32)

=
K∑

k=1

CO+
X (τεgk)uη(gk),

what gives CO+
Xε . And a similar development can be led with Xπ.

• Proof of Proposition 3.1: It is the same to the proof of Proposition 2.1 in using (27).

• Proof of Theorem 3.1 :

E{rπ(Bε1
1 X

ε′1
1 , . . . , Bεn

n Xε′n
n )} = E(〈Π(Bε1

1 X
ε′1
1 ⊗ . . .⊗Bεn

n Xε′n
n ), uη(π)〉)

(a)
= 〈E(Π(Bε)).E(Π(Xε′)), uη(π)〉 (b)

=
K∑

l=1

CO+
B (gl)〈uη(τεgl).E(Π(Xε′)), uη(π)〉

(c)
=

K∑

l=1

CO+
B (gl)〈E(Π(Xε′)), uη(θπ−1τεgl)〉

(d)
=

K∑

l=1

CO+
B (gl)〈E(Π(X)), uη(θτε′π−1τεgl)〉

(e)
=

K∑

l=1

CO+
B (gl)〈E(Π(X)), uη−(g−1

l τεπτε′ )
〉 =

K∑

l=1

CO+
B (gl)M−

X(g−1
l τεπτε′)

= CO+
B ~M−

X(τεπτε′),

(a) comes from (30), (b) from (32), (c) from (26), (d) uses θτε = τεθ and �nally (e) comes
from (23).
We conduct the second equality in an identical way.

• Lastly the linearizing property can be led in a very similar manner as for the U-cumulants.
Just translate Proposition 2.5 in using (28) and Proposition (3.5).

Note that Theorem 3.1 here again gives 〈E(AB), up〉 but only for the particular p = η(π),
π ∈ Sn. Likely formula (19) in [5] only gave 〈E(AB), Θn〉. Actually it is impossible to get
〈E(AB), up〉 for all p as a convolution formula, what we yet did for U-invariant models. This
is due to the structure of P2n as Brauer algebra that we brie�y mentioned in (25). In fact we
have :

E(Π(AB)) =
∑

k,l

CO
A(gk)C

O
B(gl)upk

.upl

=
∑

k,l

CO
A(gk)C

O
B(gl)N

α(pk,pl)ur(pk,pl).
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3.5 About matricial Sp-cumulants
Let us end this section with some words about the symplectic case. Here N is even. Recall

that if J =

(
0 IN

2−IN
2

0

)
, then Sp(N) = {T ∈ GL(N,C); T tJT = J}. Now identify MN and

CN ⊗ CN through

X = (Xij)1≤i,j≤N ∈MN 7→ X̃ =
∑

1≤i,j≤N

Xij ei ⊗ J−1ej. (33)

Endow M⊗n
N with the non degenerate skew-symmetric bilinear form

Ωn(X1 ⊗ . . .⊗Xn, Y1 ⊗ . . .⊗ Yn) =
n∏

i=1

Tr(XiY
∗
i )

where Y ∗
i = JY t

i J−1 and consider the two following group actions: �rst the action of Sp(N)
de�ned by ρ(T )(X1⊗. . .⊗Xn) = TX1T

∗⊗. . .⊗TXnT
∗, secondly the action of S2n corresponding

to (16) on (CN ⊗ CN)⊗n via the previous identi�cation (33) and which we still denote by ρ′.
Then the �t basis of [M⊗n

N ]Sp(N) is composed by the vectors up, p ∈ P2n now de�ned by

up = sgn(g)ρ′(g) ·Θn if η(g) = p

where sgn(g) denotes the signature of the permutation g in S2n and where Θn = IN ⊗ . . .⊗ IN .
It can be proved that, denoting A∗

i by A−1
i ,

Ωn(A1 ⊗ · · · ⊗ An, uη(g(ε,π))) = sgn(π)rπ(Aε1
1 , · · · , Aεn

n ).

We thus are led to introduce :

MSp+
X (g) := Ωn(X, uη(g)) MSp−

X (g) := Ωn(X, uη−(g)) = Ωn(X, u∗η(g−1))

MSp+
X (g) := E{MSp+

X (g)} MSp−
X (g) := E{MSp−

X (g)},
CSp+

X (g) := {MSp+
X ~ (MSp−

IN
)~(−1)}(g) CSp−

X (g) := {(MSp+
IN

)~(−1) ~MSp−
X }(g).

With these de�nitions the geometrical interpretation of the Sp-cumulants as in (31) holds true
and similar properties as exposed in section 3.2 can be proved like in section 3.4.
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